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Abstract: The construction and development of energy storage are crucial areas in the reform of
China’s power system. However, one of the key issues hindering energy storage investments is
the ambiguity of revenue sources and the inaccurate estimation of returns. In order to facilitate
investors’ understanding of revenue sources and returns on investment of energy storage in the
existing electricity market, this study has established multiple relevant revenue quantification models.
The research methodology employed in this paper consists of three main components: Firstly, we
established a revenue model and a cost model for energy storage participation in the electricity
market. These models focus on arbitrage revenue, subsidy revenue, auxiliary services revenue,
investment cost, operational and maintenance cost, and auxiliary service cost of energy storage.
Subsequently, we utilized an enhanced Grey Wolf Optimizer algorithm to solve the optimization
problem and maximize revenue, thus obtaining the optimal capacity and revenue scale of energy
storage in the electricity market. Finally, we compared the whole-lifecycle ROI of different energy
storage options in various scenarios. The evaluation results demonstrate that the difference between
peak and off-peak loads impacts the investment demand and charging/discharging depth of energy
storage. In addition, the discrepancy between peak and off-peak prices affects the arbitrage return
of energy storage. These two factors can serve as criteria for energy storage investors to assess
their return expectations. When solely considering economic returns and disregarding technical
factors, pumped storage energy storage emerges as the most suitable mechanical energy storage
option requiring investment. The main contribution of this study lies in the estimation of the lifecycle
investment returns for various energy storage technologies in the Chinese electricity market, thus
providing valuable insights for the investment and operational practices of market participants.

Keywords: energy storage type selection; ROI; lifecycle

1. Introduction

In recent years, the global power sector has witnessed rapid development in energy
storage technologies, with energy storage being widely applied across multiple aspects of
the power system [1]. Currently, China primarily employs energy storage technology to
ensure equilibrium and growth in the electric power industry. The returns that energy stor-
age can obtain come from three domains: capitalizing on the price differentials during peak
and off-peak periods, participating in the auxiliary services market, and obtaining policy
subsidies [2]. However, it is worth noting that China’s power auxiliary services market is
still in its early stage of development, and the subsidy policies for energy storage are subject
to periodic variations and regional differences. Existing research predominantly focuses on
assessing the revenue derived from arbitrage and subsidy mechanisms associated with en-
ergy storage. Few studies have comprehensively appraised the overall revenue and return
on investment for different energy storage types in the power market. Moreover, limited
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attention has been given to analyzing revenue fluctuations across various power markets
during different seasons. These factors not only serve as crucial decision-making factors
for energy storage investors, but also act as key incentives for promoting investments in
energy storage.

