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Abstract: The aim of this work is to present in a systematic way a novel general methodology to
develop the design equations (heat and mass balances) for networks of ideal reactors, that is, Plug-
Flow Reactors (PFRs) and Continuous Stirred Tank Reactors (CSTRs). In particular, after introducing
the general definition of conversion to be used for reactor networks, several case studies of interest
in chemical engineering are presented as topic-examples of application: (i) adiabatic-stage reactors
with recycle, (ii) adiabatic-stage reactors with split, (iii) adiabatic-stage reactors intercooled by
reactants and (iv) adiabatic-stage reactors with interstage distributed feed. More generally, the
presented methodology can also be applied to develop the design equations for complex networks of
interconnected reactors, not restricted to those considered in the present work. The motivation behind
the present study lies in the fact that, to the best of our knowledge, a systematic development of the
design equations of single reactors in reactor networks is currently missing in the open literature as
well as in the reference textbooks of chemical reaction engineering and reactor design.

Keywords: reactor networks; design equations; conversion; reaction extent; ideal reactors

1. Introduction

Nowadays, to increase the performance of existing production processes as well as to
develop innovative and more efficient ones, there is a need to rethink the approach to the
design of reaction units.

Chemical reactors represent the core of the production processes, in which lower-
value raw materials are upgraded to higher-value products. Such a transformation occurs
through several steps that generally involve a number of complex chemical reactions,
which most of the time would be convenient to carry out in different reactors to maximise
selectivity, and are pointed out in the textbook of Ming et al. (2016) [1–3].

Moreover, the increasing interest in modular and compact micro-reactors in chemi-
cal, biochemical and pharmaceutical processes [3,4], as well as the related technological
enhancements, including complex reactor configurations [5], make a question arise about
the need to develop a general design methodology for such systems.

The field of designing efficient reaction systems starting from complex reaction
paths through more or less advanced techniques of Mixed-Integer Non-Linear Program-
ming (MINLP) is called Attainable Region Theory, whose main topic is to deal with complex
reactor networks [3]. MINLP techniques are necessary because the design of an optimal
reactor system involves not only real variables like conversion, yields and selectivities but
also integer variables like the number of reactors and their position in the network. A few
literature examples of efficient reactor networks are reported in Figure 1 [6].
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Figure 1. Examples of complex reactor networks from (a,b) Rooney and Biegler (2000) [5] and (c) 
Xie and Freund (2018) [7]. Rearranged with the permission of Elsevier. 
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Figure 1. Examples of complex reactor networks from (a,b) Rooney and Biegler (2000) [5] and (c) Xie
and Freund (2018) [7]. Rearranged with the permission of Elsevier.

Objectives and Motivations

The objective of the present work is to present in a systematic and general way the
design methodology of complex reactor networks with ideal reactors operated in steady
state, that is, CSTRs (Continuous Stirred Tank Reactors) and PFRs (Plug-Flow Reactors). The
target readers are chemical and process engineers involved in the design and optimisation
of chemical reactors, as well as scientists and students in their advanced courses who may
need a systematic approach to the development and analysis of reactor networks.

The reason for presenting this work is based on the fact that there are currently no
systematic and specific approaches dealing with writing the design equations of the single
reactors of complex reactor networks in terms of conversion or, more generally, of reaction
extents [1,4,7–53]. The extension of the present approach to non-ideal reactors or other
types of reactors is straightforward.

To approach the design of reactor networks in a systematic way, we first generalise
the concept of conversion as well as the concept of reaction extents in the case of multiple
reactions. Then, we develop and report in detail the design equations—that is, mass and
energy balances—for different key types of reactor networks.

For these purposes, the paper is organised to present and discuss the final equations
directly in the body of the text, reporting the details of the systematic procedure in the
corresponding appendices. This is performed to avoid weighing down the body of the
work owing to the unavoidable presence of a high number of equations.
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2. Methodology of the General Design Approach

The following sub-sections report the description of the main steps leading to the
correct formalisation of the design equations, including a brief introduction to the reactor
networks along with the general definition of conversion and reaction degrees.

