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Abstract: A depressant is essential to the effective flotation-based separation of ilmenite and forsterite,
based on their comparable physicochemical characteristics. In this work, dextran sodium sulfate
(DSS) was initially introduced as a depressant, to aid in the separation of ilmenite and forsterite.
Comparing the DSS to conventional natural starch, the results indicate that the forsterite exerts
a greater depression over the ilmenite. The difference in recovery of ilmenite and forsterite was
75.44% at 10 mg/L of DSS dosage. The DSS was chemisorbed strongly onto the forsterite surface
via Mg active sites, whereas its interaction with the ilmenite surface via physisorption was weak,
based on the XPS and molecular-dynamics-simulation analyses. The results of the AFM and QCM-D
investigations showed that the DSS adsorption layer on the forsterite surface was larger than those
on the ilmenite surface. Consequently, DSS may function as a depressant, to effectively separate
forsterite from ilmenite ore.

Keywords: flotation; dextran sodium sulfate; depressant; ilmenite; forsterite; interaction mechanisms

1. Introduction

Titanium, a strategic metal, is frequently employed in aerospace, military and medi-
cal applications [1,2]. Ilmenite is an important titanium-bearing mineral, and titanaugite
and forsterite are the primary gangue minerals in the flotation separation of ilmenite [3].
Depressing titanaugite/forsterite with traditional depressants is the most used flotation
technique for treating ilmenite commercially. Fatty acid collectors are the next most used
method [4]. Nevertheless, it is difficult to divide titanaugite/forsterite and ilmenite effec-
tively, due to their comparable physicochemical characteristics [5,6].

In ilmenite ore flotation, the crucial factor is to improve the hydrophilicity of gangue
minerals and modify the mineral surface property, selectively [7,8]. Previous studies re-
ported that common inorganic depressants, like oxalic acid [9], sodium fluosilicate [10], and
water glass/acidified water glass [11], exhibit some selective depressing ability for forsterite
or titanaugite. Using chemical chelating as a depressant, oxalic acid was selectively clicked
to the Ca active site of the titanaugite surface to produce ilmenite ore containing 26.0%
TiO2. Flotation was then utilized to obtain a TiO2 grade concentrate of 41.0% [9]. Acidified
water glass exerts a more effective depression effect on forsterite compared to regular water
glass, realizing separation between ilmenite and forsterite via flotation. Nevertheless, there
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are challenges in using these depressants, including pulp acidification [11], low concentrate
filtration efficiency, etc. [10,12].

Concerns over organic depressants like cellulose and starch have increased recently [13–15].
Carboxymethyl cellulose was chemisorbed on forsterite surface via Fe active sites, while
it scarcely affected the collector’s adsorption on the ilmenite surface [16]. Yuan et al.
found that sodium citrate could be adsorbed on both the ilmenite and titanaugite surfaces,
whereas sodium citrate and titanaugite interacted more strongly than sodium citrate with
ilmenite [17]. Titanaugite was selectively depressed by sodium polystyrene sulfonate,
resulting in a successful separation with a TiO2 grade of 42.43% and recovery of 80.87% [12].
Meng et al. illustrated that the interaction between carboxymethyl starch and the titanaugite
surface inhibited the adsorption of the NaOL collector [18]. Unfortunately, most of the
high-molecular polymer depressants are faced with challenges; for example, low solubility
and poor dispersion in water [19].

The sulfuric acid group has the characteristics of a strong polar selective bond to metal
atoms [12]. Herein, dextran sodium sulfate (DSS), with good solubility and dispersion in
water, would act as a depressant to prevent forsterite and ilmenite from being separated
effectively by flotation. Nevertheless, there is very little information available regarding
the use of DSS in the flotation process for the separation of forsterite and ilmenite.

In this work, the depression of DSS on the forsterite and ilmenite was investigated. The
micro-flotation and actual ore flotation test were used to examine the DSS’s inhibitory per-
formance. The adsorption of DSS on the surface of forsterite and its effect on the adsorption
of sodium oleate (collector) were further investigated, using zeta potential measurement
(Malvern Hills District Britain), X-ray photoelectron spectroscopy (XPS, Thermo 250 XI,
Waltham, MA, America), Fourier-transform infrared spectroscopy (FT-IR, Nicolet Nexus
670, Waltham, MA, America), atomic force microscopy (AFM, Bruker, Karlsruhe Hadstrae,
Germany), in situ quartz crystal microbalance with dissipation monitoring (QCM-D, Biolin
Scientific, Gothenburg, Sweden), and molecular dynamics simulation analysis. A potential
reaction mechanism was created in order to gain greater insight into the adsorption of
sulfate groups at the forsterite/water interface.

