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Abstract: Based on the background of dynamic mining pressure monitoring and pressure prediction
research on the No. 232205 working face of the Meihuajing coal mine, this study systematically
investigates the predictive model of mining pressure manifestation on the working face of the
Meihuajing coal mine by integrating methods such as engineering investigation, theoretical analysis,
and mathematical modeling. A mining pressure manifestation prediction method based on IA-PSO-
BP is proposed. The IA-PSO optimization algorithm is applied to optimize the hyperparameters
of the BP neural network, and the working face mining pressure prediction model based on IA-
PSO-BP is established. The mean absolute error (MAE), mean square error (MSE), and coefficient of
determination (R2) are selected as evaluation indicators to compare the prediction performance of the
BP model, PSO-BP model, and IA-PSO-BP model. The experimental results of the model show that
the convergence speed of the IA-PSO-BP model is about eight times faster than that of the BP model
and two times faster than that of the PSO-BP model. Compared with the BP and PSO-BP models, the
IA-PSO-BP model has the smallest MAE and MSE and the largest R2 on the three different data sets
of the test set, indicating significantly improved prediction accuracy. The predicted results conform
to the periodic variation pattern of mining pressure data and are consistent with the actual situation
in the coal mine.

Keywords: BP; IA-PSO-BP; algorithm optimization; ground pressure prediction

1. Introduction

In recent years, with the increase in mining depth and the deterioration of existing
conditions, coal mine safety accidents have been occurring more frequently, severely
restricting the safe and efficient mining of coal mines, resulting in significant financial and
material losses as well as casualties [1–6]. According to statistics, roof accidents in the
working face account for about 22.6% of coal mine accidents, with the death toll accounting
for approximately 11.6% of the total [7,8]. The analysis and prediction of roof strata behavior
in the advancing process of the working face has always been a challenging problem for
strata control researchers. The load capacity and characteristics of the supports will ensure
proper roof maintenance conditions [9]. Predictive research on the manifestation patterns
of roof strata behavior in advancing working faces can effectively guide safe and efficient
production in mining faces and provide certain assistance for the intelligent construction of
mines [10–16].

Many domestic and foreign scholars have laid a certain foundation for the research
of coal ground pressure prediction methods. For example, in terms of traditional ground
pressure prediction methods, G.K. Ghosh, C. Sivakumar [17,18] used on-site microseis-
mic monitoring equipment to conduct real-time underground microseismic monitoring
in a longwall coal mine in India. They processed and analyzed the microseismic data
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obtained from the monitoring and predicted the high-stress and low-stress distribution
zones where roof collapse occurs in advance. Pan Yishan [19] and others developed the first
kilometer-scale mine seismic monitoring and positioning system in China. By dynamically
monitoring the microseismic data of the working face in coal mines in real time, they
determine whether the monitoring data exceeds the preset warning threshold, providing
data support for guiding the safe production of coal mine working faces. Wang Enyuan
and He Xueqiu [20] conducted research on the electromagnetic radiation of hard coal rock
in Beijing Muchengjian Coal Mine, using the positive correlation characteristics between
electromagnetic radiation and load, as well as the deformation and fracture of coal. They
proposed a technical method for monitoring and predicting the stability of the roof using
electromagnetic radiation. Li Anning [21] and others, based on the mechanical model
of the top and bottom beam clamping of the roof and floor, used the FLAC3D numerical
simulation method to analyze the dynamic response characteristics of stress and displace-
ment of the coal rock mass in the working face. They revealed the mechanism of impact
manifestation and found that the observed ground pressure manifestation patterns were
basically consistent with the field measurements.

In recent years, based on traditional ground pressure prediction methods, ground
pressure prediction methods by incorporating deep learning have also made some devel-
opment. He Chaofeng et al. [22] analyzed various factors affecting the periodic pressure
of the working face and established a working face periodic pressure prediction model
based on the BP neural network using the prediction principle of the BP network. The
model achieved good prediction accuracy through research on the already mined working
face. Wu Xuan et al. [23] established a particle swarm optimization support vector machine
(SVM) model to predict the width of coal pillars in coal seam sections, which showed
high prediction accuracy and strong universality. Zhao Yixin et al. [24] analyzed the re-
sistance of working face supports based on the mining pressure data of the Buertai mine
42103 working face and established a long short-term memory neural network (LSTM)
mining pressure prediction model to predict the mining pressure data.

The above research has laid a solid foundation for the prediction of mining face
pressure in the field. However, most studies mainly focus on macroscopic estimation of
the manifestation law of mining face pressure before mining, while the step distance or
pressure intensity during the actual mining process changes dynamically with the mining
progress of the face. At the same time, due to the algorithm structure of the BP network
itself and the fact that the parameters of the optimization algorithm in the prediction model
are mostly randomly selected based on experience, the model itself may have the problems
of slow convergence speed and easily falling into local optima. Therefore, the established
model does not possess high accuracy and reliability.