2.1. Reactor Networks

A generic reactor network consists of a number of reactors and mix/split nodes
appropriately connected to each other, whose connections represent the branches of the
network (Figure 2).
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Figure 2. Example of a generic reactor network connected to each other in series/parallel through
several oriented branches.

In this paper, we consider just the ideal PFRs and CSTRs, as all the other reactive
systems can actually be obtained by appropriate modifications/combinations of them. Each
reactor represents a reactive node, characterised by a single functioning point in the case of
the CSTRs and by a continuous working profile in the case of the PFRs.

Based on The Theory of Graphs [43], a reactor network can be represented by a directed
graphs since the particular orientation of the arrows connecting the nodes does matter in
determining its performance since a change in the connection direction causes a change in
the network’s functioning.

By definition, the design equations of a device are relationships pairing mass, energy
and momentum balances expressed in terms of convenient independent and dependent
variables. In this work, time is not included in the independent variables, as we consider
ideal reactors working in steady-state conditions. The independent variables represent
a measure of the system size—usually volume, length, catalyst mass or catalytic area—
whereas the dependent variables measure the extent of mass or molar flow rates, mass or
molar fractions and similar.

In the description of this general approach, the momentum balance—which determines
the fluid dynamics of the stream in the reactor—will not be considered because the velocity
field is already fixed in the ideal PFRs and CSTRs by hypothesis. Furthermore, for pressure,
the well-known Ergun equation (or its various modifications) can be satisfactorily used to
calculate the pressure drop.

Depending on whether we know the values of the dependent variables or the inde-
pendent ones, we have to address:

(i) a design problem—in which the dependent variables are known (in terms of final
performance, conversion or a general productivity index) and the independent variables
need to be evaluated;
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(ii) a verification problem—in which the independent variables are known in terms of
system size (volume, catalyst mass, catalyst volume, etc.) and the dependent ones need to
be evaluated and compared to the target performances.

In general, we can write the mass balances either in terms of the flow rate of the species
or in terms of reaction extents as well as conversion or yield in the case of a single reaction.
In the following sections, the following notation is adopted to indicate the characteristic
number of network objects along with the corresponding indices:

• {n, i} = {Number of Species, Related Index};
• {m, j} = {Number of Reactions, Related Index};
• {r, k} = {Number of Reactors, Related Index};
• {b, l} = {Number of Network Branches, Related Index}.

2.2. General Extension of the Definition of Conversion

To approach the reactor network design in a systematic way, we introduce the exten-
sion of the general definition of conversion (xA), which from now on refers to the limiting
reactant, indicated by the subscript ‘A’.

In particular, starting from considering that each l-th branch of the network is provided
with a certain non-null conversion value, we extend the general definition of conversion by
taking the working conditions occurring in that branch in the absence of reaction as the
reference state based on which conversion is defined (Equations (1) and (2)):

Conversion(lth branch)
A ≡


Flow Rate of A in

the Non − Reactive
Network


(lth branch)

−


Flow Rate of A
in the Reactive

Network


(lth branch)


Flow Rate of A in

the Non − Reactive
Network


(lth branch)

(1)

x(l)A ≡
F∗(l)

A − F(l)
A

F∗(l)
A

⇒ F(l)
A = F∗(l)

A

(
1 − x(l)A

)
(2)

where FA is the molar flow rate of the species A and the asterisk ‘*’ indicates the molar flow
rate of A in the l-th branch of the network (superscripted) in the absence of reaction.

In the case of multiple reactions, it is not possible to write the design equations in
terms of the sole conversion since we have as many design variables as many independent
reactions. To face this problem, analogously to what is performed in the single-reaction
case, we can use the molar reaction extents (ξj, Equation (3)), which are design parameters
measuring the extent to which each reaction proceeds forward in each l-th branch of
the network.

