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Abstract: The construction and development of energy storage are crucial areas in the reform of 

China’s power system. However, one of the key issues hindering energy storage investments is the 

ambiguity of revenue sources and the inaccurate estimation of returns. In order to facilitate inves-

tors’ understanding of revenue sources and returns on investment of energy storage in the existing 

electricity market, this study has established multiple relevant revenue quantification models. The 

research methodology employed in this paper consists of three main components: Firstly, we estab-

lished a revenue model and a cost model for energy storage participation in the electricity market. 

These models focus on arbitrage revenue, subsidy revenue, auxiliary services revenue, investment 

cost, operational and maintenance cost, and auxiliary service cost of energy storage. Subsequently, 

we utilized an enhanced Grey Wolf Optimizer algorithm to solve the optimization problem and 

maximize revenue, thus obtaining the optimal capacity and revenue scale of energy storage in the 

electricity market. Finally, we compared the whole-lifecycle ROI of different energy storage options 

in various scenarios. The evaluation results demonstrate that the difference between peak and off-

peak loads impacts the investment demand and charging/discharging depth of energy storage. In 

addition, the discrepancy between peak and off-peak prices affects the arbitrage return of energy 

storage. These two factors can serve as criteria for energy storage investors to assess their return 

expectations. When solely considering economic returns and disregarding technical factors, 

pumped storage energy storage emerges as the most suitable mechanical energy storage option re-

quiring investment. The main contribution of this study lies in the estimation of the lifecycle invest-

ment returns for various energy storage technologies in the Chinese electricity market, thus provid-

ing valuable insights for the investment and operational practices of market participants. 
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1. Introduction 

In recent years, the global power sector has witnessed rapid development in energy 

storage technologies, with energy storage being widely applied across multiple aspects of 

the power system [1]. Currently, China primarily employs energy storage technology to 

ensure equilibrium and growth in the electric power industry. The returns that energy 

storage can obtain come from three domains: capitalizing on the price differentials during 

peak and off-peak periods, participating in the auxiliary services market, and obtaining 

policy subsidies [2]. However, it is worth noting that China’s power auxiliary services 

market is still in its early stage of development, and the subsidy policies for energy storage 

are subject to periodic variations and regional differences. Existing research predomi-

nantly focuses on assessing the revenue derived from arbitrage and subsidy mechanisms 
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associated with energy storage. Few studies have comprehensively appraised the overall 

revenue and return on investment for different energy storage types in the power market. 

Moreover, limited a�ention has been given to analyzing revenue fluctuations across vari-

ous power markets during different seasons. These factors not only serve as crucial deci-

sion-making factors for energy storage investors, but also act as key incentives for pro-

moting investments in energy storage. 

1.1. Literature Review 

Numerous studies have been conducted regarding energy storage configurations. Li 

et al. posited that different energy storage technologies possess their own set of ad-

vantages and disadvantages, contingent upon their characteristics, applicable scenarios, 

and performance [3]. They provided an overview of the development of different energy 

storage technologies in China and their application in the electricity market, highlighting 

the need to consider factors such as the uncertainty of wind and solar power output when 

selecting energy storage options, but without presenting specific models for selection or 

revenue estimation. Wang et al. analyzed the operational characteristics of energy storage 

systems in peak and frequency regulation scenarios [4]. They constructed a comprehen-

sive energy system optimization model with the objective of minimizing daily operational 

costs and utilized mixed-integer linear programming methods for the solution. Their 

study revealed that the lithium iron phosphate ba�ery exhibited superior performance, 

followed by the lithium titanate ba�ery. However, this study only investigated the overall 

cost changes resulting from energy storage participation in the power system, without 

conducting accurate assessments of the costs and benefits specific to energy storage itself. 

Ma et al. formulated an optimization allocation method for capacity, utilizing the optimal 

annual average comprehensive cost of a hybrid energy storage system as the objective 

function [5]. They employed a genetic algorithm to determine the capacity allocation ratio 

of the ba�ery energy storage system. This study focused on determining the energy stor-

age capacity in the selection process, with the objective of maximizing the profitability of 

photovoltaic power plants as the objective function. It specifically considered how energy 

storage could smooth the power curve of photovoltaic generation, without treating energy 

storage as an independent operating entity. Li et al. employed a quantum center of gravity 

inverse variational particle swarm algorithm to resolve the capacity allocation scheme for 

a community hybrid BESS, comprising retired power ba�eries and supercapacitors [6]. 

They only addressed the capacity estimation of known energy storage types and did not 

analyze the selection of energy storage types. Xiong et al. appraised the optimal allocation 

problem of ba�ery energy storage from a cost analysis perspective, considering invest-

ment costs, tariff revenues, policy subsidies, and additional benefits of energy storage [7]. 

By constructing an investment return model for ba�ery storage, with the objective of max-

imizing the net benefit in the distribution network system, they compared and analyzed 

various configuration schemes for ba�ery energy storage and their corresponding invest-

ment returns. Their study aligned with the direction of this paper, but its limitations lay 

in the analysis being limited to arbitrage benefits and subsidy benefits of energy storage, 

without considering the ancillary service benefits of energy storage. Additionally, the cal-

culation process was overly simplistic and did not account for the practical constraints of 

the power system. Mohammad et al. developed a ba�ery energy storage planning model 

that accounted for capacity degradation, utilizing the mixed integer linear programming 