Based on this, the author conducts research on the prediction method of future mining
pressure values on the working face using the BP neural network as a regression model.
To address the issues of slow convergence speed and susceptibility to local optima in the
BP network, the immune algorithm-particle swarm optimization (IA-PSO) is employed to
optimize the hyperparameters of the BP neural network. By overcoming the deficiencies
of the BP network and utilizing the concentration selection mechanism of the immune
algorithm, the diversity of particles is maintained and the global optimization ability of
the particles is enhanced. Furthermore, based on the hydraulic support working resistance
data, the prediction of roof pressure changes in the underground fully mechanized coal
mining face is achieved.

2. Research Background
2.1. Engineering Background

The Meihuajing coal mine is located in the central part of the Yuanyanghu Mining
Area, with a north-south length of 10.1~11 km and an east-west width of 6.1~7.3 km. The
field covers an area of 78.96 km2 and has a designed recoverable reserve of 1.515 billion
tons. The coal field contains 25 seams and 21 seams of recoverable coal. The average total
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thickness of the mineable coal seams is 26.31 m, with a dip angle of 5◦~25◦. There are
seven main mineable seams, namely 2 and 2−2 coal, 3 coal, 4 and 4−1 coal, 6 and 6−1 coal,
10 and 10−2 coal, 12 and 12−1 coal, and 18 and 18−2 coal. The average thickness of each
main mineable coal seam is shown in Table 1.

Table 1. The average thickness of the main coal seam.

Coal Seam Number 2, 2−2 3 4, 4−1 6, 6−1 10, 10−2 12, 12−1 18, 18−2

The average
thickness 2.88 m 3.00 m 3.31 m 3.82 m 3.04 m 2.50 m 4.11 m

The average inclination angle of the No. 232205 fully mechanized mining face is 9.3◦,
average thickness is 4.38 m, and burial depth is between 430 and 510 m. The coal seams in
the working face are in stable condition, the immediate roof is mainly siltstone, the main
roof is mainly coarse sandstone. There is a little water gushing from the roof, the bottom
drum of the roadway and the roof plate of the mining area are treated by the collapsing
method, and the working face advances by 10 m every day.

With the extension of mining, the roadway is increasingly affected by the superposition
of horizontal and vertical stresses, and in the process of extending to the depth of the
geological structure increased significantly, and the changes in the coal seam occurrence
increased, resulting in the working face of the ground pressure is obvious, and it is difficult
to predict.

2.2. Monitoring of Support Resistance Data

The support center distance of the Meihuajing coal mine is 1.6 m, the gap is 10 cm,
and the caving method is adopted to manage the roof. The working face adopts a KJ197
coal mine dynamic ground pressure monitoring system, as shown in Figure 1. Firstly,
the hydraulic support of the working face collects the support working resistance data
through YHY60 pressure monitor and transmits it into electro-hydraulic controller, and
each support of the working face is equipped with pressure monitor, and the collection
time interval is from 3 to 5 s. Then, it connects to the Gigabit industrial network through
network switch to transmit the monitoring data to the ground data collection server and
big data storage center through communication protocols or relevant procedures. The
data received through the transmission will be pre-processed and formatted through the
communication protocol or related procedures.
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3. IA-PSO-BP Algorithmic Theory
3.1. BP Neural Network

The BP neural network is a multilayer feedforward network that uses the error back-
propagation algorithm. This algorithm was proposed by McClelland and other scholars in
the mid-1980s. The BP neural network is highly suitable for modelling support resistance
due to its simple implementation, small computational requirements, high reliability, and
strong nonlinear mapping ability. The network comprises input, hidden, and output layers,
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with neurons in each layer not connected to each other. However, the neuron points in
adjacent layers are connected, as shown in Figure 2.
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3.2. Particle Swarm Optimization Algorithm (PSO)

Each potential solution of an optimization problem is represented as a particle in the
search space. Each particle has a fitness value determined by the optimization function
being optimized. Additionally, each particle has a velocity that determines the direction
and distance of its next movement. The update of particle positions is illustrated in Figure 3.
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In Figure 3, v is the velocity of the particle’s movement; p represents the best position
found by the particle. The particle swarm algorithm is initialized with a group of random
particles, and then the optimal solution is found through iterations. In each iteration, each
particle updates its velocity and position by comparing two extremes. The first extreme
is the best solution found by the particle itself, referred to as individual best (pbest); the
other extreme is the best solution found by the entire population, referred to as global best
(gbest). The remaining particles in the swarm then follow the current best particle to search
in the space.

In a D-dimensional space, N particles form a cluster, where the i-th particle is denoted
as a D-dimensional vector.

Xi = (xi1, xi2, · · · , xiD), i = 1, 2, · · · , N

The velocity of the i-th particle is also a D-dimensional vector.