1.1. Literature Review

Numerous studies have been conducted regarding energy storage configurations. Li et al.
posited that different energy storage technologies possess their own set of advantages
and disadvantages, contingent upon their characteristics, applicable scenarios, and per-
formance [3]. They provided an overview of the development of different energy storage
technologies in China and their application in the electricity market, highlighting the need
to consider factors such as the uncertainty of wind and solar power output when selecting
energy storage options, but without presenting specific models for selection or revenue
estimation. Wang et al. analyzed the operational characteristics of energy storage systems
in peak and frequency regulation scenarios [4]. They constructed a comprehensive energy
system optimization model with the objective of minimizing daily operational costs and
utilized mixed-integer linear programming methods for the solution. Their study revealed
that the lithium iron phosphate battery exhibited superior performance, followed by the
lithium titanate battery. However, this study only investigated the overall cost changes
resulting from energy storage participation in the power system, without conducting ac-
curate assessments of the costs and benefits specific to energy storage itself. Ma et al.
formulated an optimization allocation method for capacity, utilizing the optimal annual
average comprehensive cost of a hybrid energy storage system as the objective function [5].
They employed a genetic algorithm to determine the capacity allocation ratio of the battery
energy storage system. This study focused on determining the energy storage capacity
in the selection process, with the objective of maximizing the profitability of photovoltaic
power plants as the objective function. It specifically considered how energy storage could
smooth the power curve of photovoltaic generation, without treating energy storage as
an independent operating entity. Li et al. employed a quantum center of gravity inverse
variational particle swarm algorithm to resolve the capacity allocation scheme for a com-
munity hybrid BESS, comprising retired power batteries and supercapacitors [6]. They only
addressed the capacity estimation of known energy storage types and did not analyze the
selection of energy storage types. Xiong et al. appraised the optimal allocation problem of
battery energy storage from a cost analysis perspective, considering investment costs, tariff
revenues, policy subsidies, and additional benefits of energy storage [7]. By constructing
an investment return model for battery storage, with the objective of maximizing the net
benefit in the distribution network system, they compared and analyzed various configura-
tion schemes for battery energy storage and their corresponding investment returns. Their
study aligned with the direction of this paper, but its limitations lay in the analysis being
limited to arbitrage benefits and subsidy benefits of energy storage, without considering
the ancillary service benefits of energy storage. Additionally, the calculation process was
overly simplistic and did not account for the practical constraints of the power system.
Mohammad et al. developed a battery energy storage planning model that accounted for
capacity degradation, utilizing the mixed integer linear programming (MILP) method [8].
They proposed a set of formulas to determine the size of the battery storage, the charging
and discharging process, the depth of discharge, and the replacement year, with the aim
of minimizing total dispatch costs and enhancing the accuracy and economic feasibility
of the battery storage sizing method. They focused on the optimal capacity estimation of
battery energy storage and did not address other emerging energy storage technologies.
Furthermore, its profit function was not applicable to the Chinese electricity market. Sayfut-
dinov et al. studied the optimal siting of lithium-ion battery energy storage devices using
mathematical planning methods [9]. Their research employed mathematical optimization
techniques such as convex programming and mixed-integer programming. It specifically
addressed the degradation challenges associated with battery energy storage, considering
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factors such as charging and discharging cycles and temperature. However, it simplified
the description of revenue types and cost models related to energy storage. It focused
solely on battery energy storage, neglecting other emerging storage technologies, and its
profit function was not suitable for the Chinese electricity market. Li et al. proposed a
hierarchical optimization scheduling scheme for the energy storage-assisted deep peak
shaving of thermal power units, which includes upper, middle, and lower optimization
models [10]. They considered the economics of energy storage peak shaving from multiple
perspectives and demonstrated the compensation methods and scale of energy storage par-
ticipating in peak shaving. They presented a profit model for energy storage participation
in ancillary services in the power sector, while other revenue streams and storage costs
were left unanalyzed. Ye et al. designed a scheduling strategy to maximize the economic
benefits of a wind, solar, and thermal storage joint system [11]. They explored the impact of
adding energy storage on the overall economic efficiency of the power system. The study
indirectly highlighted the various economic benefits and service types that energy storage
could provide in the electricity market, but it did not construct a detailed analytical model.
Energy storage was considered merely as a balancing component within the power system.
Li et al. studied the cost fluctuations of joint peak shaving of energy storage and thermal
power units but did not fully measure the cost of the energy storage equipment itself [12].
Kim and Shin investigated a BESS management strategy based on deep reinforcement
learning that considers depth of discharge and state of charge range while reducing the
total operating cost [13]. The study considered the lifecycle cost of battery energy storage,
but the research perspective focused on the operational management of energy storage
rather than the selection of types and did not encompass the investment returns and eco-
nomic viability of energy storage. Annu et al. proposed a techno-economic analysis to
examine the energy savings resulting from integrating DGs and BESS in the DN [14]. They
found that the power losses are further reduced by implementing network reconfiguration
to reduce the dependency of energy on the grid. However, there was a lack of economic
analysis from the perspective of energy storage investors. Ryutaka et al. undertook a com-
parative cradle-to-grave lifecycle assessment of lithium-ion batteries (LIB) and lead-acid
battery systems for grid energy [15]. They suggested three measures to improve the overall
environmental impact results. For example, they increased the contribution of renewable
energy sources in the use phase electricity mix and developed the recycling process of LIB.
Their study predominantly relied on the statistical analysis of historical data, focusing on
the comparison of factors influencing the lifecycle of energy storage, without conducting
simulation modeling. Hunter et al. analyzed the lifecycle costs of 14 energy storage or
flexible generation technologies, and concluded that pumped hydro, compressed air, and
batteries are the best suited for 12 h discharge [16]. The study compared the full lifecycle
costs of 14 different energy storage technologies based on existing statistical data. However,
simulation modeling was not employed for estimation, and the data used were interna-
tional, meaning they may differ from the cost data specific to energy storage investments
in China.

Considering the existing literature on energy storage selection and profitability di-
mensions, it is commonly observed that studies focus on power systems or microgrids
as research subjects, and analyze the economic changes brought about by energy storage
participation in power operations. These studies often construct objective functions based
on minimizing system-wide costs or minimizing load fluctuations, which provides sig-
nificant inspiration for this research. However, the existing literature primarily focuses
on the analysis of historical data as regards the articles that primarily focus on energy
storage, with fewer studies utilizing simulation modeling. Most articles emphasize the
economic viability of battery energy storage, while there is a scarcity of articles that provide
a unified comparison of the economic viability of different energy storage technologies.
In the existing literature, the categorization of revenue sources related to energy storage
primarily focuses on arbitrage revenue and subsidy revenue, with inadequate statistical
analyses of revenue from power ancillary services, and this fails to reflect the current state
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of the Chinese electricity market. The analysis of revenue sources for energy storage is
scant, and thereby fails to effectively align with China’s existing market policies and offer
recommendations for market investors.

1.2. Aims and Contributions

This study proposes a model for the optimal allocation of multiple types of energy
storage in the electricity market. This model takes into consideration the uncertainties
associated with wind and solar power, as well as the entire lifecycle costs of energy storage.
The model aims to quantify the investment scale and return levels of energy storage in
diverse electricity markets. We hope that this study can provide valuable insights and
practical guidance for energy storage investors in China regarding operational models and
investment returns. Additionally, we aim to inspire other scholars to engage in collaborative
discussions on the application areas and operational approaches of energy storage.

The contributions of this paper are as follows:

(1) Compared to other existing studies, this study focuses on the comprehensive assess-
ment of revenue generation throughout the entire lifecycle of different types of energy
storage systems in the Chinese power market. The primary contribution of this paper
is in undertaking decision-making simulations for energy storage investments in the
Chinese power market, and providing valuable insights related to investment and the
operational practices of market participants;

(2) Compared to the existing literature, the energy storage revenue assessment model con-
structed in this paper encompasses the majority of revenue sources related to energy
storage in the current Chinese power market, providing a comprehensive statistical
comparison of indicators. Furthermore, the improved Grey Wolf Optimizer algorithm
employed in this paper represents an extension and enrichment of methodologies
applied to optimization problems in the power market;

(3) This paper, in constructing scenarios of energy storage in the Chinese power market,
takes into account dual dimensions of different market types and different seasons. It
determines that the revenue assessment of energy storage in the power market should
be undertaken in a specific way according to specific scenarios. The research findings
of this paper enrich the design of energy storage application scenarios, promoting the
integration of model construction and practical implementations.