(MILP) method [8]. They proposed a set of formulas to determine the size of the ba�ery 

storage, the charging and discharging process, the depth of discharge, and the replace-

ment year, with the aim of minimizing total dispatch costs and enhancing the accuracy 

and economic feasibility of the ba�ery storage sizing method. They focused on the optimal 

capacity estimation of ba�ery energy storage and did not address other emerging energy 

storage technologies. Furthermore, its profit function was not applicable to the Chinese 

electricity market. Sayfutdinov et al. studied the optimal siting of lithium-ion ba�ery en-

ergy storage devices using mathematical planning methods [9]. Their research employed 
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mathematical optimization techniques such as convex programming and mixed-integer 

programming. It specifically addressed the degradation challenges associated with bat-

tery energy storage, considering factors such as charging and discharging cycles and tem-

perature. However, it simplified the description of revenue types and cost models related 

to energy storage. It focused solely on ba�ery energy storage, neglecting other emerging 

storage technologies, and its profit function was not suitable for the Chinese electricity 

market. Li et al. proposed a hierarchical optimization scheduling scheme for the energy 

storage-assisted deep peak shaving of thermal power units, which includes upper, mid-

dle, and lower optimization models [10]. They considered the economics of energy storage 

peak shaving from multiple perspectives and demonstrated the compensation methods 

and scale of energy storage participating in peak shaving. They presented a profit model 

for energy storage participation in ancillary services in the power sector, while other rev-

enue streams and storage costs were left unanalyzed. Ye et al. designed a scheduling strat-

egy to maximize the economic benefits of a wind, solar, and thermal storage joint system 

[11]. They explored the impact of adding energy storage on the overall economic efficiency 

of the power system. The study indirectly highlighted the various economic benefits and 

service types that energy storage could provide in the electricity market, but it did not 

construct a detailed analytical model. Energy storage was considered merely as a balanc-

ing component within the power system. Li et al. studied the cost fluctuations of joint peak 

shaving of energy storage and thermal power units but did not fully measure the cost of 

the energy storage equipment itself [12]. Kim and Shin investigated a BESS management 

strategy based on deep reinforcement learning that considers depth of discharge and state 

of charge range while reducing the total operating cost [13]. The study considered the 

lifecycle cost of ba�ery energy storage, but the research perspective focused on the oper-

ational management of energy storage rather than the selection of types and did not en-

compass the investment returns and economic viability of energy storage. Annu et al. pro-

posed a techno-economic analysis to examine the energy savings resulting from integrat-

ing DGs and BESS in the DN [14]. They found that the power losses are further reduced 

by implementing network reconfiguration to reduce the dependency of energy on the 

grid. However, there was a lack of economic analysis from the perspective of energy stor-

age investors. Ryutaka et al. undertook a comparative cradle-to-grave lifecycle assessment 

of lithium-ion ba�eries (LIB) and lead-acid ba�ery systems for grid energy [15]. They sug-

gested three measures to improve the overall environmental impact results. For example, 

they increased the contribution of renewable energy sources in the use phase electricity 

mix and developed the recycling process of LIB. Their study predominantly relied on the 

statistical analysis of historical data, focusing on the comparison of factors influencing the 

lifecycle of energy storage, without conducting simulation modeling. Hunter et al. ana-

lyzed the lifecycle costs of 14 energy storage or flexible generation technologies, and con-

cluded that pumped hydro, compressed air, and ba�eries are the best suited for 12 h dis-

charge [16]. The study compared the full lifecycle costs of 14 different energy storage tech-

nologies based on existing statistical data. However, simulation modeling was not em-

ployed for estimation, and the data used were international, meaning they may differ from 

the cost data specific to energy storage investments in China. 

Considering the existing literature on energy storage selection and profitability di-

mensions, it is commonly observed that studies focus on power systems or microgrids as 

research subjects, and analyze the economic changes brought about by energy storage 

participation in power operations. These studies often construct objective functions based 

on minimizing system-wide costs or minimizing load fluctuations, which provides signif-

icant inspiration for this research. However, the existing literature primarily focuses on 

the analysis of historical data as regards the articles that primarily focus on energy storage, 

with fewer studies utilizing simulation modeling. Most articles emphasize the economic 

viability of ba�ery energy storage, while there is a scarcity of articles that provide a unified 

comparison of the economic viability of different energy storage technologies. In the ex-

isting literature, the categorization of revenue sources related to energy storage primarily 
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focuses on arbitrage revenue and subsidy revenue, with inadequate statistical analyses of 

revenue from power ancillary services, and this fails to reflect the current state of the Chi-

nese electricity market. The analysis of revenue sources for energy storage is scant, and 

thereby fails to effectively align with China’s existing market policies and offer recom-

mendations for market investors. 

1.2. Aims and and Contributions 

This study proposes a model for the optimal allocation of multiple types of energy 

storage in the electricity market. This model takes into consideration the uncertainties as-

sociated with wind and solar power, as well as the entire lifecycle costs of energy storage. 

The model aims to quantify the investment scale and return levels of energy storage in 

diverse electricity markets. We hope that this study can provide valuable insights and 

practical guidance for energy storage investors in China regarding operational models 

and investment returns. Additionally, we aim to inspire other scholars to engage in col-

laborative discussions on the application areas and operational approaches of energy stor-

age. 

The contributions of this paper are as follows: 

(1) Compared to other existing studies, this study focuses on the comprehensive assess-

ment of revenue generation throughout the entire lifecycle of different types of en-

ergy storage systems in the Chinese power market. The primary contribution of this 

paper is in undertaking decision-making simulations for energy storage investments 

in the Chinese power market, and providing valuable insights related to investment 

and the operational practices of market participants; 

(2) Compared to the existing literature, the energy storage revenue assessment model 

constructed in this paper encompasses the majority of revenue sources related to en-

ergy storage in the current Chinese power market, providing a comprehensive sta-

tistical comparison of indicators. Furthermore, the improved Grey Wolf Optimizer 

algorithm employed in this paper represents an extension and enrichment of meth-

odologies applied to optimization problems in the power market; 

(3) This paper, in constructing scenarios of energy storage in the Chinese power market, 

takes into account dual dimensions of different market types and different seasons. 