Vi = (vi1, vi2, · · · , viD), i = 1, 2, · · · , N
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The optimal position found by the entire particle swarm up to now is referred to as
the global optimum.

gbest = (pg1, pg2, · · · , pgD)

Once these two optimal values have been found, the particles update their velocity
and position according to the following two formulae:

vi,d(t + 1) = ω · vi,d(t) + c1r1[pi,d − xi,d(t)] + c2r2[pi,dxi,d(t)] (1)

xi,d(t + 1) = xi,d(t) + vi,d(t + 1) (2)

In the formula, w is referred to as the inertia factor; c1 and c2 are learning factors, also
known as acceleration constants, typically taken from the range from 0 to 4; r1 and r2 are
uniformly distributed random numbers within the range from 0 to 1.

Due to its efficient search capability, the particle swarm optimization (PSO) algorithm
is advantageous in obtaining optimal solutions in multi-objective contexts. Moreover,
the PSO algorithm demonstrates good versatility, making it suitable for handling various
types of objective functions and constraints. It can also be easily integrated with tradi-
tional optimization methods, thereby improving its own limitations and achieving more
efficient problem-solving.

3.3. IA-PSO Algorithm

The particle swarm algorithm uses a random function to initialize a population of
particles and uses the adaptation value to evaluate the system when used to perform a
random search of the population. In the early stage of searching the solution space of the
particle swarm algorithm, the optimal solution can be found very quickly but it is generally
a local optimal point, and many times it cannot meet the accuracy requirements [25].
However, if you set a larger value of acceleration factor, maximum speed, etc., the particle
swarm algorithm is very likely to fail to obtain the optimal solution, resulting in the inability
to converge; if the algorithm converges, then there exists a particle swarm. Each particle
will be close to the optimal solution, which inevitably leads to the swarm of particles
having a tendency toward homogenization (loss of diversity of particles), so that in the
later operation of the algorithm, the convergence speed will become slower, and when the
algorithm obtains a certain degree of the optimal solution it cannot continue to optimize, or
it will obtain a relatively low accuracy [26]. In order to solve these defects and deficiencies
of the particle swarm algorithm, the particle swarm algorithm is improved by using the
immunization algorithm, and the algorithm obtained is called the immunization particle
swarm algorithm. While overcoming the defects of BP network, the concentration selection
mechanism of the immune algorithm is used to maintain the diversity of particles and
enhance the global optimization seeking ability of particles. And based on the hydraulic
bracket working resistance data, it realizes the early warning prediction of the change rule
of the top plate mineral pressure change law of the comprehensive mining face under the
coal mine. The flowchart is shown in Figure 4.

The steps of the IA-PSO algorithm are as follows:
Step 1: Initialize c1 and c2 and the number of particle population M;
Step 2: Generate the position xi of M particles(antibodies) and their velocity vi by

random mapping by Logistic regression analysis method, where i = 1, 2, . . ., M, form the
initial particle population P0;

Step 3: Generate immune memory particles. Construct the fitness function and
calculate whether the fitness value of the particles in the current particle population P
satisfies the end condition of the algorithm, if it does, end and output the result, otherwise
continue to run;

Step 4: Update the local and global optimal solutions;
Step 5: Then generate N new particles (antibodies) by mapping from logistic regression

analysis method;
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Step 6: Particle (antibody) selection based on concentration selection mechanism. Cal-
culate the probability of generating N + M new particles (antibodies) using the percentage
of similar antibodies in the population;

Step 7: Select N particles (antibodies) in the immune memory particle (antibody)
library according to the probability from the largest to the smallest to form the particle
(antibody) population P, and then go to the third step.
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4. IA-PSO-BP Support Pressure Prediction Algorithm
4.1. Data Source

The dataset is derived from the No. 232205 fully mechanized mining face of the
Meihuajing coal mine in Ningxia. It covers the time period from 8:00 on 1 August 2022,
to 8:00 on 31 October 2022, and includes a total of 25,920 monitoring data points for the
support resistance. The data was sampled every 5 min, and the unit of measurement is
MPa. The support pressure monitoring data was preprocessed using the method described
in Section 3.2 and then normalized. The dataset contains 25,500 data points. Statistical
calculations show that the mean value of hydraulic support resistance after preprocessing
is 17.6, with a standard deviation of 12.1. The minimum and maximum values are 0.3 MPa
and 43.4 MPa, respectively. To evaluate the prediction performance of the established
ground pressure prediction model on different data volumes, the preprocessed dataset is
divided into three segments based on time periods. Table 2 shows the information table for
the support pressure dataset.

Table 2. Support pressure data set information table.

Dataset Name The Amount of Data Statistical Description
of the Dataset Start and End Time

Dataset 1 4032 Average 18.1,
standard deviation 11.5

1 August 2022 to 15
August 2022

Dataset 2 11,232 Average 16.9,
standard deviation 10.3

1 August 2022 to 10
September 2022

Dataset 3 25,920 Average 17.6,
standard deviation 12.1

1 August 2022 to 31
October 2022

4.2. Data Preprocessing and Normalization
4.2.1. Data Preprocessing

Due to the harsh underground mining environment in coal mines, it is challenging
to obtain intact monitoring data. The failures of monitoring equipment and the inherent
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flaws in sampling algorithms may result in the inclusion of various forms of noise in the
data. Therefore, in order to improve the prediction accuracy of the model, it is necessary to
first remove outliers, interpolate missing values, and delete duplicate values in the original
support pressure monitoring data.