F(l)
A ≡ F∗(l)

A +
m

∑
j=1

νAjξ
(l)
j (3)

In cases where it is convenient to work with dimensionless parameters instead of
using ξj, which have units of a molar flow rate, we can define the here-called reaction degrees
xj in the generic l-th branch of the network as the ratio of the reaction extents ξj and the
molar flow rate of the key-reactant (A) in the same branch of the network in the absence of
reaction (Equation (4)).

x(l)j ≡
ξ
(l)
j

F∗(l)
A

(4)

Such a definition is suggested by the form of Equation (3) and is chosen in analogy
with the definition of conversion (see Equation (2)). By definition, the parameters xj can
also assume values higher than unity.
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For the purposes of the present paper, we will focus on the single-reaction case, which
implies the use of the conversion to express the mass balances. The extension to the
multi-reaction system is straightforward.

Once given the general definition of conversion, we can express the molar flow rates
of the species in terms of the conversion itself as follows (Equation (5)):

F(l)
A = F∗(l)

A

(
1 − x(l)A

)
F(l)

i = F∗(l)
A

(
θi +

νi
a x(l)A

)
θi ≡

F∗(l)
i

F∗(l)
A

, a = −νA > 0

(5)

where θi is the feed ratio of the i-th species, defined with respect to the key-reactant A. We
remind you that the stoichiometric coefficient of the limiting species A, νA, is negative.

It is necessary to put in evidence that, in the absence of reaction and in the presence of
a single feed to the network, the feed ratio θi is the same in all the branches of the network,
as the mixing and split nodes do not provide a selective separation among species.

On the contrary, in the case of separate feed streams, like in the distributed-feed
system analysed in Section 3, the feed ratios θi evaluated at the beginning of the network
are different from those in the various network branches.

We underline that the here-presented general definition of conversion implies
a paradigm change. In fact, the stoichiometric table, which represents the mass balances for
all the species involved in the system, has to be written not between the inlet and outlet of
the reactor but “between” the non-reactive and reactive cases on each l-th branch of the
network (see Table 1).

Table 1. General stoichiometric table written on the l-th branch of the network.

Stoichiometric Table on the l-th Branch of the Network

Species i Non-Reactive Case Reactive Case

A (limiting species) F∗(l)
A F(l)

A = F∗(l)
A

(
1 − x(l)A

)
...

...
...

i F∗(l)
i = F∗(l)

A θi F(l)
i = F∗(l)

A

(
θi +

νi
a x(l)A

)
...

...
...

Z F∗(l)
Z = F∗(l)

A θz F(l)
Z = F∗(l)

A

(
θZ + νZ

a x(l)A

)

It is easy to demonstrate that the general definition of conversion reported in
Equations (1) and (2) includes the definition of conversion in single reactors as well as
in the simplest reactor networks, that is, a series of reactors and reactors in parallel, as
reported in Sections 2.3.1 and 2.3.2. Figure 3 shows the general algorithm to systematically
obtain the design equations of the reactors in a network.
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2.3. Approach Validation Using Simple Reactor Networks

In this section, we report our general approach applied to the simplest reactor network,
that is, a series of reactors and reactors placed in parallel in order to show that such networks
can be seen as particular cases of more general configurations.