It determines that the revenue assessment of energy storage in the power market 

should be undertaken in a specific way according to specific scenarios. The research 

findings of this paper enrich the design of energy storage application scenarios, pro-

moting the integration of model construction and practical implementations. 

2. Methods and Models 

2.1. Comprehensive Revenue Modeling of Energy Storage in the Electricity Market 

Before the auxiliary service market for power in China was established, the revenue 

sources for energy storage devices were primarily twofold: arbitrage activities involving 

charging during off-peak hours and discharging during peak hours, as well as subsidies 

provided by the government to support the development of energy storage [2]. With the 

development of the auxiliary service market in China’s power sector, the role of energy 

storage and its economic value have been demonstrated. Energy storage devices primarily 

serve the purpose of balancing the power supply and demand in the electricity system 

and fulfilling peak shaving and frequency regulation services. Additionally, based on the 

operational conditions of the auxiliary service market in various provinces of China, en-

ergy storage can also fulfil system reserve and voltage regulation functions [17,18]. How-

ever, the currently measurable revenue sources related to auxiliary services from energy 

storage devices only include peak shaving, frequency regulation, and system reserve ser-

vices. Therefore, in this study, we have constructed a revenue model for energy storage 

based on the five revenue sources observed in the Chinese power market. 
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1 2 3 4 5 1 2 3( ) max( )       f R R R R R R C C C  (1)

Here, ( )f R  is the comprehensive return earned by the energy storage investor over 

the full lifecycle, and 1R  is the arbitrage gain of energy storage over the operating period; 

2R
 is the gain from policy subsidies for energy storage; 3R

 is the peak gain obtained by 

energy storage during peaking service; 4R
 is the frequency regulation gain derived from 

the participation of energy storage in frequency regulation service; 5R
 is the standby 

gain derived from the provision of a rotating standby service by energy storage. The cost 

of energy storage consists of three components. Firstly, there are conventional fixed costs, 

which are one-time costs incurred during the investment in energy storage. Secondly, 

there are operational and maintenance costs, which represent the continuous costs in-

curred throughout the entire lifespan of the energy storage system. Lastly, there are aux-

iliary service costs, which are the additional costs incurred by energy storage when 

providing auxiliary services. Only frequency regulation services result in additional costs, 

while other services do not incur any [19]. 1C
 is the fixed investment cost of energy stor-

age; 2C
 is the operation and maintenance cost of energy storage; 3C  is the cost of the 

auxiliary services of energy storage. 

2.1.1. Revenue Modeling of Energy Storage Operations 

(1) Energy Storage Arbitrage Revenue Model 

The arbitrage profit model of energy storage, characterized by low charging during 

periods of low electricity market prices and high discharging during periods of high elec-

tricity market prices, aims to capitalize on the price difference to generate profits. In China, 

there are currently two types of electricity markets: the medium- to long-term market and 

the spot market. The main difference between these two markets lies in the shape of the 

electricity price curve. With the fulfillment of technical constraints, energy storage systems 

have the flexibility to participate in transactions within both markets. 

24

1, ,
1

[ ( ) ( ) ( ) ( )] (  )


 n i dc dc c c t
t

R P t DUM t P t DUM t f   (2)

Here, 1, ,n iR
 is the arbitrage income derived from energy storage on day i of year n. 

The arbitrage income from energy storage on day i of year n 
( )cP t

  and 
( )dcP t

  is the 

charging and discharging power variable of the energy storage. 
( )cDUM t

 and 
( )dcDUM t

 

are the charging and discharging state dummy variables of the energy storage, which take 

the value of 0 or 1. 
( )tf 

 is the electricity price curve of the electricity spot market, and 

t  is the real-time electricity price at each moment. 

The total arbitrage revenue derived from energy storage over the entire lifecycle is 

then: 

1 1, ,
1 1

1
( )

1 






N

n
n t

n
i

I InR

d
R R  (3)

N
 is the entire lifecycle of the energy storage system; I is the number of days of 

operation of the energy storage system in a year; considering the long operating cycle of 

energy storage, the inflation rate InR  is introduced with a discounted rated, and in this 

paper is set as the increase in the commodity price index. 

Additionally, it is necessary to adhere to the charge/discharge state logic constraints 

of the energy storage system. 
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(2) Energy storage subsidy revenue model 

The existing energy storage subsidy policy primarily revolves around capacity com-

pensation, tariff subsidies, and cost reduction. In most cases, the se�lement methods are 

converted into unit power subsidies, which are disbursed based on the quantity of energy 

discharged by the storage system. This study seeks to construct an energy storage subsidy 

revenue model. 

24

2, ,
1

( ) ( )


n i dc dc sub
t

R P t DUM t   (5)

2, ,
1

2
1

1
( )

1 






N

n
n t

n
i

I InR

d
R R  (6)

2, ,n iR
 is the subsidized revenue derived from energy storage on day i of year n; sub

is the government-subsidized electricity price. 

(3) Energy Storage Peaking Revenue Modeling 

The peaking revenue of energy storage can be classified into two types. Firstly, the 

system can charge during off-peak hours to fulfill its deep peaking requirements, and sub-

sequently receive compensation for this service. Secondly, the system can discharge 

power during peak hours to achieve peak shaving and obtain revenue accordingly.  