(1) Outlier value handling

This article adopts the Pauta criterion [27] to calculate the standard deviation of the
data and sets the interval based on a certain probability. When the error exceeds this
interval, it is considered as an outlier, and the data that reaches the outlier status is regarded
as an abnormal data. The formula for determining outliers is shown below, where x is the
calculated arithmetic mean and σ is the standard deviation.

σ =

√√√√√ n
∑

i=1
(xi − x)2

n − 1
(3)

|xi − x| > 3σ (4)

(2) Missing value handling

To ascertain the validity of each sensor’s mining pressure data, a calculation formula
for the data missing rate is established, as shown in Formula (5).

deletion_rate : dr = 1 − s1

s0
(5)

In Formula (5), S0 is the theoretically monitored total data volume of the ground pres-
sure sensor, while S1 is the effective data volume collected by the sensor (including missing
values resulting from outlier processing, which are considered invalid data). Assuming a
threshold value of 0.2 (indicating at least 80% of valid data presence), if dr is greater than
this threshold, the ground pressure monitoring data from this sensor is deemed unusable
and can be directly deleted. Conversely, if dr is less than or equal to this threshold, the
ground pressure monitoring data from this sensor is considered usable.

(3) Duplicate values handling

When the underground coal mine will stop mining due to maintenance or mining
equipment failure, at this time there is no mining influence, the working face stress basically
does not change significantly, which leads to the data monitored by the underground
monitoring equipment for a long time to change very little or even not change at all,
thus creating a large number of meaningless duplicate values. In order to reduce the
amount of data, avoid the model processing a large number of invalid data, and improve
the convergence speed and prediction accuracy of the mineral pressure manifestation
model, it is necessary to identify and eliminate the duplicate values in the mineral pressure
monitoring data. The most common and convenient way to identify duplicate ground
pressure values is to sort the ground pressure data first, and the duplicates are necessarily
adjacent to each other, and then keep the first data of the duplicate segment and delete all
the data after it.

4.2.2. Data Normalization

Due to the large volume and dimensionality of the original ground pressure monitor-
ing data, the time complexity of computer processing is high. Preprocessing can reduce
the data dimensionality. Therefore, after handling the outliers, missing values, and du-
plicate values in the original support pressure monitoring data, normalization is still
required. For the support pressure data sequence xi = (x1, x2, · · · xN−1, xN), this paper
adopts Formulas (6)–(8) to normalize the data sequence, transforming the original ground
pressure monitoring data into data within the range from −1 to 1. This eliminates the
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inconvenience caused by the magnitude of the data sequence for subsequent data analysis
and ensures the comparability of the data.

x′i =
xi − µ

σ
(6)

µ =
N

∑
i=1

xi
N

(7)

σ =

√√√√√ N
∑

i=1
(xi − µ)2

N − 1
(8)

In the formula above, xi is the raw data, xi
′ is the normalized data, and µ is the mean

of the data sequence, σ is the standard deviation of a data series.

4.3. Design of IA-PSO-BP Neural Network Model
4.3.1. Model Concept

This paper takes the BP network as the regression model, uses the mining pressure
data sequence as the model input, and aims to predict the future mining pressure values.
However, the BP network often suffers from slow convergence speed and the problem of
getting stuck in local optimal states due to the modification of weights and thresholds in
the negative gradient direction of the error function. The IA-PSO algorithm optimizes the
weights and thresholds of the BP network, overcoming its inherent defects and improving
the training speed and prediction accuracy. Additionally, it addresses the problem of slow
convergence speed caused by the decrease in particle diversity in the later stage of the
PSO algorithm.

Figure 5 shows the process for collecting on-site monitoring data, establishing a
training sample dataset, and preprocessing the sample data by handling abnormal values,
missing values, duplicate values, and normalization. The preprocessed data sequence is
then used as input for the model. The hyperparameters of the BP network are optimized
using the immune particle swarm hybrid algorithm. Finally, the predicted values are
compared with the actual measured values, and the prediction error is calculated.
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4.3.2. Construction of Populations and Fitness Function

To establish the mapping of BP network connection weights and thresholds to PSO
particle dimensions using training sample data as particle populations, it is assumed
that the number of neurons in the input layer, hidden layer, and output layer of the
BP network are I, H, and O, respectively, and the dimensionality of the PSO particles
is D = I × H + H × O + O.

The fitness function for the PSO algorithm is calculated using the mean squared error
formula output.

F = MSE =
1
n

n

∑
i=1

(yi − y′i)
2 (9)

In the above formula, yi is the actual output value of the i-th network, and yi
′ is the

i-the expected value.