2. Methods and Models
2.1. Comprehensive Revenue Modeling of Energy Storage in the Electricity Market

Before the auxiliary service market for power in China was established, the revenue
sources for energy storage devices were primarily twofold: arbitrage activities involving
charging during off-peak hours and discharging during peak hours, as well as subsidies
provided by the government to support the development of energy storage [2]. With the
development of the auxiliary service market in China’s power sector, the role of energy
storage and its economic value have been demonstrated. Energy storage devices primarily
serve the purpose of balancing the power supply and demand in the electricity system
and fulfilling peak shaving and frequency regulation services. Additionally, based on the
operational conditions of the auxiliary service market in various provinces of China, energy
storage can also fulfil system reserve and voltage regulation functions [17,18]. However,
the currently measurable revenue sources related to auxiliary services from energy storage
devices only include peak shaving, frequency regulation, and system reserve services.
Therefore, in this study, we have constructed a revenue model for energy storage based on
the five revenue sources observed in the Chinese power market.

f (R) = max(R1 + R2 + R3 + R4 + R5 − C1 − C2 − C3) (1)

Here, f (R) is the comprehensive return earned by the energy storage investor over the
full lifecycle, and R1 is the arbitrage gain of energy storage over the operating period; R2 is
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the gain from policy subsidies for energy storage; R3 is the peak gain obtained by energy
storage during peaking service; R4 is the frequency regulation gain derived from the
participation of energy storage in frequency regulation service; R5 is the standby gain
derived from the provision of a rotating standby service by energy storage. The cost of
energy storage consists of three components. Firstly, there are conventional fixed costs,
which are one-time costs incurred during the investment in energy storage. Secondly, there
are operational and maintenance costs, which represent the continuous costs incurred
throughout the entire lifespan of the energy storage system. Lastly, there are auxiliary
service costs, which are the additional costs incurred by energy storage when providing
auxiliary services. Only frequency regulation services result in additional costs, while other
services do not incur any [19]. C1 is the fixed investment cost of energy storage; C2 is the
operation and maintenance cost of energy storage; C3 is the cost of the auxiliary services of
energy storage.

2.1.1. Revenue Modeling of Energy Storage Operations

(1) Energy Storage Arbitrage Revenue Model

The arbitrage profit model of energy storage, characterized by low charging during
periods of low electricity market prices and high discharging during periods of high
electricity market prices, aims to capitalize on the price difference to generate profits. In
China, there are currently two types of electricity markets: the medium- to long-term
market and the spot market. The main difference between these two markets lies in the
shape of the electricity price curve. With the fulfillment of technical constraints, energy
storage systems have the flexibility to participate in transactions within both markets.

R1,n,i =
24

∑
t=1

[Pdc(t) DUMdc(t)− Pc(t) DUMc(t)] f (µt) (2)

Here, R1,n,i is the arbitrage income derived from energy storage on day i of year n. The
arbitrage income from energy storage on day i of year n. Pc(t) and Pdc(t) is the charging
and discharging power variable of the energy storage. DUMc(t) and DUMdc(t) are the
charging and discharging state dummy variables of the energy storage, which take the
value of 0 or 1. f (µt) is the electricity price curve of the electricity spot market, and µt is
the real-time electricity price at each moment.

The total arbitrage revenue derived from energy storage over the entire lifecycle
is then:

R1 =
N

∑
n=1

I

∑
t=1

R1,n,i(
1 + InR

1 + d
)

n
(3)

N is the entire lifecycle of the energy storage system; I is the number of days of
operation of the energy storage system in a year; considering the long operating cycle of
energy storage, the inflation rate InR is introduced with a discounted rated, and in this
paper is set as the increase in the commodity price index.

Additionally, it is necessary to adhere to the charge/discharge state logic constraints
of the energy storage system.{

DUMc(t) + DUMdc(t) = 1
DUMc(t) · DUMdc(t) = 0

(4)

(2) Energy storage subsidy revenue model

The existing energy storage subsidy policy primarily revolves around capacity com-
pensation, tariff subsidies, and cost reduction. In most cases, the settlement methods are
converted into unit power subsidies, which are disbursed based on the quantity of energy
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discharged by the storage system. This study seeks to construct an energy storage subsidy
revenue model.

R2,n,i =
24

∑
t=1

Pdc(t)DUMdc(t)µsub (5)

R2 =
N

∑
n=1

I

∑
t=1

R2,n,i(
1 + InR

1 + d
)

n
(6)

R2,n,i is the subsidized revenue derived from energy storage on day i of year n; µsub is
the government-subsidized electricity price.

(3) Energy Storage Peaking Revenue Modeling

The peaking revenue of energy storage can be classified into two types. Firstly, the
system can charge during off-peak hours to fulfill its deep peaking requirements, and
subsequently receive compensation for this service. Secondly, the system can discharge
power during peak hours to achieve peak shaving and obtain revenue accordingly.