2.3.1. Series of Reactors in a Row

As for the series of reactors, the reference flow rate of A corresponds to the flow rate
at the beginning of the series, and as in the non-reaction case, all the flow rates entering
and exiting the reactors are equal (Figure 4).
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Using the general definition stated in Equations (1) and (2), we obtain the conversion in
the l-th branch (Equation (6)), which is found to be equivalent to the conventional expression
reported in almost all the reference textbooks on reactor design (see, e.g., [1,9–33]).

x(l)A, f ≡
F∗(l)

A, f −F(l)
A, f

F∗(l)
A, f

=
FA0−F(l)

A, f
FA0

⇓
F(l)

A, f = FA0

(
1 − x(l)A, f

) (6)

2.3.2. Reactors in Parallel

As for reactors in parallel (Figure 5), using the same procedure, we obtain the expres-
sions reported in Equation (7).

x(l)A f ≡
F∗(l)

A f −F(l)
A f

F∗(l)
A f

=
Sl FA0−F(l)

A f
Sl FA0

⇒ F(l)
A f = Sl FA0

(
1 − x(l)A f

)
xA = FA0−FA

FA0
⇒ FA = FA0(1 − xA)

(7)
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From the mass balance on the outlet mixing node, we can demonstrate that the optimal
working conditions for reactors in parallel correspond to having the same conversion in all
the outlet branches, as demonstrated by some algebraic calculations in Equations (8)–(10):

r
∑

l=1
F(l)

A f =
r
∑

l=1
Sl FA0

(
1 − x(l)A f

)
= FA = FA0(1 − xA)

r
∑

l=1
Sl

(
1 − x(l)A f

)
= (1 − xA) ⇒

r
∑

l=1
Sl
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=1

−
r
∑

l=1
Sl x

(l)
A f = (1 − xA)

(8)

r

∑
l=1

Sl x
(l)
A f = xA, max

S
xA ⇒ ∂xA

∂Sl
= 0 (9)

∂xA
∂Sl

= ∂
∂Sl

(
r
∑

l=1
Sl x

(l)
A f

)
= ∂

∂Sl

(
r−1
∑

l=1
Sl x

(l)
A f + Srx(r)A f

)
⇒

∂
∂Sl

[
r−1
∑

l=1
Sl x

(l)
A f +

(
1 −

r−1
∑

l=1
Sl

)
x(r)A f

]
= x(l)A f − x(r)A f = 0 ⇒

x(l)A f = x(r)A f

(10)

2.3.3. Adiabatic-Stage Reactors with Recycle (See Appendix A.2)

This configuration is already present in several textbooks on chemical reactor design
(see, e.g., Levenspiel, 1999 [9]) and is considered here for validation purposes. Figure 6a,b
show the scheme of a series of adiabatic-stage reactors with recycle along with the corre-
sponding scheme in the absence of reaction.
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Figure 6. (a) Scheme of adiabatic-stage rectors with recycle (the position of the exchangers can be
conveniently different based on the particular reactions considered) and (b) scheme of the generic
k-th stage with explicit mass balance (in terms of molar flow rates) in the no-reaction case.

It is pointed out that we denote as “stage” the repeating unit of the series, consisting of
a reactor along with the recycle stream. The subscript ‘f ’ indicates the outlet of the stage to
distinguish it from the outlet of reactor (i.e., the stream just before the split node). In fact,
in this type of system, it is convenient to express the design equations as functions of the
stage variables instead of those of the reactor.
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Using the aforementioned extended definition of conversion, we can express the
flow rates in the k-th branch of the reactor network as functions of conversions as follows
(Equation (11), see Equation (A6) in the Appendix A):

F(k)
A,0 = F∗(k)

A,0

(
1 − x(k)A,0

)
= (Rk + 1)F(0)

A, f

(
1 − x(k)A,0

)
F(k)

A = F∗(k)
A

(
1 − x(k)A

)
= (Rk + 1)F(0)

A, f

(
1 − x(k)A

) (11)

The mass balance on the mixing nodes leads to the following relation among inlet,
outlet and stage conversions (Equation (12), see Equation (A8) in the Appendix A):

x(k)A,0 = 1
(Rk+1) x(k−1)

A, f + Rk
(Rk+1) x(k)A, f

x(k)A = x(k)A, f

(12)

Consequently, the mass balance on the k-th PFR is obtained as follows (Equation (13)):