4.3.3. Implementation Steps of the Model

Then IA-PSO is used to optimize the weights and thresholds of BP network, which
overcomes the defects of the BP network while maintaining the diversity of the particles
using the concentration selection mechanism of the immunized algorithm, and enhances
the global optimization-seeking ability of the particles, and the specific steps are as follows:

Input: Mining pressure data sequence: P
Step 1: Initialization

(1) BP network learning parameter settings: Determine the activation function, training
function, learning rate (lr), target error (goal), and maximum iteration count (epochs)
based on the training sample data.

(2) Parameter Settings for IA-PSO Algorithm: The parameters include the number of
particles N, the initial positions xi and velocities vi of the particles, the acceleration
constants c1 and c2, the inertia weight w, and the individual best value pbest and global
best value gbest.

Step 2: Iterative Updates

(1) Calculate the fitness F(xi) of each particle, and determine the individual best value
and global best value.

(2) Update the position and velocity of the particles, and update the individual and global
best values for the particles.

(3) Calculate the individual concentration and replacement probability, and use a concen-
tration selection mechanism to select N suitable particles.

Step 3: Determine whether the following conditions is satisfied, if so, go to Step 4,
otherwise go to Step 2.

(1) The training error reaches the required accuracy.
(2) Stops iterating when the maximum number of iterations for training is reached.

Step 4: Output the global optimal value gbest and assign it to the network weights and
thresholds. The algorithm ends.

Output: Trained BP neural network.
The algorithmic procedure of the IA-PSO-BP model mentioned is illustrated in Figure 6.
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5. Construction of the IA-PSO-BP Ground Pressure Prediction Model
5.1. The Determination of the Topology Structure and Parameter Selection of BP Neural Networks

(1) Determination of Topological Structure

The determination of the BP network structure mainly includes the determination
of the number of layers and nodes in the input layer, hidden layer, and output layer. For
the number of layers, the input layer and output layer are fixed at single layer. Since a
three-layer BP network with a single hidden layer can achieve nonlinear mapping of any
dimension [28], therefore, the topology of single implicit layer is fully capable of fulfilling
the requirements of mine pressure data prediction, and the number of nodes in the input
and output layers is determined according to the actual problem.

Since the resistance data of the working face support is a continuous time series,
there is a certain correlation between adjacent data. If the number of nodes is too small,
it will ignore the correlation between data and the trend of data sequences, resulting
in low prediction accuracy. On the contrary, if the number of nodes is too large, it will
not only improve the prediction accuracy of the model but also increase the complexity
of calculations, leading to slow convergence or inability to converge. According to the
calculation result lbest = 11 in Section 4.3, the number of nodes in the input layer is set to 11.

This study calculates H ≈ 4 based on the commonly used empirical formula
H =

√
I + O + b, the initial value of the number of hidden layer nodes is set to 4. By

changing the number of hidden layer nodes through repeated testing, the variation of the
hidden layer nodes with the error is obtained as shown in Figure 7. From the figure, it can
be observed that when the number of hidden layer nodes is set to 12, the network output
error is minimized. Therefore, the number of hidden layer nodes is set to 12. When the
number of nodes in the implicit layer exceeds 12, the model is overfitted, in other words,
the model complexity is higher than the actual problem, and the overfitting leads to an
increase in the generalization error. A reasonable number of hidden nodes can control the
complexity of BP neural networks to some extent.
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The number of neurons in the output layer depends on the actual requirements. In
this model, which aims to predict the working resistance of the roof in mining face, the
output variable is the support resistance. Therefore, the number of nodes in the output
layer is set to 1.

(2) Parameter Selection for BP Neural Network

The selection of parameters for the BP network primarily involves choosing the
activation function, training function, target error goal, maximum number of iterations
(epochs), and learning rate (lr). The selection of activation and training functions is based
on the distribution characteristics of the training dataset. The target error and maximum
number of iterations are determined based on the specific problem requirements, while the
learning rate is dynamically selected according to the change in network prediction error.
In this paper, the goal is set to 0.001, epochs to 2000, and lr to 0.05, in accordance with the
actual requirements. The training dataset is normalized using the Z-Score method, resulting
in a dataset that follows a standard normal distribution. The ReLu function is commonly
selected as the activation function for the hidden layer due to its constant gradient, which
can accelerate the convergence speed of the BP network. The Pureline function, a linear
activation function, is chosen for the output layer to increase the range of output values.
The network training function selected is the widely used Trainlm function.

5.2. Parameter Setting for IA-PSO Optimization Algorithm

(1) Population size N

The population size N affects the computational complexity and search capability of
the algorithm. The PSO algorithm does not require a high population size and generally
achieves good solution performance when the value is set between 20 and 40. For more
difficult or specific types of problems, 100 to 150 particles may be needed. A larger
population size expands the search space, making it easier to find the global optimum
solution. However, it also increases the running time. In order to balance the running time
and optimization performance of the algorithm, this study sets the population size to 100.

(2) Inertial weight w.