R3,n,i =
24

∑
t=1

Pcs(t)DUMc(t)µcs +
24

∑
t=1

Pdc(t)DUMdc(t) · (µdc − ∆µt)DUM(µ) (7)

R3 =
N

∑
n=1

I

∑
t=1

R3,n,i(
1 + InR

1 + d
)

n
(8)

Here, R3,n,i denotes the daily peaking revenue acquired by the energy storage sys-
tem. Pcs(t) represents the charging power executed by the system in response to the dispatch
peaking demand. µcs signifies the compensation received by the system for deep peaking
charging. µdc denotes the price of peak shaving and peak shifting compensation for spike
loads. ∆µt represents the average clearing spread of the energy storage system during
charging and discharging on a given day (or the peak-to-valley spread on the given day
if traded on the medium- and long-term market). Finally, DUM(µ) is a binary variable
indicating whether or not peak shaving compensation is implemented, with a value of
1 denoting “yes” and 0 denoting “no”.

To measure the peaking gains of energy storage, certain constraints must be satisfied,
as not all charging power derived from energy storage corresponds to deep peaking power,
and not all discharging power serves the purpose of peak shaving and peaking power.
These constraints are defined as follows:

Pcs(t) = θcs · Qt
Ues

Ucs
(9)

DUM(µ) =

{
1, µt ≥ µ0
0, µt < µ0

(10)

where θcs represents the share of deep peaking power in the system load at moment t,
and Qt denotes the total load of the system at moment t. In addition, Ues denotes the
installed capacity of the energy storage equipment, and Ucs represents the total installed
capacity of various types of units capable of fulfilling the deep peaking obligation, i.e., the
deep peaking power of the entire system is allocated based on the capacity share of the
energy storage equipment in the deep peaking units. Moreover, µ0 denotes the Peak Load
Threshold Price. If the average clearing price during the peak hour on a given day exceeds
this threshold, compensation for peak shaving will be provided to the energy storage
equipment, and it will discharge power to receive an additional compensation charge.

(4) Energy Storage Frequency Modulation Revenue Model

During the charging and discharging process, the energy storage equipment can also
complete the FM task and obtain FM gains, which are compensated based on the capacity
of the energy storage that provides the FM service. The execution of this compensation
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depends on the inertia response index and the inertia response monthly correct action
rate of the energy storage device during its operational month. These two parameters are
derived from the actual system’s operation values in each province, which typically range
between 90% and 100%. For the purpose of calculation convenience, this paper assumes
that the system’s inertia response index and inertia response monthly correct action rate are
both 95%. Therefore, the annual FM gain of the energy storage can be expressed as follows:

R4,n =
95% − 90%
100% − 90%

· Ues · µsp f · 12 +
95% − 90%
100% − 90%

· Ues · µbp f · Nbp f · 12 (11)

R4 =
N

∑
n=1

R4,n(
1 + InR

1 + d
)

n
(12)

where µspf is the monthly compensation price for small disturbances in FM compensa-
tion, µbp f is the monthly compensation price for large disturbances in FM compensation,
and Nbp f is the monthly number of large disturbances.

(5) Energy Storage Rotating Standby Revenue Model

Energy storage systems have the option to provide rotating standby services during
off-peak hours and discharge during peak hours. Alternatively, they can offer rotating
standby services during periods of smaller price increases. Assuming that the energy
storage system can provide spinning standby services through all non-discharge hours
following the completion of charging, the revenue model for energy storage providing
spinning standby services is as follows:

R5,n,i =
24

∑
t=1

Psprµspr[1 − SUMc(t)][1 − SUMdc(t)] +
24

∑
t=1

P′
sprµ′

spr[1 − SUMc(t)][1 − SUMdc(t)] (13)

where Pspr is the winning bid capacity of the storage spinning reserve; µspr is the winning
bid price of the storage spinning reserve; P′

spr is the actual called capacity of the stor-
age spinning reserve, and µ′

spr is the called price of the storage spinning reserve. Since
the capacity of the energy storage that participates in the spinning reserve must be of a
dischargeable capacity, it needs to satisfy the constraints:

Pspr ≤ ηc∑ Pc(t) P′
spr ≤ Pspr (14)

where ηc is the energy storage charging loss factor, which varies according to the type of
energy storage.

2.1.2. Energy Storage Cost Modeling

(1) Fixed cost model for energy storage

The fixed cost of energy storage comprises two components, capacity cost and power
cost, which are dependent on the system’s rated capacity and rated charge/discharge
power. Therefore, the fixed investment cost of energy storage is formulated as:

C1 = CpmaxP + CUUes (15)

C1 is the fixed investment cost of energy storage; Cp is the cost of energy storage unit
charging/discharging power; CU is the cost per unit capacity of energy storage.

(2) Energy storage O&M cost model

Energy storage O&M costs are related to the charging and discharging power.

C2 =
N

∑
n=1

CmmaxP(
1 + InR

1 + d
)

n
(16)
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C2 is the total operation and maintenance cost of energy storage; Cm is the annual
O&M cost per unit of charge/discharge power of the energy storage system.