VRk

F(0)
A, f

= (Rk + 1)

x(k)A, f∫
1

(Rk+1) x(k−1)
A, f +

Rk
(Rk+1) x(k)A, f

dxA
(−rA)

(13)

whereas the mass balance on CSTR is (Equation (14)):

VRk

F(0)
A, f

=

(
x(k)A, f − x(k−1)

A, f

)
(
−rAk

) (14)

As for the energy balance on the mixing nodes, the final resulting inlet temperature is
found, as expected, to be a weighted average of both entering temperatures (Equation (15),
see Equation (A17) in the Appendix A):

T(k)
0 = 1

(Rk+1)

(
C̃pS+∆C̃pAx(k−1)

A, f

C̃pS+∆C̃pAx(k)A,0

)
T(k−1)

f + Rk
(Rk+1)

(
C̃pS+∆C̃pAx(k)A, f

C̃pS+∆C̃pAx(k)A,0

)
T(k)

f

T(k) = T(k)
f , ∆C̃pA ≡ ∆C̃p

a

(15)

Under the hypothesis of negligible ∆C̃pA, the following relation is obtained (Equation (16),
see Equation (A18) in the Appendix A):

T(k)
0 =

1
(Rk + 1)

T(k−1)
f +

Rk
(Rk + 1)

T(k)
f (16)

The energy balance on the k-th PFR is (Equation (17), see Equation (A21) in the
Appendix A):

dT
dV

=

(
−∆H̃r,A

)
(−rA)

F(0)
A, f (Rk + 1)

(
C̃pS + ∆C̃pAxA

) , ∆H̃r,A ≡ ∆H̃r
a

(17)

As for the energy balance on the k-th CSTR, we can express it either in terms of stage
conversions or temperatures (Equation (18), see Equation (A25) in the Appendix A):

(
x(k)A, f − x(k−1)

A, f

)
= (Rk + 1)

C̃pS

(
T(k) − T(k)

0

)
(
−∆H̃r,A

) =
C̃pS

(
T(k)

f − T(k−1)
f

)
(
−∆H̃r,A

) (18)



Processes 2024, 12, 107 9 of 39

Geometrical Interpretation of Mass Balance

In order to show the geometrical meaning of the integral form of the mass balance on
PFR (Equation (13)), we obtain the k-th recycle ratio Rk and (Rk + 1) as functions of the inlet
and outlet conversions as follows (Equation (19)):

x(k)A,0 = 1
(Rk+1) x(k−1)

A, f + Rk
(Rk+1) x(k)A, f

Rk =
x(k−1)

A, f −x(k)A,0

x(k)A,0−x(k)A, f

, Rk + 1 =
x(k−1)

A, f −x(k)A, f

x(k)A,0−x(k)A, f

(19)

Substituting Equation (19) into Equation (13), Equation (20) is obtained, which can be
interpreted geometrically as shown in Figure 7.

VRk

F(0)
A, f

=
x(k)A, f − x(k−1)

A, f

x(k)A, f − x(k)A,0

·

x(k)A, f∫
x(k)A,0

dxA
(−rA)

=
(

x(k)A, f − x(k−1)
A, f

)
· 1
(−rA)

∣∣∣∣x
(k)
A, f

x(k)A,0

(20)
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Figure 7. Sketch of the geometrical interpretation of the integral form of the design equation of PFR
for a generic k-th reactor with recycle. The red area represents the ratio of the reactor volume and the
flow rate of the limiting reactant A in that branch in the absence of reaction.

As already demonstrated in several reference books for a single reactor (see, e.g.,
ref. [9]), the V/FA0 ratio is found to be the product of the inlet–outlet conversion difference
and the mean value of the reaction rate inverse calculated between inlet and outlet. It can
also be noted that, in the limit value of Rk = 0, we obtain the usual design equation of PFR,
whereas, for Rk → ∞, the k-th reactor behaves as a perfectly mixed CSTR.