This study employs a dynamic inertia factor to enable the algorithm to search a
larger solution space at the beginning of optimization to find suitable particles. Then,
it gradually narrows down to a smaller region for a more refined search to accelerate
convergence speed. The initial value of w, wstart, is set to 0.9, and it linearly decreases with
each iteration until it reaches the minimum value of wend = 0.4. This is performed to achieve
the optimization objectives.
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The calculation formula for the linearly decreasing inertia weight with the number of
iterations is as follows.

wd = wstart − (wstart − wend)×
d
K

(10)

In the formula, wd represents the inertia weight at the d-th iteration, where d is the
current iteration number, K is the total number of iterations, and wstart = 0.9 and wend = 0.4.

(3) Particle acceleration constants c1 and c2

The weights c1 and c2 affect the acceleration of particles towards their personal best
(pbest) and the global best (gbest). Typically, c1 and c2 are set such that c1 + c2 ≤ 4, with many
cases using c1 = c2 = 2 which indicates equal importance given to both directions. However,
setting the learning factors as constants can hinder the maintenance of particle swarm
diversity, leading to premature convergence and trapping in local optima. To address this
issue, this paper proposes an adaptive learning factor.

The formula for calculating the adaptive learning factor is as follows.

cd
1 = c1max −

d(c1max − c1min)

K
(11)

cd
2 = c2min +

d(c2max − c2min)

K
(12)

In the formula, d is the current iteration number, K is the total number of iterations,
cd

1 is the learning factors at the d-th iteration, c1max and c2min are the maximum learning
factors with values of c1max = c2max = 2.2, and c1min and c2min are the minimum learning
factors with values of c1min = c2min = 0.2.

In summary, the main parameter settings of the IA-PSO algorithm in this paper are
presented in Table 3.

Table 3. Key parameter settings of the IA-PSO algorithm.

Parameter Name Parameter Experience Setting Parameterization of This Article

Population size N Generally: take 20~40, special
difficulties: take 100~200 N = 150

Inertial weighting w Generally: 0.9~0.4 Decreases linearly with the
number of iterations

Acceleration factor c1 and c2 Generally satisfies c1 + c2 ≤ 4 Adaptive change with the number
of iterations

5.3. Determination of Optimal Length for Historical Data

Using dataset 1 as the training sample set for the model, in the same experimental
environment, with a fixed prediction data length. by continuously changing the historical
data length l, selecting the mean squared error (MSE) as the loss function, first determine
the optimal search range for the historical data length, and then determine the optimal
historical data length lbest within the search range.

Figure 8 shows that the model prediction error fluctuates when the length l is between
50 and 1000. The error increases as the length of historical data increases. When the length
of historical data is between 50 and 100, the model prediction error increases gradually.
When the length l is between 50 and 100, the model prediction error increases gradually.
Therefore, it is recommended to search for the optimal length of the historical data within
the range of 1 to 60.
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The MSE exhibits a fluctuating trend within the optimal historical search range of
1 to 60. Overall, the error increases as the length l increases. The error is minimized when
length l is 11, thus, determining the optimal length of historical data as lbest = 11.

6. Results and Analysis
6.1. Model Evaluation Metrics

To evaluate the predictive performance of the ground pressure prediction model based
on IA-PSO-BP, this study adopts three indicators: mean absolute error (MAE), mean square
error (MSE), and correlation coefficient (R2) to evaluate the predictive performance of each
model on the test set. The closer the MAE and MSE are to 0, and the closer the correlation
coefficient is to 1, the better the fitting performance, and the higher the prediction accuracy
of the model. The formulas for calculating MAE, MSE, and R2 are as follows:

MAE =
1
N

N

∑
i=1

∣∣yi − y′i
∣∣ (13)

MSE =
1
N

N

∑
i=1

(yi − y′i)
2 (14)

R2 = 1 − ∑N
i=1 (y

′
i − yi)

2

∑N
i=1 (yi − yi)

2 (15)

N is the number of samples in the test set, yi is the measured value of mining pressure,
y′i is the predicted value of mining pressure, and yi is the mean value of the test set samples.
Here, i = 1, 2, 3, ..., N.

6.2. Model Convergence Speed and Loss Value
6.2.1. Convergence Speed

After preprocessing and normalization of the data, the BP model, PSO-BP model, and
IA-PSO-BP model were used for training. The training times for each model that met the
target error were shown in Figure 9.