(3) Energy storage ancillary services cost model

Energy storage does not incur separate costs for providing peaking services. However,
when offering frequency modulation services, the cost of storage O&M increases due to
the need to respond to frequency modulation commands. Therefore, this cost must be
measured separately. The cost of energy storage frequency modulation can be expressed
through a first-order equation:

d∆ f
dt

=
1

2Hs
(∆Pdc(t)− ∆PL(t)) (17)

C3 = C f ∆ f (18)

∆ f denotes the frequency deviation; Hs denotes the system equivalent inertial time
constant; ∆Pdc(t) and ∆PL(t) denote the change in energy storage output and the change
in load, respectively; C3 represents the frequency modulation cost per unit mileage.

2.1.3. Energy Storage Operating Losses and Constraint Reduction

(1) Energy conservation constraint: Considering energy losses, the energy storage sys-
tem, operating under the objective of recycling, must adhere to charge/discharge
conservation constraints in a single charge/discharge cycle.

ηc

24

∑
t=1

Pc(t) = ηc

24

∑
t=1

Pdc(t) (19)

(2) Power constraints: When charging and discharging the energy storage system, the
maximum charging and discharging power, as well as power constraints, must be
satisfied. Here, the formula begins to undergo changes.

0 ≤ Pc(t) ≤ maxP
0 ≤ Pdc(t) ≤ maxP

∑ Pdc(t) ≤ ∑ Ues

(20)

(3) System load constraints: The equivalent load of the system, incorporating energy stor-
age, should not exceed the maximum load after the peak shaving effect is generated.

P(t)− Pdc(t) + Pc(t) ≤ (1 − λ)maxP(t) (21)

Here, P(t) is the load of the system at time t, and maxP(t) is the maximum load
of the system.

(4) Charging and discharging time constraints: Since the energy storage system cannot
be charged and discharged simultaneously during the same time period, it must also
satisfy the following constraints:

DUMdc(t) · DUMc(t) = 0 (22)

(5) Energy storage system load ratio constraints:

Qsoc,t =
Qt

Ues
(23)

Qsoc,min ≤ Qsoc,t ≤ Qsoc,max (24)

Here, Qt denotes the remaining power of the energy storage system in time period
t; Qsoc,t denotes the charge ratio of the energy storage system in time period t; Qsoc,min de-
notes the lower limit of the charge ratio of the energy storage system; Qsoc,max denotes the
upper limit of the charge ratio of the energy storage system.
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2.2. The Method for Solving the Energy Storage Revenue Model

In 2014, Mirjalili et al. proposed the Grey Wolf Optimizer (GWO) algorithm. This
algorithm simulates the social hierarchy mechanism and population hunting behavior of
grey wolf packs, aiming to surround and capture prey. Through iterative updates, the GWO
algorithm seeks to obtain the optimal solution [20]. Since then, the GWO algorithm has
been widely applied to solve optimization problems involving nonlinear variables. This
method has achieved significant accomplishments in various fields, including optimization
of integrated energy system configurations, evaluation of wind energy device performance,
unmanned aerial vehicle (UAV) cruising, and many others [21]. The GWO algorithm
exhibits superior convergence speed and optimal search accuracy when addressing op-
timization problems. Thus, this study employs the GWO algorithm to solve the optimal
allocation of energy storage. The GWO algorithm classifies wolves into four levels, namely,
α-wolf, β-wolf, δ-wolf, and ω-wolf, in descending order of hierarchy. The wolves in the first
three levels primarily determine the movement direction of ω-wolves. Subsequently, based
on the feedback information derived from ω-wolves, α-wolves, β-wolves, and δ-wolves,
we decide whether to update their positions. Upon completion of the algorithm’s iteration,
the positions of α-wolf, β-wolf, and δ-wolf represent the three optimal solutions, while the
position of ω-wolf serves as a candidate solution.

The search and encirclement behavior of the grey wolf in relation to its prey can be
expressed as follows:

D = |AXP,t − Xt| (25)

Xt+1 = XP,t − BD (26)

where D is the distance between the gray wolf and the prey; A and B are coefficient vectors;
t is the current iteration number; XP,t is the position of the prey at the tth iteration; Xt is the
position of the gray wolf at the tth iteration.

The coefficient vectors A and B can be computed as

A = 2r1 (27)

B = µ(2r2 − 1) (28)

where the modulus of γ1 and γ2 is a random number in the range [0,1]; µ is the convergence
factor, µ = 2(1 − t

T ), i.e., µ decreases linearly from 2 to 0 as the number of iterations
t increases µ; T is the maximum number of iterations.

During the feeding process, the ω-wolf updates its position using the positional
information of α-wolf, β-wolf, and δ-wolf. This process can be represented using the
following mathematical model: 

Dα = |A1Xα − X|
Dβ =

∣∣A2Xβ − X
∣∣

Dδ = |A3Xδ − X|
(29)


X1 = |Xα − B1Dα|
X2 =

∣∣Xβ − B2Dβ

∣∣
X3 = |Xδ − B3Dδ|

(30)

Xt+1 =
1
3
(X1 + X2 + X3) (31)

where Dα, Dβ and Dδ are the distances of α-wolf, β-wolf and δ-wolf from other wolves,
respectively; Xα, Xβ, and Xδ are the positions of α-wolf, β-wolf, and δ-wolf, respectively.

2.2.1. Improved Gray Wolf Optimization Algorithm

Despite the advantages of the GWO algorithm, such as its minimal adjustment pa-
rameters, low implementation difficulty, and high stability, it is susceptible to falling into
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local optimal solutions during the later stages of evolution. Therefore, this study adjusts
the strategy for updating the convergence factor and displacement.