3. Application to Other Case Studies of Interest

To describe the systematic procedure for achieving the design equations for a reactor
network, in the following sub-sections, we report the following three cases of a particular
interest in chemical engineering, from which other possible and more complex cases can be
constructed and analysed if required:
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1. Adiabatic-Stage Reactors with Split;
2. Adiabatic-Stage Reactors Intercooled/Interheated by Reactants;
3. Adiabatic-Stage Reactors with Distributed Interstage Feed.

The main assumptions of the presented systematic procedure, along with the details
of the intermediate calculation steps, are reported in the Appendix A.

3.1. Adiabatic-Stage Reactors with Split (See Appendix A.3)

The system considered here is similar to the previous one, with the important differ-
ence that now, in each stage, a partial split of feed is included in the inlet stream instead of
a partial recycle of the outlet stream (Figure 8).
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Figure 8. (a) Scheme of adiabatic-stage reactors with split and (b) scheme of the generic k-th stage
with explicit mass balance (in terms of molar flow rates) in the no-reaction case.

The mass balance on the mixing nodes after the reactor is stated by the following
relation among stage conversions (Equation (21), see Equation (A28) in the Appendix A):

x(k)A =
1

1 − Sk
x(k)A, f −

Sk
1 − Sk

x(k−1)
A, f (21)

The mass balance on the k-th PFR, expressed in terms of stage conversions, is obtained
as follows (Equation (22), see Equation (A31) in the Appendix A):

VRk

F(0)
A, f

= (1 − Sk)

1
1−Sk

x(k)A, f −
Sk

1−Sk
x(k−1)

A, f∫
x(k−1)

A, f

dxA
(−rA)

(22)

whereas the mass balance on the k-th CSTR can be obtained in the following two forms
(Equation (23), see Equations (A34) in the Appendix A):

VRk

F(0)
A, f

= (1 − Sk)

(
x(k)A − x(k)A,0

)
(
−rAk

) =

(
x(k)A, f − x(k−1)

A, f

)
(
−rAk

) (23)

As for the energy balance on the mixing nodes, it can be expressed as follows
(Equation (24), see Equation (A36) in the Appendix A):

T(k) =

(
C̃pS + ∆C̃pAx(k)A, f

)
T(k)

f − Sk

(
C̃pS + ∆C̃pAx(k−1)

A, f

)
T(k−1)

f[(
C̃pS + ∆C̃pAx(k)A, f

)
− Sk

(
C̃pS + ∆C̃pAx(k−1)

A, f

)] (24)
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In the hypothesis of negligible ∆C̃p, we obtain Equation (25) (see Equation (A37) in
the Appendix A):

T(k) =
1

(1 − Sk)
T(k)

f − Sk
(1 − Sk)

T(k−1)
f (25)

In combination with Equation (21), Equation (25) states the linearity of the working
points of the streams at the mixing node in a {xA vs. T} plane.

The differential form of the energy balance on the k-th PFR is obtained as follows
(Equation (26), see Equation (A39) in the Appendix A):

dT
dV

=

(
−∆H̃r,A

)
(−rA)

F(0)
A, f (1 − Sk)

(
C̃pS +

∆C̃p
a xA

) (26)

whereas the energy balance on the k-th CSTR is (Equation (27), see Equations (A43) and (A44)
in the Appendix A): (

x(k)A, f − x(k−1)
A, f

)
=

C̃pS

(
T(k)

f − T(k−1)
f

)
(
−∆H̃r,A

) (27)

Geometrical Interpretation of Mass Balance

In order to show the geometrical meaning of the integral form of the mass balance
on PFR (Equation (22)), we obtain the k-th split ratio and its complement to the unity as
functions of the inlet and outlet conversions (Equation (28)):

x(k)A, f = (1 − Sk)x(k)A + Skx(k−1)
A, f

Sk =
x(k)A −x(k)A, f

x(k)A −x(k−1)
A, f

, (1 − Sk) =
x(k)A, f −x(k−1)

A, f

x(k)A −x(k−1)
A, f

(28)

Substituting Equation (28) into Equation (22), Equation (29) is obtained, which can be
interpreted geometrically as shown in Figure 9.