Figure 9 showed that the prediction model met the accuracy requirements after
52 iterations, while the BP and PSO-BP prediction model required 387 and 93 iterations,
respectively. The results demonstrated that the IA-PSO-BP prediction model trained approx-
imately eight times faster than the BP prediction model while meeting the same accuracy
requirements. Additionally, the PSO-BP prediction model trained about two times faster.
These findings suggested that the IA-PSO algorithm could effectively address the issue
of slow convergence speed in the BP network, resulting in a significant improvement in
training speed.
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6.2.2. Loss Value

PSO and IA-PSO were utilized to optimize the hyperparameters of the BP model,
respectively. The same number of iterations were set for each epoch, and MSE was chosen as
the loss function to calculate the loss values of the model optimized by different algorithms.
Figure 10 illustrates the comparison of loss values for each optimization algorithm.
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Figure 10 shows that the loss value of both PSO and IA-PSO optimization algorithms
gradually decreased with increasing iterations. The rate of decline slows down and tends
to stabilize with more iterations, indicating that both algorithms can optimize the hyper-
parameters of model. However, the IA-PSO optimization algorithm achieves the fastest
decrease in loss overall. The PSO optimization algorithm is known for its stability after
a certain number of iterations and its lower loss value compared to other optimization
algorithms. However, in the middle and later stages of iteration, the algorithm tends to
homogenize particles, resulting in a decrease in particle diversity and an increased risk
of falling into local optimization. On the contrary, the concentration selection mecha-
nism of the immune algorithm enhances the diversity of particles, resulting in the IA-PSO
optimization algorithm being able to gradually reduce the loss value in the later stages.
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6.3. Comparison of Ground Pressure Prediction Performance among Different Models

The first 80% of each dataset is allocated as the training set for each predictive model,
while the remaining 20% is used as the test set. The division of each dataset is presented in
Table 4.

Table 4. Division of model training and testing sets.

Dataset Name Date Size Training Set Size Test Set Size

Dataset 1 4032 3232 800
Dataset 2 11,232 9032 2200
Dataset 3 25,920 20,820 5100

First, the prediction results of various models are tested on dataset 1. The fitting effects
of the BP, PSO-BP, and IA-PSO-BP prediction models on the actual values of the test set are
compared, as shown in Figures 11–13.
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Figure 13. Prediction results of the IA-PSO-BP model on dataset 1.

Among them, the bottom right corner of Figure 12 to Figure 13 is a partial magnification
of the red-marked area in the figure. It can be seen that the fitting effect of the predicted
values and measured values of the PSO-BP and IA-PSO-BP models is good, conforming to
the periodic variation pattern of the data. However, there is a significant difference between
the predicted values and measured values of the BP model. The predicted values of the BP
model optimized by IA-PSO are closest to the measured values.

The MAE, MSE, and R2 of the predicted values and measured values of each model
are calculated, and the results are shown in Table 5.

Table 5. Comparison of prediction errors of different models in dataset 1.

Model MAE MSE R2

BP 0.1049 0.0194 0.7832
PSO-BP 0.0935 0.0168 0.8947

IA-PSO-BP 0.0816 0.0139 0.9636

From Table 5, it can be seen that on dataset 1, the IA-PSO-BP model reduces the
MAE of the BP model by 22.21%, reduces the MSE by 28.35%, and increases the R2 by
23.03%; compared to the PSO-BP model, the IA-PSO-BP model reduces the MAE by 12.73%,
reduces the MSE by 17.86%, and increases the R2 by 7.7%. Therefore, the IA-PSO-BP
model demonstrates significantly better predictive performance than the BP model and
the PSO-BP model. The IA-PSO optimized BP model reduces the error compared to the
PSO optimized BP model, indicating that the IA-PSO algorithm overcomes the problem
of the BP network easily falling into local optima and the decrease in optimization ability
caused by the decrease in particle diversity in the later stage of PSO. Therefore, using the
IA-PSO-BP model to predict the support resistance data on dataset 1 is feasible.

Then, the predictive performance of various models on dataset 2 is tested, and the
fitting effect of the BP, PSO-BP, and IA-PSO-BP predictive models on the test set actual
values is compared, as shown in Figure 14. A local magnification of the red area in the
figure is shown in Figure 15. From Figure 14, it can be seen that the predictive values
of all models fit well with the actual values, and they conform to the periodic variation
pattern of the data. According to Figure 15, the IA-PSO-BP predictive model exhibits
exceptional predictive performance and accuracy, as evidenced by its close approximation
to actual values.
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We calculated the MAE, MSE, and R2 for the predicted values of each model compared
to the observed values. The calculation results are shown in the following table.

From Table 6, it can be seen that on dataset 2, the IA-PSO-BP model reduces the MAE
of the BP model by 22.98%, reduces the MSE by 33.52%, and increases the R2 by 20.1%;
compared to the PSO-BP model, the IA-PSO-BP model reduces the MAE by 12.43%, reduces
the MSE by 20.92%, and increases the R2 by 6.59%. Therefore, the IA-PSO-BP model has
the closest prediction to the actual values and the smallest error. This indicates that using
the IA-PSO-BP model on dataset 2 has a good predictive effect.

Table 6. Comparison of prediction errors of different models on dataset 2.