2. Experimental Section
2.1. Materials

The pure ilmenite (Figure 1a) and forsterite ore (Figure 1b) were collected from Panzhi-
hua, Sichuan Province, China. The sample fraction of 38~74 µm was chosen for micro-
flotation, whereas the −38 µm fraction was utilized for mechanism characterization, after
being further ground to −5 µm.
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The DSS (Shanghai Macklin Biochemical Co., Shanghai, China, M.W 500000) and
traditional natural starch (Shanghai Macklin Biochemical Co., Shanghai, China) were used
as depressants for flotation. The collector used was sodium oleate (Shanghai Macklin
Biochemical Co., Shanghai, China). The pH was adjusted to the correct level using NaOH
and H2SO4 (95~98%, the concentration volume fraction is 10%). All of the experiments
used analytical-grade, deionized water (18.20 MΩ cm).

2.2. Characterization of DSS

A total of 0.05 g DSS was hydrolyzed in hydrochloric acid solution for 10 h and
prepared as a 5 mg/L solution. The degree of substitution (DS) of DSS was calculated by
the following formula:

DS = (1.62 × S)/(32 − 1.02 × S) (1)

where DS is the degree of substitution; S is the sulfur content expressed in DSS.
The sulfate content was detected using ion chromatography (IC, Dionex Aquion,

Sunnyvale, CA, USA). Separation and resolution of ions was carried out on an AS11-HC
separation column. Conductivity was suppressed with an AERS~4 mm suppressor. The
suppressor voltage and flow rate were set at 75 mA and 1.0 mL/min, and the eluent
was 30 mM sodium hydroxide solution. The functional groups of DSS were analyzed
using FT-IR. Following a mixture of 1.0 mg DSS and 100.0 mg KBr, measurements were
taken between 400 and 4000 cm−1. A gel permeation chromatography (GPC, Agilent, 5301
Stevens Creek Blvd USA) analysis was performed to determine the average molecular
weight of DSS.

2.3. Flotation Tests

A total of 40 mL of deionized water and 2.0 g of pure mineral were added to the cell,
and the mixture was stirred at 1700 rpm [18,19]. The pulp was gradually mixed with the
pH regulator, the depressant and the NaOL collector (preparation concentration 2 g/L),
added after 2 min of stirring. Every reagent required 2 min of conditioning. A further 3 min
was spent on the flotation time, after that.

NaOH or H2SO4 solution was used to correct the pulp’s pH, and stirring was continued
for another 2 min. The depressant and collector were added into the pulp in sequence,
and were conditioned for 2 min, separately. A further 3 min was spent on the flotation
time, after that. Following drying, the concentrate and tailings underwent separate weight
measurements, to ascertain the recoveries. The selectivity index (SI), calculated by the
following formula [20,21], was employed to assess how DSS affected the selective separation
of ilmenite and forsterite.

SI =

√
εI

C
εI

T
×

εF
T

εF
C

(2)

The SI denotes the selectivity index, where εI
C and εF

C denote the recoveries of ilmenite
and forsterite in froth products, while εI

T and εF
T represent the recoveries of ilmenite and

forsterite in tailings products.
The actual minerals used for flotation in the laboratory were taken from the iron

tailings of a titanium concentrator in Panzhihua, which primarily contained ilmenite and
forsterite. A 0.75 L-capacity flotation machine was utilized for the roughing step of the
actual ore flotation process, 225 g of actual ore (pulp concentration of 30 wt%) was placed
in a flotation cell, and the pH was adjusted and stirred for 5 min. After that, the procedures
were the same as for flotation of a single mineral, and the flotation time increased to 5 min.
The final result of the flotation test was determined by averaging the three repetitions.