24 24

3, ,
1 1

( ) ( ) ( ( )( ) () )
 

    n i c dccs cs dc dc
t t

tR P t DUM t P t D DUU MM t     (7)

3 3, ,
1 1

1
( )

1 






N

n
n t

n
i

I InR

d
R R  (8)

Here, 3, ,n iR
 denotes the daily peaking revenue acquired by the energy storage sys-

tem. 
( )csP t

 represents the charging power executed by the system in response to the dis-

patch peaking demand. cs
 signifies the compensation received by the system for deep 

peaking charging. dc
 denotes the price of peak shaving and peak shifting compensation 

for spike loads. t  represents the average clearing spread of the energy storage system 

during charging and discharging on a given day (or the peak-to-valley spread on the given 

day if traded on the medium- and long-term market). Finally, ）（DUM  is a binary var-

iable indicating whether or not peak shaving compensation is implemented, with a value 

of 1 denoting “yes” and 0 denoting “no”. 

To measure the peaking gains of energy storage, certain constraints must be satisfied, 

as not all charging power derived from energy storage corresponds to deep peaking 

power, and not all discharging power serves the purpose of peak shaving and peaking 

power. These constraints are defined as follows: 

( )   es
cs cs t

cs

U
P t Q

U
  (9)

0

0

1,
( )

0,


 
 ＜

t

t

DUM
 


 

 (10)

where cs
 represents the share of deep peaking power in the system load at moment t, 

and tQ
 denotes the total load of the system at moment t. In addition, esU

 denotes the 
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installed capacity of the energy storage equipment, and csU
 represents the total installed 

capacity of various types of units capable of fulfilling the deep peaking obligation, i.e., the 

deep peaking power of the entire system is allocated based on the capacity share of the 

energy storage equipment in the deep peaking units. Moreover, 0  denotes the Peak 

Load Threshold Price. If the average clearing price during the peak hour on a given day 

exceeds this threshold, compensation for peak shaving will be provided to the energy 

storage equipment, and it will discharge power to receive an additional compensation 

charge. 

(4) Energy Storage Frequency Modulation Revenue Model 

During the charging and discharging process, the energy storage equipment can also 

complete the FM task and obtain FM gains, which are compensated based on the capacity 

of the energy storage that provides the FM service. The execution of this compensation 

depends on the inertia response index and the inertia response monthly correct action rate 

of the energy storage device during its operational month. These two parameters are de-

rived from the actual system’s operation values in each province, which typically range 

between 90% and 100%. For the purpose of calculation convenience, this paper assumes 

that the system’s inertia response index and inertia response monthly correct action rate 

are both 95%. Therefore, the annual FM gain of the energy storage can be expressed as 

follows: 

4,

95% 90% 95% 90%
= 12 12

100% 90% 100% 90%

 
       

 
es spf esn bpf bpfR U U N   (11)

4 4,
1

1
( )

1






N

n

n
n

InR
R R

d
 (12)

where 
spf

 is the monthly compensation price for small disturbances in FM compensa-

tion, bpf
 is the monthly compensation price for large disturbances in FM compensation, 

and bpfN
 is the monthly number of large disturbances. 

(5) Energy Storage Rotating Standby Revenue Model 

Energy storage systems have the option to provide rotating standby services during 

off-peak hours and discharge during peak hours. Alternatively, they can offer rotating 

standby services during periods of smaller price increases. Assuming that the energy stor-

age system can provide spinning standby services through all non-discharge hours fol-

lowing the completion of charging, the revenue model for energy storage providing spin-

ning standby services is as follows: 

)](1)][(1[)](1)][(1[
24

1

24

1
,,5 tSUMtSUMPtSUMtSUMPR dccspr

t
sprdccspr

t
sprin  




 

(13)

where sprP
 is the winning bid capacity of the storage spinning reserve; spr

 is the win-

ning bid price of the storage spinning reserve; sprP
 is the actual called capacity of the 

storage spinning reserve, and spr 
 is the called price of the storage spinning reserve. 

Since the capacity of the energy storage that participates in the spinning reserve must be 

of a dischargeable capacity, it needs to satisfy the constraints: 

sprsprccspr PPtPP   )(
 

(14)

where c  is the energy storage charging loss factor, which varies according to the type 

of energy storage. 
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2.1.2. Energy Storage Cost Modeling 

(1) Fixed cost model for energy storage 

The fixed cost of energy storage comprises two components, capacity cost and power 

cost, which are dependent on the system’s rated capacity and rated charge/discharge 

power. Therefore, the fixed investment cost of energy storage is formulated as: 

1 max p U esC C P C U  (15)

1C  is the fixed investment cost of energy storage; pC
 is the cost of energy storage 

unit charging/discharging power; UC  is the cost per unit capacity of energy storage. 

(2) Energy storage O&M cost model 

Energy storage O&M costs are related to the charging and discharging power. 

1
2

1
max ( )

1






N

n

n
m

InR
C C P

d
 (16)

2C  is the total operation and maintenance cost of energy storage; mC
 is the annual 

O&M cost per unit of charge/discharge power of the energy storage system. 

(3) Energy storage ancillary services cost model 

Energy storage does not incur separate costs for providing peaking services. How-

ever, when offering frequency modulation services, the cost of storage O&M increases due 

to the need to respond to frequency modulation commands. Therefore, this cost must be 

measured separately. The cost of energy storage frequency modulation can be expressed 

through a first-order equation: 

1
( ( ) ( ))

2


  dc L

s

d f
P t P t

dt H
 (17)

3  fC C f  (18)

f   denotes the frequency deviation; sH
  denotes the system equivalent inertial 

time constant; 
( )dcP t

  and 
( )LP t

  denote the change in energy storage output and the 

change in load, respectively; 3C
 represents the frequency modulation cost per unit mile-

age. 