VRk

F(0)
A, f

=
x(k)A, f − x(k−1)

A, f

x(k)A − x(k−1)
A, f

·
x(k)A∫

x(k−1)
A, f

dxA
(−rA)

=
(

x(k)A, f − x(k−1)
A, f

)
· 1
(−rA)

∣∣∣∣x
(k)
A

x(k−1)
A, f

(29)

In particular, analogously to what was seen for the reactors with recycle, in this case,
the V/FA0 ratio is found to be the product of the inlet–outlet conversion difference and the
mean value of the reaction rate inverse calculated between the inlet and outlet conversion.
It can also be noted that in the limit value of Sk = 0, we obtain the usual design equation of
PFR, whereas for Sk = 1, there is a complete bypass of the reactor, which implies no reaction
in the k-th reactor.

3.2. Adiabatic-Stage Reactors Intercooled/Interheated by Reactants (See Appendix A.4)

The third reactor network considered is a series of adiabatic reactors in which part of
the feed of each reactor is split forward into the feed of the next one (Figure 10), with the
main purpose of cooling down (for exothermic reactions) or heating up (for endothermic
ones) the reactor inlet, thus pushing forward the thermodynamic equilibrium.
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Figure 9. Sketch of the geometrical interpretation of the integral form of the design equation of the
generic k-th PFR with split. The red area represents the ratio of the reactor volume and the flow rate
of the limiting reactant A in that branch in the absence of reaction.
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Figure 10. (a) Scheme of a series of adiabatic-stage reactors intercooled/interheated by reactants
(example of three reactors) and (b) corresponding scheme of network with explicit mass balance (in
terms of molar flow rates) in the no-reaction case.

The mass balance on the (k − 1)-th mixing node is obtained as follows (Equation (30),
see Equation (A48) in the Appendix A):

x(k)A,0 =

k−1
∑

h=1
Sh

k
∑

h=1
Sh

x(k−1)
A ⇒ x(k)A,0

∣∣∣
Sk=S

=
k − 1

k
x(k−1)

A (30)

It can be noted that, in the case of equal split ratios, the inlet conversion is not
a function of the split ratio itself but just of the number of splits. The mass balance
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on the k-th PFR is obtained as follows (Equation (31), see Equations (A51) and (A52) in the
Appendix A):

VRk

F(0)
A

=

(
k
∑

h=1
Sh

)
·

x(k)A∫
x(k)A,0=

k−1
∑

h=1
Sh

k
∑

h=1
Sh

x(k−1)
A

dxA
(−rA)

VRk

F(0)
A

∣∣∣∣
Sk=S

= kS ·
x(k)A∫

x(k)A,0=
k−1

k x(k−1)
A

dxA
(−rA)k

(31)

The total volume of the series is the sum of all reactor volumes or the series, as reported
in Equation (32):

VRT

F(0)
A

=
r

∑
k=1

VRk

F(0)
A

=
r

∑
k=1

kS ·
x(k)A∫

x(k)A,0=
k−1

k x(k−1)
A

dxA
(−rA)

 (32)

The mass balance on the k-th CSTR is reported in Equation (33) (see Equation (A55) in
the Appendix A):

VRk

F(0)
A

=

[(
k
∑

h=1
Sh

)
x(k)A −

(
k−1
∑

h=1
Sh

)
x(k−1)

A

]
(−rA)|Rk

VRk

F(0)
A

∣∣∣∣
Sk=S

= S

[
kx(k)A −(k−1)x(k−1)

A

]
(−rA)|Rk

(33)

As for the energy balance on the mixing nodes, we obtain the following relations
among temperatures (Equation (34), see Equation (A59) in the Appendix A):