2.4. Interaction Mechanisms

A total of 40 mL of deionized water was used to disperse 30.0 mg of pure materials
with a particle size of −5 µm. Prior to adding DSS depressant into the pulp, the pH
was adjusted to the desired value with NaOH or H2SO4 solution [22,23]. The pulp was
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sonicated and dispersed for 10 min; this was followed by allowing the suspension to stand
for 48 h [5]. The Zetasizer Nano ZS90 device was used to measure the zeta potential of the
supernatant at various pH levels. The adsorption density and standard adsorption free
energy (∆G0

ads) of DSS on mineral surfaces were determined based on the Stern–Grahame
equation [18,24].

Using 40 mL deionized water (with or without DSS depressant) and a 2.0 g sample
at pH = 5.0, the mixture was stirred for 3 min. After filtering, the samples were cleaned
with the deionized water, followed by drying at 50 ◦C for 12 h [25]. A total of 1.0 mg of
the prepared samples was combined with 100.0 mg spectroscopic-grade KBr, and was then
recorded in the range of 400~4000 cm−1, using FT-IR and XPS at pass energy of 30 eV.

After 3 min of immersion in a DSS solution (10 mg/L), the chips were rinsed with
deionized water to remove any remaining reagents on the forsterite and ilmenite surfaces.
After that, the chips were blasted dry using high-purity nitrogen, so that they could be
scanned using AFM in contact mode at room temperature.

The dynamic adsorption behavior of the DSS on the mineral sensor at 25 ◦C was
investigated using the QCM-D experiment. Once the deionized water had been pumped
into the flow cell until the baseline was smooth, the DSS solution (10 mg/L) was added.
The entire experiment was performed at pH = 5.0, at a flow rate of 0.15 mL/min. Every
0.5 s, the frequency (F) and dissipation (D) were measured. From these graphs, the mass
density and thickness of the adsorbed layer were calculated.

2.5. Molecular Dynamics Simulation
2.5.1. DSS Molecule and Mineral Crystal Structure

A visualizer module from Materials Studio was used to construct the DSS molecule and
mineral crystals, which were then optimized by selecting the B3LYP function of the Dmol3
module. The charge distribution was assigned to each atom in the DSS molecule, using
energy optimization calculations. The structures of the DSS and mineral crystals [26,27] are
displayed in Figure 2.
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2.5.2. Dynamics Simulation Details

Molecular dynamics simulation provides a means of quantifying intermolecular and
interatomic forces [28]. The universal force field (UFF) was chosen to simulate the inter-
action of the ilmenite/forsterite surface with DSS [23,29]. The adsorption models were
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constructed using the PCFF interface field to produce the ilmenite (101) and forsterite (010)
surfaces. A total of 500 water molecules were supplied to the mineral surfaces, using the
AC module to bring it closer to flotation conditions. The four DSS molecules were placed
oriented to the mineral surface. To remove periodic boundary conditions, a 10 Å vacuum
layer was taken into consideration in each simulation box. The details of setting parameters
were based on previous reports [30].

3. Results and Discussion
3.1. Characterization of DSS

As depicted in Figure 3a, the sulfate content of the DSS solution was found to be
2.74 mg/L, using ion chromatography. The DS of DSS was found to be 2.21, using Formula
(1), indicating that the polarity and selectivity of the DSS was enhanced [4].
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As depicted in Figure 3b, the stretching vibration of –OH and –CH2 was responsible
for the two peaks, at 3432.21 cm−1 and 2948.83 cm−1 [31,32]. The peak at 1627.32 cm−1 orig-
inated from tightly bound water [33]. The peaks located at 983.57 cm−1 and 830.07 cm−1,
respectively, were associated with the –OSO3

− and –S–O–C groups [34]. According to GPC
analysis, the DSS’s average molecular weight was approximately 8899 Da, which helped
the dispersion in the pump to enhance its depression performance.