2.1.3. Energy Storage Operating Losses and Constraint Reduction 

(1) Energy conservation constraint: Considering energy losses, the energy storage sys-

tem, operating under the objective of recycling, must adhere to charge/discharge con-

servation constraints in a single charge/discharge cycle. 

24 24

1 1

( ) ( )
 

 c c c dc
t t

P t P t   (19)

(2) Power constraints: When charging and discharging the energy storage system, the 

maximum charging and discharging power, as well as power constraints, must be 

satisfied. Here, the formula begins to undergo changes. 















 esdc

dc

c

UtP

PtP

PtP

)(

max)(0

max)(0

 

(20)
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(3) System load constraints: The equivalent load of the system, incorporating energy 

storage, should not exceed the maximum load after the peak shaving effect is gener-

ated. 

)(max)1()()()( tPtPtPtP cdc 
 (21)

Here, 
)(tP

 is the load of the system at time t, and 
)(max tP

 is the maximum load 

of the system. 

(4) Charging and discharging time constraints: Since the energy storage system cannot 

be charged and discharged simultaneously during the same time period, it must also 

satisfy the following constraints: 

0)()(  tDUMtDUM cdc  (22)

(5) Energy storage system load ratio constraints: 

soc, 
t

t

es

Q
Q

U
 (23)

soc,min soc, soc,max tQ Q Q  (24)

Here, tQ
 denotes the remaining power of the energy storage system in time period 

t; soc,tQ
 denotes the charge ratio of the energy storage system in time period t; soc,minQ

 

denotes the lower limit of the charge ratio of the energy storage system; soc,maxQ
 denotes 

the upper limit of the charge ratio of the energy storage system. 

2.2. The Method for Solving the Energy Storage Revenue Model 

In 2014, Mirjalili et al. proposed the Grey Wolf Optimizer (GWO) algorithm. This 

algorithm simulates the social hierarchy mechanism and population hunting behavior of 

grey wolf packs, aiming to surround and capture prey. Through iterative updates, the 

GWO algorithm seeks to obtain the optimal solution [20]. Since then, the GWO algorithm 

has been widely applied to solve optimization problems involving nonlinear variables. 

This method has achieved significant accomplishments in various fields, including opti-

mization of integrated energy system configurations, evaluation of wind energy device 

performance, unmanned aerial vehicle (UAV) cruising, and many others [21]. The GWO 

algorithm exhibits superior convergence speed and optimal search accuracy when ad-

dressing optimization problems. Thus, this study employs the GWO algorithm to solve 

the optimal allocation of energy storage. The GWO algorithm classifies wolves into four 

levels, namely, α-wolf, β-wolf, δ-wolf, and ω-wolf, in descending order of hierarchy. The 

wolves in the first three levels primarily determine the movement direction of ω-wolves. 

Subsequently, based on the feedback information derived from ω-wolves, α-wolves, β-

wolves, and δ-wolves, we decide whether to update their positions. Upon completion of 

the algorithm’s iteration, the positions of α-wolf, β-wolf, and δ-wolf represent the three 

optimal solutions, while the position of ω-wolf serves as a candidate solution. 

The search and encirclement behavior of the grey wolf in relation to its prey can be 

expressed as follows: 

P,t tD AX X   (25)

1 P,t tX X BD    (26)
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where D is the distance between the gray wolf and the prey; A and B are coefficient vec-

tors; t is the current iteration number; tPX ,  is the position of the prey at the tth iteration; 

tX  is the position of the gray wolf at the tth iteration. 

The coefficient vectors A and B can be computed as 

12A r  (27)

)12( 2  rB  (28)

where the modulus of 1  and 2  is a random number in the range [0,1];   is the con-

vergence factor, )1(2
T

t
 , i.e.,   decreases linearly from 2 to 0 as the number of it-

erations t increases  ; T is the maximum number of iterations. 

During the feeding process, the ω-wolf updates its position using the positional in-

formation of α-wolf, β-wolf, and δ-wolf. This process can be represented using the follow-

ing mathematical model: 

1

2

3

D A X X

D A X X

D A X X

 

 

 

  


 


 

 (29)
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2 2

3 3

X X B D

X X B D

X X B D

 

 

 

  


 


 

 (30)

1 1 2 3

1
( )

3
tX X X X     (31)

where D  , D   and D   are the distances of α-wolf, β-wolf and δ-wolf from other 

wolves, respectively; X , X  , and X  are the positions of α-wolf, β-wolf, and δ-wolf, 

respectively. 

2.2.1. Improved Gray Wolf Optimization Algorithm 

Despite the advantages of the GWO algorithm, such as its minimal adjustment pa-

rameters, low implementation difficulty, and high stability, it is susceptible to falling into 

local optimal solutions during the later stages of evolution. Therefore, this study adjusts 

the strategy for updating the convergence factor and displacement. 

(1) Nonlinear convergence factor adjustment strategy 

In the traditional Grey Wolf Algorithm, the convergence factor decreases linearly as 

the number of iterations increases. However, linear methods often fail to achieve optimal-

ity. Therefore, this study proposes a quadratic variation of the convergence factor with 

respect to the number of iterations, which can be expressed as: 

2

22 









T

t


 

(32)

(2) Adaptive displacement strategy 
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In the GWO algorithm, if all three sets of solutions, namely, α-wolf, β-wolf, and δ-

wolf, fall into local optima, it becomes challenging for the entire wolf pack to discover the 

global optimal solution. To clarify the roles of individuals and enhance the algorithm’s 

global search ability, this study designates β-wolf and δ-wolf as local variables. Therefore, 

the following adaptive displacement strategy is proposed: 

1 1 2 3 1

1
( )(1 )

3
t

t t
X X X X X

T T
       (33)

2.2.2. Steps to Improve the Gray Wolf Algorithm 

The flow of the improved Gray Wolf Optimization algorithm proposed in this paper 

is shown in Figure 1. 