(1) Nonlinear convergence factor adjustment strategy

In the traditional Grey Wolf Algorithm, the convergence factor decreases linearly as
the number of iterations increases. However, linear methods often fail to achieve optimality.
Therefore, this study proposes a quadratic variation of the convergence factor with respect
to the number of iterations, which can be expressed as:

µ = 2 − 2
(

t
T

)2
(32)

(2) Adaptive displacement strategy

In the GWO algorithm, if all three sets of solutions, namely, α-wolf, β-wolf, and δ-wolf,
fall into local optima, it becomes challenging for the entire wolf pack to discover the global
optimal solution. To clarify the roles of individuals and enhance the algorithm’s global
search ability, this study designates β-wolf and δ-wolf as local variables. Therefore, the
following adaptive displacement strategy is proposed:

Xt+1 =
1
3
(X1 + X2 + X3)(1 −

t
T
) + X1

t
T

(33)

2.2.2. Steps to Improve the Gray Wolf Algorithm

The flow of the improved Gray Wolf Optimization algorithm proposed in this paper is
shown in Figure 1.
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3. Simulation Results and Discussion

In this paper, eight types of energy storage system have been selected, namely, lead-
acid batteries, lithium-ion batteries, sodium-sulfur batteries, liquid current batteries, super
capacitors, compressed air, pumped storage, and flywheel energy storage. The operat-
ing parameters of various energy storage systems were obtained from publicly available
network data [2,4,8]. Their corresponding parameters are presented in Table 1.

Table 1. Types of energy storage and related parameters.

Type of Energy
Storage Abridge

Price per Unit
Capacity

(CNY/KW)

Price per Unit
of Power

(CNY/KWH)

O&M Cost per
Unit of Power

(CNY/KW Year)

Charge/Discharge
Factor

Life Cycle
(Years)

Lead-acid battery LAB 1200 500 1 0.75 4
Lithium-ion battery Li-ion 2000 1000 10 0.9 9

Sodium-sulfur
battery Nas 7000 0 10 0.85 12

Flow battery
(computing) VRB 5000 10,000 15 0.60 30

Ultracapacitor EC 10,000 1000 15 0.98 20
Compressed air CASE 500 5000 7 0.60 20
Pumped storage PHS 500 6700 5 0.75 40
Flywheel energy

storage FW 3000 1000 5 0.85 30

The relevant economic and price parameters are shown in Table 2.

Table 2. Economic and price parameters.

Indicator Name Data Sources Retrieve a Value

Inflation rate InR China Economic Yearbook 2022 2%

Discount rate d Take the average value of the bankers’ acceptance
discount rate in 2022 5.9%

Government-subsidized tariffs µsub
Take the plurality of energy storage support policies
announced by provinces and municipalities in 2022 0.3 CNY/KWH

Deep Peak Charge Compensation µcs

2023 Supplementary Notice on the Participation of
Third-Party Independent Entities in the Normalized

Operation of Electricity Ancillary Services in Province X

0.32 CNY/KWH
(ceiling)

Peak Shaving and Peak Regulation
Compensation Prices µdc

2023 Supplementary Notice on the Participation of
Third-Party Independent Entities in the Normalized

Operation of Electricity Ancillary Services in Province X
0.65/KWH (ceiling)

Peak Load Threshold Price µ0

2023 Supplementary Notice on the Participation of
Third-Party Independent Entities in the Normalized

Operation of Electricity Ancillary Services in Province X
0.65 CNY/KWH

Percentage of Deep Peaking Power θcs
Annual electricity consumption and deep peaking

compensation for a province in 2022 0.5%

Monthly Small Disturbance FM
Compensation Price µsp f

Implementing Rules for the Management of Electricity
Ancillary Services in Province X (Revised Version 2023) CNY 72/MW × month

Monthly Large Disturbance FM
Compensation Price µbp f

Implementing Rules for the Management of Electricity
Ancillary Services in Province X (Revised Version 2023) CNY 100/MW × month

Rotating Spare Winning Price µspr

Pilot Program for Participation of Third-Party
Independent Entities in Electricity Auxiliary Service

Settlement in X Province in 2022
(Draft for Public Comments)

CNY 50/MWH
(ceiling)

Rotating Spare Call Prices µ′
spr

Pilot Program for Participation of Third-Party
Independent Entities in Electricity Auxiliary Service

Settlement in X Province in 2022
(Draft for Public Comments)

CNY 10/MWH
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Table 2. Cont.

Indicator Name Data Sources Retrieve a Value

Annual Growth Rate of Load τ China Power Industry Annual Development Report 2023 6.3%

Green Certificate Price µGEC
China Green Power Certificate Subscription

Trading Platform CNY 100/MWH

Kwh Coal Consumption αcoal Industry average 300 g/KWH

Average Annual Coal Price µcoal
2022 Qinhuangdao Power Coal Market

Monthly Average Price 964 per ton

Kwh Gas Emission Factor αdis

Methodology and Reporting Guidelines for Corporate
Greenhouse Gas Emissions Accounting and Reporting for

Electricity Generating Facilities (Revised 2022)

581 g CO2, 30 g SO2,
15 g NO

Costs of Air Pollution Control µdis
Law of the People’s Republic of China on Environmental

Protection Tax CNY 1.2/equivalent

This study divides the electricity market’s supply–demand fluctuations into three
categories: summer peak, winter peak, and the remaining flat season. For measurement
purposes, one representative day from each of the four seasons (April in spring, August
in summer, and December in winter) has been selected as a typical scenario in X province.
Autumn has not been included as a scenario due to the similarity between the supply–
demand relationship and load characteristics of spring and autumn. The load and output
curves, as well as the market price curves, for each typical day were provided by the
grid company.