3.2. Flotation Experiments
3.2.1. Micro-Flotation of Single Minerals

Figures 4 and 5 show the recoveries of forsterite and ilmenite at different pH values and
depressant doses, respectively. As depicted in Figure 4, ilmenite and forsterite exhibited
excellent flotation performance at pH = 5.0 with NaOL alone. In these circumstances,
ilmenite and forsterite showed a marginally different rate of recovery. The recovery of
forsterite at pH = 5.0 was immediately reduced, from 64.29% to 8.12%, with the addition of
10 mg/L DSS before NaOL, whereas the floatability of ilmenite was rarely affected [16,35].
As displayed in Figure 4b, both ilmenite and forsterite in recovery decreased rapidly, after
natural treatment.
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Figure 5. Effect of (a) DSS and (b) natural starch dosage on the flotation of ilmenite and forsterite at
pH 5.0 (CNaOL = 6 × 10−4 mol/L).

As illustrated in Figure 5, the forsterite recovery met a significant decrease as the DSS
dosage increased, whereas this had minimal influence on the ilmenite flotation. With the
escalation of the DSS dosage to 10 mg/L, the forsterite recovery rapidly declined from
64.29% to 8.12%, while 83.56% of ilmenite was still recovered. The ilmenite and forsterite
recovery declined quickly with the increasing amount of natural starch, as illustrated in
Figure 5b. At a dosage of 10 mg/L of DSS, there was a 75.44% recovery differential between
ilmenite and forsterite, while that of natural starch was only 24.68%.

When the DSS dosage was increased from 0 to 10 mg/L, as shown in Figure 6, the
SI of DSS increased more quickly than that of natural starch. The SI of DSS with 7.58 was
approximately 1.6 times that of natural starch, with 4.85 at 10 mg/L of DSS dosage. These
results confirmed that the natural starch is inferior to DSS for the selective depressant
flotation separation of ilmenite and forsterite.
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3.2.2. Laboratory Flotation of Ilmenite Ore

More research is required to determine how well DSS inhibits multi-component
pulp [36]. Thus, we conducted actual ore flotation tests. As seen in Figure 7, there is
a positive correlation between the TiO2 grade in the concentrate and the DSS dosage, and
the recovery rate falls as the DSS dosage increases. At lower dosages, DSS has superior
selective-inhibition performance. The TiO2 grade and TiO2 recovery of the concentrate are
41.21 wt% and 68.80 wt%, respectively, upon the addition of 70 g/t DSS. Therefore, it is
advantageous to achieve the separation of ilmenite and forsterite when the dosage of DSS
is 70 g/t.
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Figure 7. Effect of DSS dosages on the flotation concentrate (CH2SO4 = 1800 g/t, CMOH = 2200 g/t).

During the ilmenite flotation process, the collector’s surface is prevented from further
adsorption by the highly selective inhibitor, which interacts preferentially with the metal
sites on the gangue minerals. This decreases the floatability of the ilmenite, substantially.
The mechanism of the inhibitor–mineral solid–liquid interface interaction is described in
the following section.

3.3. Interaction Mechanisms of the DSS on Ilmenite/Forsterite Surface
3.3.1. Electrostatic Interaction Analysis

As displayed in Figure 8, both forsterite and ilmenite treated with DSS had a similar
degree of negative zeta potential change. Ilmenite treated with DSS demonstrated a
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negative change in its zeta potential of 11.56 mV at pH = 5, increasing from −4.24 mV to
−15.80 mV. Similar to ilmenite, forsterite’s zeta potential shifted by 9.60 mV in a negative
direction. The ∆G0

ads of DSS on the forsterite surface with −0.93 kJ was similar to that of
ilmenite, with −1.12 kJ (Table 1). These results demonstrated that DSS could interact with
both ilmenite and forsterite through electrostatic interaction.
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Table 1. Adsorption density and standard adsorption free energy of DSS on ilmenite and forsterite
surface at pH = 5.0.

Sample ξ2 (mV) ξ1 (mV) ∆|ξ| (mV) τs (mol/L) ∆G0
ads (kJ)

Ilmenite −15.80 −4.24 11.56 K × exp(0.01156) −1.12
Forsterite −27.10 −17.50 9.60 K × exp(0.00960) −0.93

3.3.2. Changes in Mineral-Surface Functional Groups before and after DSS Treatment

As shown in Figure 9, the stretching vibration of –OH on DSS appeared at 3432.21 cm−1 [31].
At 2948.83 cm−1, and the –CH2 stretching vibration peak appeared [32]. Tightly bound
water was identified as the cause of the band at 1627.32 cm−1 [33]. The –OSO3