Set the basic parameters of the 
grey wolf algorithm and initialize 

the position

Calculate fitness values 
for all individuals, 

labelXα、Xβ、Xδ

Update convergence factorμ

Input user load data and wind 
power forecast output data

t<T?
No

Update Grey Wolf Location

Yes

Output optimal results

Start

End

 

Figure 1. Flowchart of GWO algorithm. 

3. Simulation Results and Discussion 

In this paper, eight types of energy storage system have been selected, namely, lead-

acid ba�eries, lithium-ion ba�eries, sodium-sulfur ba�eries, liquid current ba�eries, super 

capacitors, compressed air, pumped storage, and flywheel energy storage. The operating 

parameters of various energy storage systems were obtained from publicly available net-

work data [2,4,8]. Their corresponding parameters are presented in Table 1. 
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Table 1. Types of energy storage and related parameters. 

Type of Energy 

Storage 
Abridge 

Price per Unit 

Capacity 

(CNY/KW) 

Price per Unit of 

Power 

(CNY/KWH) 

O&M Cost per 

Unit of Power 

(CNY/KW Year) 

Charge/Discharge 

Factor 

Life Cycle 

(Years) 

Lead-acid battery LAB 1200 500 1 0.75 4 

Lithium-ion battery Li-ion 2000 1000 10 0.9 9 

Sodium-sulfur bat-

tery 
Nas 7000 0 10 0.85 12 

Flow battery (com-

puting) 
VRB 5000 10,000 15 0.60 30 

Ultracapacitor EC 10,000 1000 15 0.98 20 

Compressed air CASE 500 5000 7 0.60 20 

Pumped storage PHS 500 6700 5 0.75 40 

Flywheel energy 

storage 
FW 3000 1000 5 0.85 30 

The relevant economic and price parameters are shown in Table 2. 

Table 2. Economic and price parameters. 

Indicator Name Data Sources Retrieve a Value 

Inflation rate ��� China Economic Yearbook 2022 2% 

Discount rate � 
Take the average value of the bankers’ acceptance discount rate 

in 2022 
5.9% 

Government-subsidized tariffs 
���� 

Take the plurality of energy storage support policies announced 

by provinces and municipalities in 2022 
0.3 CNY/KWH 

Deep Peak Charge Compensa-

tion ��� 

2023 Supplementary Notice on the Participation of Third-Party 

Independent Entities in the Normalized Operation of Electricity 

Ancillary Services in Province X 

0.32 CNY/KWH 

(ceiling) 

Peak Shaving and Peak Regu-

lation Compensation Prices 

��� 

2023 Supplementary Notice on the Participation of Third-Party 

Independent Entities in the Normalized Operation of Electricity 

Ancillary Services in Province X 

0.65/KWH (ceiling) 

Peak Load Threshold Price �� 

2023 Supplementary Notice on the Participation of Third-Party 

Independent Entities in the Normalized Operation of Electricity 

Ancillary Services in Province X 

0.65 CNY/KWH 

Percentage of Deep Peaking 

Power ��� 

Annual electricity consumption and deep peaking compensation 

for a province in 2022 
0.5% 

Monthly Small Disturbance 

FM Compensation Price ���� 

Implementing Rules for the Management of Electricity Ancillary 

Services in Province X (Revised Version 2023) 

CNY 72/MW×  

month 

Monthly Large Disturbance 

FM Compensation Price ���� 

Implementing Rules for the Management of Electricity Ancillary 

Services in Province X (Revised Version 2023) 

CNY 100/MW × 

month 

Rotating Spare Winning Price

spr
 

Pilot Program for Participation of Third-Party Independent Enti-

ties in Electricity Auxiliary Service Settlement in X Province in 

2022 (Draft for Public Comments) 

CNY 50/MWH 

(ceiling) 

Rotating Spare Call Prices 

spr 
 

Pilot Program for Participation of Third-Party Independent Enti-

ties in Electricity Auxiliary Service Settlement in X Province in 

2022 (Draft for Public Comments) 

CNY 10/MWH 

Annual Growth Rate of Load 
τ 

China Power Industry Annual Development Report 2023 6.3% 

Green Certificate Price ���� China Green Power Certificate Subscription Trading Platform CNY 100/MWH 

Kwh Coal Consumption ����� Industry average 300 g/KWH 
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Average Annual Coal Price 

����� 
2022 Qinhuangdao Power Coal Market Monthly Average Price 964 per ton 

Kwh Gas Emission Factor ���� 

Methodology and Reporting Guidelines for Corporate Green-

house Gas Emissions Accounting and Reporting for Electricity 

Generating Facilities (Revised 2022) 

581 g CO2, 30 g SO2, 

15 g NO 

Costs of Air Pollution Control 
���� 

Law of the People’s Republic of China on Environmental Protec-

tion Tax 
CNY 1.2/equivalent 

This study divides the electricity market’s supply–demand fluctuations into three 

categories: summer peak, winter peak, and the remaining flat season. For measurement 

purposes, one representative day from each of the four seasons (April in spring, August 

in summer, and December in winter) has been selected as a typical scenario in X province. 

Autumn has not been included as a scenario due to the similarity between the supply–

demand relationship and load characteristics of spring and autumn. The load and output 

curves, as well as the market price curves, for each typical day were provided by the grid 

company. 

(1) Measured direct benefits of energy storage investments under each scenario. 