(1) Measured direct benefits of energy storage investments under each scenario.

In the modeling process, energy storage is considered a participant in the system’s load
balance, necessitating the fulfillment of peak shaving and valley filling obligations [1,3,10,11].
Therefore, the charging and discharging decisions made under each scenario are contingent
upon the system’s load fluctuations, irrespective of the energy storage type. Simultaneously,
the various revenue streams derived from energy storage are dependent on its charging
and discharging capacity, as well as the services rendered [2,7,8,19]. As a result, the
revenue curve remains constant under the predetermined scenarios. The specific results
are presented in Table 3.

The present valuation of the aggregate cost pertaining to each variant of energy storage
under an identical scenario exhibits significant differences due to gaps in charging and
discharging efficiencies, as well as differences in the investment capacities required to
satisfy the equivalent power equilibrium constraints. Ultracapacitors and compressed air
storage necessitate the most exorbitant investment costs, surpassing those of conventional
electrochemical and mechanical energy storage by a factor of approximately five, rendering
them suboptimal investment choices within the confines of initial capital constraints [2,22].
Notably, the investment capacity, investment power, and present valuation of total costs
for a given energy storage type diverge significantly across different scenarios, owing
to dissimilar load levels and peak-to-valley differentials [16,17]. Specifically, the total
investment cost for energy storage in winter and summer peak scenarios exceeds that of the
spring flat section scenario by a factor of approximately 3.3. Therefore, employing winter
and summer demand as the investment benchmark may engender excessive investment.

The investments made in energy storage capacity must adhere to the constraints
imposed by the system’s power balance, thereby subjecting its maximum charging and
discharging power, as well as its maximum storage power, to the influence of the sys-
tem’s peak–valley differential and the fluctuation in wind power output. As depicted in
Figure 2A–C, the system’s peak–valley differential is more pronounced during winter and
summer seasons, resulting in a higher demand for energy storage. Conversely, during
spring, the load curve exhibits a relatively smooth profile, leading to a lower requirement
for energy storage. This observation highlights the positive correlation between the sys-
tem’s demand for energy storage and the peak-to-valley differential of the load [12,13].
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Therefore, basing investment decisions on the demand observed during winter and summer
seasons can potentially impede cost recovery due to the excessive capacity during spring.

The daily return curves of energy storage in the electricity market under the three
scenarios and two markets depicted in Figure 3A–F were compared. It was observed that
the arbitrage returns of energy storage exhibited the highest level of fluctuation, which
was directly influenced by the electricity price curve and the peak-to-valley difference. The
subsidy gain, the primary source of energy storage gain, was relatively high. Conversely,
the gains derived from peak and FM services were relatively low, indicating that there is
still room for improvement in China’s power market regarding the development of peak
and FM auxiliary services [1,19]. In the current scenario, there was no standby gain derived
from energy storage, implying that the gain from full discharge surpassed the provision of
standby services.

Disregarding technical constraints such as power density and response time, the
revenue generated by an energy storage device in the electricity market is determined
by the amount of power it charges and discharges, as well as the services it provides,
irrespective of the type of energy storage. By comparing the various income levels of
energy storage in each scenario, as illustrated in Figure 4, it is evident that subsidy income
represents the most stable form of revenue, which is solely dependent on the amount of
energy storage discharged. There is no significant difference between the medium- and
long-term electricity market and the spot market in terms of subsidy income. Conversely,
the difference in arbitrage return between different markets is conspicuous, with the
medium- and long-term markets yielding significantly higher arbitrage returns than the
spot market. The variance in arbitrage returns in the same quarter is associated with the
price curve in the market. As energy storage devices are typically charged during off-peak
periods and discharged during peak periods, the greater the difference between peak and
valley prices, the higher the arbitrage return of energy storage.

Table 3. The scale of investment in various types of energy storage.

Investment Capacity/KW Investment Power/KWH Present Value of Total Cost

LAB
Summer 1566.4208 237 1,999,056.568
Winter 1710.6302 245 2,176,136.563
Spring 463.8281 84 598,895.571

Li-ion
Summer 1285.1794 237 2,824,637.646
Winter 1402.8824 245 3,068,626.729
Spring 370.8333 84 831,790.783

Nas
Summer 1368.329 237 9,599,996.279
Winter 1493.8808 245 10,479,591.160
Spring 392.6471 84 2,756,218.242

VRB
Summer 1982.7817 237 12,342,271.140
Winter 2166.0767 245 13,340,716.190
Spring 631.3425 84 4,017,398.051

EC
Summer 1169.0099 237 11,973,609.420
Winter 1275.7251 245 13,050,331.500
Spring 344.373 84 3,544,215.010

CASE
Summer 1982.7817 237 2,198,095.896
Winter 2166.0767 245 2,330,476.056
Spring 631.3425 84 743,364.183