− and S–O–C
groups were identified as the two peaks at 1014.40 cm−1 and 830.07 cm−1, respectively [34].
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Comparing the FT-IR spectra of the DSS-treated ilmenite to those of pure ilmenite, as
shown in Figure 9a, no new peak was observed. These results could support the fact that
the DSS was most likely to be adsorbed on the ilmenite surface via physisorption, such as
intramolecular hydrogen bonds [18]. As shown in Figure 9b, a new peak at 983.57 cm−1

was observed on forsterite surface treated with DSS, belonging to the stretching vibration
of the –OSO3

− group [34]. The significant change in the –OSO3
− group in the DSS from

1014 cm−1 to 983.57 cm−1 confirmed that there was strong DSS chemisorption on the
forsterite surface [37,38].

3.3.3. Surface Morphology Analysis

The surfaces of ilmenite and forsterite, as shown in Figure 10a,c, were smooth, with
an average roughness (Ra) of 0.444 nm and 0.400 nm, which reduced the effect of the
adsorption morphology study [37]. As shown in Figure 10a,b, the adsorption layer height
of DSS on the ilmenite surface witnessed an increase of 8.39 nm (2D height images), and
sporadically distributed bulges appeared on the 3D images. Compared with pure forsterite,
the DSS bulges became clearly visible on the surface of the treated one (Figure 10c,d).
Moreover, the data presented in Figure 10b,d provided enough evidence to support the
variation in DSS adsorption on mineral surfaces. The 3D images showed that DSS exhibited
a denser adsorption layer on the surface of forsterite than those on the ilmenite surface.
Furthermore, on the forsterite surface, the DSS adsorption density and layer height were
greater than on the ilmenite surface. These findings demonstrated that, compared to the
ilmenite surface, the forsterite surface was more significantly absorbed by the DSS.

3.3.4. Changes in the Binding Energy of Minerals with/without DSS Treatment

The forsterite surface exhibited a significant increase of 3.50%, while the ilmenite
surface showed a relative increase of 0.46%, after being exposed to DSS (Table 2). This
confirmed that DSS had a stronger adsorption on the forsterite than ilmenite. The O1s
spectra of ilmenite treated with DSS fit rather well, according to Figure 11a,b, where two
factors were ascribed to the Ti-O and Fe-O bonds, respectively [39,40]. The forsterite
surface’s oxygen chemical environment underwent a significant change, as seen by the
0.32 eV shift in the binding energies of the Mg-O bond (Figure 11c). Moreover, com-
pared with the high-resolution O1s spectra of pure forsterite, the newly binding energy
at around 532.81 eV was observed in the treated one, which was assigned to the Mg-O-S
bond [41] (Figure 11d). These results confirmed that DSS interacted with the forsterite
surface through chemisorption.

Table 2. Relative atomic content of the elements on the ilmenite and forsterite.

Samples Relative Atomic Content of the Elements (%)
C O Fe Si Ti Mg Ca Al

Ilmenite 19.09 57.42 9.74 5.35 8.40 — — —
Ilmenite + DSS 19.55 56.36 10.63 7.17 6.29 — — —

Forsterite 13.52 48.04 1.83 12.74 — 14.53 6.20 3.14
Forsterite + DSS 17.02 46.18 1.88 13.56 — 12.26 5.95 3.15

As displayed in Figure 12a,b, the high-resolution Ti1s spectra of the treated and raw
ilmenite have two components. Notably, there are subtle shifts in the binding energies of
these bonds. Moreover, the Ti relative content decreased by 2.11% (Table 2). These results
indicated that DSS was most likely to interact with the ilmenite surface through weak
physisorption, such as intramolecular hydrogen bonds [14,33]. The Mg1s high-resolution
spectra of forsterite may be matched rather well with two bonds; Mg2+ was identified as the
source of the peak at 1303.42 eV [42] and Mg-Si as the source of the peak at 1304.90 eV [43]
(Figure 12c). Compared with the high-resolution Mg 1s spectra of pure forsterite, as shown
in Figure 12d, the newly binding energy at 1303.93 eV was observed in the treated one,
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which was assigned to the Mg-O bond [44]. Furthermore, the Mg relative content was
decreased by 2.27% (Table 2). These results confirmed that DSS interacted with Ti active
sites on the ilmenite surface via physisorption, and chemisorbed on the forsterite surface
via Mg active sites.
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3.3.5. Dynamic Adsorption Behavior of DSS on the Ilmenite/Forsterite Surface