In the modeling process, energy storage is considered a participant in the system’s 

load balance, necessitating the fulfillment of peak shaving and valley filling obligations 

[1,3,10,11]. Therefore, the charging and discharging decisions made under each scenario 

are contingent upon the system’s load fluctuations, irrespective of the energy storage type. 

Simultaneously, the various revenue streams derived from energy storage are dependent 

on its charging and discharging capacity, as well as the services rendered [2,7,8,19]. As a 

result, the revenue curve remains constant under the predetermined scenarios. The spe-

cific results are presented in Table 3. 

Table 3. The scale of investment in various types of energy storage. 

  Investment Capacity/KW Investment Power/KWH Present Value of Total Cost 

LAB 

Summer 1566.4208 237 1,999,056.568 

Winter 1710.6302 245 2,176,136.563 

Spring  463.8281 84 598,895.571 

Li-ion 

Summer 1285.1794 237 2,824,637.646 

Winter 1402.8824 245 3,068,626.729 

Spring  370.8333 84 831,790.783 

Nas 

Summer 1368.329 237 9,599,996.279 

Winter 1493.8808 245 10,479,591.160 

Spring  392.6471 84 2,756,218.242 

VRB 

Summer 1982.7817 237 12,342,271.140 

Winter 2166.0767 245 13,340,716.190 

Spring  631.3425 84 4,017,398.051 

EC 

Summer 1169.0099 237 11,973,609.420 

Winter 1275.7251 245 13,050,331.500 

Spring  344.373 84 3,544,215.010 

CASE 

Summer 1982.7817 237 2,198,095.896 

Winter 2166.0767 245 2,330,476.056 

Spring  631.3425 84 743,364.183 

PHS 

Summer 1566.4208 237 2,393,124.865 

Winter 1710.6302 245 2,519,572.657 

Spring  463.8281 84 802,516.652 

FW 

Summer 1368.329 237 4,361,441.180 

Winter 1493.8808 245 4,746,753.269 

Spring  392.6471 84 1,268,836.360 
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The present valuation of the aggregate cost pertaining to each variant of energy stor-

age under an identical scenario exhibits significant differences due to gaps in charging 

and discharging efficiencies, as well as differences in the investment capacities required 

to satisfy the equivalent power equilibrium constraints. Ultracapacitors and compressed 

air storage necessitate the most exorbitant investment costs, surpassing those of conven-

tional electrochemical and mechanical energy storage by a factor of approximately five, 

rendering them suboptimal investment choices within the confines of initial capital con-

straints [2,22]. Notably, the investment capacity, investment power, and present valuation 

of total costs for a given energy storage type diverge significantly across different scenar-

ios, owing to dissimilar load levels and peak-to-valley differentials [16,17]. Specifically, 

the total investment cost for energy storage in winter and summer peak scenarios exceeds 

that of the spring flat section scenario by a factor of approximately 3.3. Therefore, employ-

ing winter and summer demand as the investment benchmark may engender excessive 

investment. 

The investments made in energy storage capacity must adhere to the constraints im-

posed by the system’s power balance, thereby subjecting its maximum charging and dis-

charging power, as well as its maximum storage power, to the influence of the system’s 

peak–valley differential and the fluctuation in wind power output. As depicted in Figure 

2A–C, the system’s peak–valley differential is more pronounced during winter and sum-

mer seasons, resulting in a higher demand for energy storage. Conversely, during spring, 

the load curve exhibits a relatively smooth profile, leading to a lower requirement for en-

ergy storage. This observation highlights the positive correlation between the system’s 

demand for energy storage and the peak-to-valley differential of the load [12,13]. There-

fore, basing investment decisions on the demand observed during winter and summer 

seasons can potentially impede cost recovery due to the excessive capacity during spring. 

The daily return curves of energy storage in the electricity market under the three 

scenarios and two markets depicted in Figure 3A–F were compared. It was observed that 

the arbitrage returns of energy storage exhibited the highest level of fluctuation, which 

was directly influenced by the electricity price curve and the peak-to-valley difference. 

The subsidy gain, the primary source of energy storage gain, was relatively high. Con-

versely, the gains derived from peak and FM services were relatively low, indicating that 

there is still room for improvement in China’s power market regarding the development 

of peak and FM auxiliary services [1,19]. In the current scenario, there was no standby 

gain derived from energy storage, implying that the gain from full discharge surpassed 

the provision of standby services. 

Disregarding technical constraints such as power density and response time, the rev-

enue generated by an energy storage device in the electricity market is determined by the 

amount of power it charges and discharges, as well as the services it provides, irrespective 

of the type of energy storage. By comparing the various income levels of energy storage 

in each scenario, as illustrated in Figure 4, it is evident that subsidy income represents the 

most stable form of revenue, which is solely dependent on the amount of energy storage 

discharged. There is no significant difference between the medium- and long-term elec-

tricity market and the spot market in terms of subsidy income. Conversely, the difference 

in arbitrage return between different markets is conspicuous, with the medium- and long-

term markets yielding significantly higher arbitrage returns than the spot market. The 

variance in arbitrage returns in the same quarter is associated with the price curve in the 

market. As energy storage devices are typically charged during off-peak periods and dis-

charged during peak periods, the greater the difference between peak and valley prices, 

the higher the arbitrage return of energy storage. 
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（A）

（B）

（C）  

Figure 2. (A) Typical daily energy storage charge/discharge curve in summer. (B) Typical daily en-

ergy storage charge/discharge curve in winter. (C) Typical daily storage charge/discharge curves for 

spring season. 
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（A） （B）

（C） （D）

（E） （F）  

Figure 3. (A) Spot market return curve for energy storage on a typical summer day. (B) Medium- 

and long-term market return curve for energy storage on a typical summer day. (C) Spot market 
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return curve for energy storage on a typical winter day. (D) Medium- and long-term market return 

curve for energy storage on a typical winter day. (E) Figure spot market return curve for energy 

storage on a typical day in spring. (F) Medium- and long-term market return curve for energy stor-

age on a typical day in spring. 