PHS
Summer 1566.4208 237 2,393,124.865
Winter 1710.6302 245 2,519,572.657
Spring 463.8281 84 802,516.652

FW
Summer 1368.329 237 4,361,441.180
Winter 1493.8808 245 4,746,753.269
Spring 392.6471 84 1,268,836.360
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curve for energy storage on a typical winter day. (D) Medium- and long-term market return curve
for energy storage on a typical winter day. (E) Figure spot market return curve for energy storage
on a typical day in spring. (F) Medium- and long-term market return curve for energy storage on a
typical day in spring.
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(2) Comparison of whole lifecycle benefits of various types of energy storage

Figure 5A,B present the measurements of unit cost-effectiveness and return on invest-
ment for each type of energy storage device, based on the present value of the total cost
and the present value of the total benefit under each scenario.
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Figure 5. (A) Comparison of energy storage unit cost effectiveness by scenario. (B) Comparison of
energy storage return on investment by scenario.

It has been observed that the investment returns of energy storage in the medium-
and long-term electricity markets surpass that of the electricity spot market. In addition,
the investment return during winter and summer exceeds that of spring. Among the
various energy storage types, only compressed air and pumped storage exhibit a consistent
return on investment, with pumped storage yielding the highest return at an average of
96.5% over a 40-year lifespan. Conversely, all forms of electrochemical energy storage
exhibit negative returns on investment, indicating a loss over their lifecycles. Notably,
lithium-ion batteries demonstrate a relatively higher return on investment and a lower
degree of loss, with an average investment reporting rate of −35.2%. Therefore, the optimal
choice for energy storage investment is pumped storage equipment, while prioritizing
investments in lithium-ion battery energy storage in electrochemical energy storage is
encouraged. The calculated results of this study are approximate to the estimation results
found in existing literature [2,15,16,18].

(3) Analysis of Factors Affecting the Benefits of Energy Storage

Having determined the results for pumped storage energy storage and lithium ion
battery storage, a further analysis of the primary factors influencing the return on invest-
ment in energy storage is warranted. Disregarding cost parameters, lifecycle parameters,
and other technical factors, the external factors that most significantly impact the return on
investment in energy storage primarily stem from the system load peak–valley difference
and the peak–valley price difference [15]. To assess their influence, this study constructs a
model using a typical summer day scenario, with the results depicted in Figure 6A–D.

It is evident that the impact of the spread coefficient on energy storage revenue is
more stable. As the spread coefficient increases, the energy storage revenue also increases,
exhibiting an overall linear relationship. The influence of peak and valley difference factors
on energy storage investment returns undergoes noticeable changes. When the system’s
peak and valley difference is reduced to 0.7 times below the load curve of the summer
scenario, larger peak and valley differences result in higher investment returns for energy
storage. However, when the system’s peak–valley difference exceeds 0.7 times the summer
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scenario load curve, the impact of the peak–valley difference parameter on the investment
return of energy storage weakens. Therefore, the market’s peak–valley spread indicator
should become a main focus for energy storage investors.
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4. Conclusions

In this study, the authors developed a model to optimize the allocation and revenue
measurement of various types of energy storage used in the electricity market. The model
takes into account the uncertainties of wind and light, as well as the lifecycle cost factors of
energy storage. By applying the model to multiple electricity market scenarios, the authors
conducted measurements and proposed an optimal allocation strategy for energy storage.
The key findings are as follows:

(1) The high-load seasons, namely, winter and summer, exhibit significant peak-to-valley
differences in load, resulting in a high demand for energy storage. On the other
hand, the load curve during spring and other low-load seasons is relatively smooth,
leading to a smaller demand for energy storage. The peak and valley differences
affect both the charging and discharging depths of energy storage and the level of
revenue. Therefore, the trend of peak and valley differences can serve as a benchmark
for energy storage investors to assess their revenue expectations. It is important to
note that if investments are based solely on the demand during winter and summer
seasons, the return on investment may be easily affected by excess capacity during
spring and fall.
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(2) The gains derived from subsidies exhibit the highest level of stability, as they are solely
contingent upon the quantity of electricity discharged from storage. These gains do
not exhibit significant differences between the medium- to long-term and spot markets
for electricity. Conversely, arbitrage gains demonstrate notable discrepancies across
various markets, with the medium- and long-term market yielding considerably
higher gains compared to the spot market. The magnitude of these gains is influenced
by the extent of the peak–valley spread. Therefore, investors can employ assessments
of the spread fluctuation trend in the spot market as a foundation for decision-making
when selecting a market.

(3) When solely considering economic returns and disregarding technical factors, pumped
storage serves as the most suitable mechanical energy storage option for investment,
while lithium-ion battery energy storage emerges as the most suitable electrochemical
energy storage alternative. The internal factors that impact the returns on energy
storage consist of the investment cost and service life. These indicators furnish
investors with vital information for making investment decisions.

5. Limitations and Outlook

This paper did not assess the implicit societal benefits brought about by energy storage
nor conduct an analysis of the rationality behind energy storage subsidies. Furthermore, it
should be noted that the simulated data have certain limitations and may not be universally
applicable at the global level. Therefore, the research findings cannot be widely generalized.
In subsequent studies, we will undertake a comprehensive assessment of the economic
externalities associated with energy storage and devise a subsidy framework that duly
considers the sustainable development and social benefits of energy storage.
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