Predictive Model MAE MSE R2

BP model 0.0979 0.0182 0.8134
PSO-BP model 0.0861 0.0153 0.9165

IA-PSO-BP model 0.0754 0.0121 0.9769

Based on the data in Table 6 for dataset 2, it was evident that the IA-PSO-BP model
outperformed the BP model by reducing the MAE by 22.98%, the MSE by 33.52%, and
increasing the R2 by 20.1%. In comparison with the PSO-BP model, the IA-PSO-BP model
reduces the MAE by 12.43%, the MSE by 20.92%, and increases the R2 by 6.59%. Therefore,
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the IA-PSO-BP model offers the most accurate results and the smallest error, indicating its
efficacy in predicting actual values for dataset 2.

Finally, the predictive results of each model are evaluated using dataset 3. The per-
formance of the BP, PSO-BP, and IA-PSO-BP prediction models on the actual values of the
test set is presented in Figure 16. Additionally, Figure 17 provides a zoomed-in view of
the red area in the figure. Based on the analysis presented in Figure 16, it can be observed
that the accuracy of the predicted values of each model improves as the data volume of the
dataset gradually increases, and progressively matches the periodic variation pattern of
the data. Furthermore, as illustrated in Figure 17, the predicted values of the IA-PSO-BP
prediction model consistently aligns with the actual values, suggesting that this model
excels in predictive performance compared to other models.
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Calculate the mean absolute error (MAE), mean squared error (MSE), and coefficient
of determination (R2) for the predicted values of each model compared to the observed
values. The calculation results are shown in the following table.

As shows in Table 7, on dataset 3, the IA-PSO-BP model reduces the MAE by 25.84%
and MSE by 12.8% compared to the BP model. It also increases R2 by 18.88%. Compared to
the PSO-BP model, the IA-PSO-BP model reduced the MAE by 16.4%, MSE by 6.84%, and
increased R2 by 6.3%. Therefore, the IA-PSO-BP model has the smallest prediction error
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and the best fitting effect. This indicates that the IA-PSO-BP model has the best prediction
effect on dataset 3.

Table 7. Comparison of prediction errors of different models on dataset 3.

Predictive Model MAE MSE R2

BP model 0.0921 0.0125 0.8273
PSO-BP model 0.0817 0.0117 0.9252

IA-PSO-BP model 0.0683 0.0109 0.9835

In summary, on all three datasets, the IA-PSO optimization algorithm improves the
prediction accuracy. It shows lower prediction errors compared to the traditional BP model
and PSO-BP model, and higher correlation between predicted values and actual values.
The prediction performance is significantly improved, making the IA-PSO-BP prediction
model significantly better than other models in rock pressure prediction. Additionally, as
shows in Tables 5–7, it is evident that the size of the dataset is negatively correlated with
the prediction errors of the models, meaning that the larger the dataset, the smaller the
prediction errors for each model.

7. Discussion

(1) Due to the complexity of the underground environment, the monitoring equipment
is restricted by the disturbance of the mining project and the installation technology,
which leads to the lack of integrity of the monitoring data and the existence of a large
number of outliers and missing values, which has a greater impact on the prediction
of the actual mine pressure data in the underground.

(2) The limited nature of the data set affects the prediction accuracy of the model.
(3) In the future, correlation analysis or data fusion will be performed on different types

of monitoring data from the same working face to establish a training data set with
a larger data volume and more data types, so as to further improve the accuracy of
predicting mine pressure at the working face.

(4) In the paper, the mine pressure monitoring data of the No. 232205 working face of
the Meihuajing coal mine is selected as the data source, and in the future, we need
to consider the generalization function of the model, and use the transfer-learning
method to use the trained model to predict the mine pressure accurately in the working
face under similar geological and mining conditions.

(5) Establishing a dynamic mine pressure monitoring and early warning and forecasting
system for coal mines based on Python, CSS, html and JavaScript programming lan-
guages to achieve dynamic visualization monitoring of mine pressure at the working
face and intelligent prediction and warning of mine pressure disasters.

8. Conclusions

(1) By combining the immune algorithm and PSO algorithm, the inherent defects of BP
network were surmounted. Furthermore, the problem of slow convergence speed
caused by the decrease of particle diversity in the later stage of PSO algorithm was
surmounted. A prediction method of working face ground pressure based on IA-
PSO-BP was proposed. According to the relationship between the mean square
error of network prediction and the length of historical data, the optimal historical
support pressure data length lbest = 11 of the ground pressure prediction model
was determined.

(2) The convergence speed of the IA-PSO-BP model was approximately eight times
faster than the BP model and two times faster than the PSO-BP model. Meanwhile,
the IA-PSO optimization algorithm had the fastest decreasing loss value, which
tended to stabilize after a certain number of iterations and was lower than the other
optimization algorithms.
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(3) The IA-PSO-BP model achieved the best prediction performance on three different
datasets with varying data sizes. As the data size increases, the prediction errors of all
models gradually decreased. The IA-PSO-BP model exhibited the smallest MAE and
MSE, as well as the largest R2, compared to the BP and PSO-BP models on the three
test sets. The average MAE, MSE, and R2 on the three test sets were 0.0751, 0.0123, and
0.9747. Therefore, the IA-PSO hybrid optimization algorithm significantly improved
the prediction accuracy of the model.
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