 

Figure 4. Comparison of benefits of energy storage systems by scenario. 

(2) Comparison of whole lifecycle benefits of various types of energy storage 

Figure 5A,B present the measurements of unit cost-effectiveness and return on in-

vestment for each type of energy storage device, based on the present value of the total 

cost and the present value of the total benefit under each scenario. 
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Figure 5. (A) Comparison of energy storage unit cost effectiveness by scenario. (B) Comparison of 

energy storage return on investment by scenario. 

It has been observed that the investment returns of energy storage in the medium- 

and long-term electricity markets surpass that of the electricity spot market. In addition, 

the investment return during winter and summer exceeds that of spring. Among the var-

ious energy storage types, only compressed air and pumped storage exhibit a consistent 

return on investment, with pumped storage yielding the highest return at an average of 

96.5% over a 40-year lifespan. Conversely, all forms of electrochemical energy storage ex-

hibit negative returns on investment, indicating a loss over their lifecycles. Notably, lith-

ium-ion ba�eries demonstrate a relatively higher return on investment and a lower degree 

of loss, with an average investment reporting rate of −35.2%. Therefore, the optimal choice 

for energy storage investment is pumped storage equipment, while prioritizing invest-

ments in lithium-ion ba�ery energy storage in electrochemical energy storage is encour-

aged. The calculated results of this study are approximate to the estimation results found 

in existing literature [2,15,16,18]. 

(3) Analysis of Factors Affecting the Benefits of Energy Storage 

Having determined the results for pumped storage energy storage and lithium ion 

ba�ery storage, a further analysis of the primary factors influencing the return on invest-

ment in energy storage is warranted. Disregarding cost parameters, lifecycle parameters, 

and other technical factors, the external factors that most significantly impact the return 

on investment in energy storage primarily stem from the system load peak–valley differ-

ence and the peak–valley price difference [15]. To assess their influence, this study con-

structs a model using a typical summer day scenario, with the results depicted in Figure 

6A–D. 
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Figure 6. (A) Influences on return on investment for pumped storage. (B) Influences on total return 

for pumped storage. (C) Influences on return on investment for lithium-ion ba�eries. (D) Influences 

on total return for lithium-ion ba�eries. 

It is evident that the impact of the spread coefficient on energy storage revenue is 

more stable. As the spread coefficient increases, the energy storage revenue also increases, 

exhibiting an overall linear relationship. The influence of peak and valley difference fac-

tors on energy storage investment returns undergoes noticeable changes. When the sys-

tem’s peak and valley difference is reduced to 0.7 times below the load curve of the sum-

mer scenario, larger peak and valley differences result in higher investment returns for 

energy storage. However, when the system’s peak–valley difference exceeds 0.7 times the 

summer scenario load curve, the impact of the peak–valley difference parameter on the 

investment return of energy storage weakens. Therefore, the market’s peak–valley spread 

indicator should become a main focus for energy storage investors. 

4. Conclusions 

In this study, the authors developed a model to optimize the allocation and revenue 

measurement of various types of energy storage used in the electricity market. The model 

takes into account the uncertainties of wind and light, as well as the lifecycle cost factors 

of energy storage. By applying the model to multiple electricity market scenarios, the au-

thors conducted measurements and proposed an optimal allocation strategy for energy 

storage. The key findings are as follows: 

(1) The high-load seasons, namely, winter and summer, exhibit significant peak-to-val-

ley differences in load, resulting in a high demand for energy storage. On the other 

hand, the load curve during spring and other low-load seasons is relatively smooth, 
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leading to a smaller demand for energy storage. The peak and valley differences af-

fect both the charging and discharging depths of energy storage and the level of rev-

enue. Therefore, the trend of peak and valley differences can serve as a benchmark 

for energy storage investors to assess their revenue expectations. It is important to 

note that if investments are based solely on the demand during winter and summer 

seasons, the return on investment may be easily affected by excess capacity during 

spring and fall. 

(2) The gains derived from subsidies exhibit the highest level of stability, as they are 

solely contingent upon the quantity of electricity discharged from storage. These 

gains do not exhibit significant differences between the medium- to long-term and 

spot markets for electricity. Conversely, arbitrage gains demonstrate notable discrep-

ancies across various markets, with the medium- and long-term market yielding con-

siderably higher gains compared to the spot market. The magnitude of these gains is 

influenced by the extent of the peak–valley spread. Therefore, investors can employ 

assessments of the spread fluctuation trend in the spot market as a foundation for 

decision-making when selecting a market. 

(3) When solely considering economic returns and disregarding technical factors, 

pumped storage serves as the most suitable mechanical energy storage option for 

investment, while lithium-ion ba�ery energy storage emerges as the most suitable 

electrochemical energy storage alternative. The internal factors that impact the re-

turns on energy storage consist of the investment cost and service life. These indica-

tors furnish investors with vital information for making investment decisions. 

5. Limitations and Outlook 

This paper did not assess the implicit societal benefits brought about by energy stor-

age nor conduct an analysis of the rationality behind energy storage subsidies. Further-

more, it should be noted that the simulated data have certain limitations and may not be 

universally applicable at the global level. Therefore, the research findings cannot be 

widely generalized. In subsequent studies, we will undertake a comprehensive assess-

ment of the economic externalities associated with energy storage and devise a subsidy 

framework that duly considers the sustainable development and social benefits of energy 

storage. 
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