As shown in Figure 13, the frequency (F) sharply decreased to −59.74 Hz, simultaneous
with a sharp increase in dissipation (D) on the forsterite sensor, whereas a slight decrease
was observed on the ilmenite sensor. On the ilmenite sensor, a thin and rigid adsorption
layer of DSS appeared to be forming, while the high D with 16.48 × 10−6 suggested the
formation of a soft and dissipative adsorption layer on the forsterite sensor [45]. As seen in
Table 3, at pH = 5.0, the mass density of the DSS adsorption layer was 2578.38 ng/cm2 on
the ilmenite surface and 8204.62 ng/cm2 on the forsterite surface. The layer thickness was
25.78 nm and 82.05 nm, respectively. These findings indicated that DSS preferred to adsorb
on the forsterite surface.
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Table 3. DSS adsorption data on ilmenite/forsterite sensor surface.

Sample D (×10−6) F (Hz) Thickness (nm) Mass (ng/cm2)

Ilmenite 3.66 −21.51 25.78 2578.38
Forsterite 16.48 −45.68 82.05 8204.62

3.3.6. Adsorption Configuration of DSS on Ilmenite and Forsterite Surfaces

Figure 14 illustrates the DSS adsorption configuration on the surfaces of forsterite
and ilmenite. The Mg site on the hydrated surface and the O atom in DSS produced two
strong bonds, with lengths of 2.505 Å and 2.454 Å, respectively; the bond lengths with
the Ti site were 4.844 Å and 4.801 Å, respectively. Since DSS is located at a distance from
the mineral surface, there is little-to-no chemical contact between the active group and
the mineral-surface active site [8]. Furthermore, Table 4 computes the interaction energy
between DSS and the surfaces of forsterite and ilmenite. According to the table, DSS has a
higher interaction energy, of −477.75 kJ/mol, with the surface of ilmenite than it does with
the surface of forsterite (−989.06 kJ/mol). This suggests that DSS is more likely to adsorb
on the surface of forsterite than it is on the surface of ilmenite [46,47]. This conclusion is
in line with the findings of XPS, FT-IR, and AFM, demonstrating that DSS interacts with
surfaces considerably more strongly on the surface of forsterite than it does on ilmenite.

Table 4. Interaction energy of DSS with mineral surfaces.

Sample Interaction Energy (kJ/mol)

Ilmenite −497.17
Forsterite −805.85

The first peak in the distribution of O atoms and Mg atoms was located at 2.41 Å,
whereas the nearest distance between O atoms and Si atoms was about 3.19 Å (Figure 15).
These findings verified that DSS was chemisorbed with Mg active sites on the forsterite
surface [48,49]. In agreement with the XPS data, the first peak of O-Ti and O-Fe were located
at 3.25 Å and 3.39 Å, respectively, which implied that DSS interacted with the ilmenite
surface by physisorption, via the Ti active site.
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4. Conclusions

To effectively separate ilmenite and forsterite via flotation, the DSS was initially
presented as a new depressant. Under the optimized conditions of pH = 5.0 and 10 mg/L
DSS, the DSS showed a stronger selective depression on forsterite than ilmenite. The DSS
depressant was chemisorbed strongly onto the forsterite surface via Mg active sites, whereas
the weaker physisorption of DSS via Ti active sites was detected on the forsterite surface.
The adsorption layer height and adsorption density of DSS with 8204.62 ng/cm2 on the
forsterite surface were larger than that of the ilmenite surface, which was 2578.38 ng/cm2.
Based on the facts above, it can be said that DSS is now a more effective inhibitor than
natural starch. This is due to the sulfuric acid group’s strong polarity, which improves its
solubility and dispersion in water, as well as the group’s ability to selectively bond to metal
atoms, which promotes the DSS’s selective adsorption on gangue surfaces and allows for
high inhibition and selectivity in the DSS. It offers recommendations for the selection of
high-efficiency ilmenite separation inhibitors, and has a wide range of industrial application
prospects for the effective separation of ilmenite and forsterite.
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