T(k)
0 =

(
k−1
∑

h=1
Sh

)[
C̃pS + x(k−1)

A ∆C̃pA

]
(

k
∑

h=1
Sh

)[
C̃pS + x(k)A,0∆C̃pA

] T(k−1) +
SkC̃pS(

k
∑

h=1
Sh

)[
C̃pS + x(k)A,0∆C̃pA

]T(0) (34)

Under the hypothesis of constant enthalpy of reaction (∆C̃pA ≈ 0), the following
simplified expressions are obtained (Equation (35), see Equation (A60) in the Appendix A):

T(k)
0 =

(
k−1
∑

h=1
Sh

)
(

k
∑

h=1
Sh

)T(k−1) + Sk(
k
∑

h=1
Sh

)T(0)

T(k)
0

∣∣∣
Sk=S

= k−1
k T(k−1) + 1

k T(0)

(35)

Taking into account the expression previously reported for the conversion in Equation (30),
we can observe a linear functionality between conversion and temperature on the mixing
nodes. However, it is stressed that such a linearity holds only if the enthalpy of the reaction
can be considered constant.
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As for the energy balance on the k-th PFR, it assumes the following form (Equation (36),
see Equation (A62) in the Appendix A):

dT
dV =

(−∆H̃r,A)(−rA)(
k
∑

h=1
Sh

)
F(0)

A (C̃pS+∆C̃pAxA)

T(Vk = 0) = T(k)
0

(36)

which becomes Equation (37) in the case of an equal split ratio (see Equation (A63) in the
Appendix A): 

dT
dV

∣∣∣
Sk=S

=
(−∆H̃r,A)(−rA)

kS F(0)
A (C̃pS+∆C̃pAxA)

T(Vk = 0) = T(k)
0

(37)

The energy balance on the k-th CSTR (Equation (38), see Equations (A64) and (A65) in
the Appendix A):

x(k)A =
C̃ps

∆H̃0
r,A
(
T(k)

)(T(k)
0 − T(k)

)
+

∆H̃0
r,A

(
T(k)

0

)
∆H̃0

r,A
(
T(k)

) x(k)A,0 (38)

In the case of constant enthalpy of reaction, Equation (38) can be simplified as follows
(Equation (39), see Equation (A66) in the Appendix A):

[
x(k)A,0 − x(k)A

]
=

C̃ps

−∆H̃r,A

(
T(k)

0 − T(k)
)

(39)

where the expressions previously obtained for x(k)A,0 and T(k)
0 can be used to express the

energy balance in terms of just outlet parameters, that is, x(k)A , T(k), x(k−1)
A and T(k−1).

3.3. Adiabatic-Stage Reactors with Distributed Interstage Feed (See Appendix A.5)

The last system considered in this analysis is depicted in Figure 11a. In particular, it
involves the distributed feed of one component along a series of adiabatic reactors, with
insertion in a mixing node located between two consecutive reactors. Such an interstage
distributed feed can be used, for example, when the reaction rate is favoured by a low
concentration of reactants and/or in the case of highly exothermic/endothermic reactions,
for better and more efficient temperature control.

It must be highlighted that, in principle, the distributed stream, which we have
considered here to be composed of a single species, can actually be composed of more than
one species. However, the design equations related to the latter case can be easily obtained
as a straightforward extension of the former one.

The scheme with the mass balance in the absence of reaction is reported as usual
to express the flow rates as functions of conversion (Figure 11b). To obtain the design
equations for this system, we suppose that species A is the key limiting species and the
other reactants are in excess. Therefore, the feed of species A is distributed along the series
at the mixing nodes placed between the inlet and outlet of two consecutive reactors.

The mass balance on the k-th mixing node is obtained as follows (Equation (40), see
Equations (A69) in the Appendix A):

x(k)A,0 =

k−1
∑

h=1
Sh

k
∑

h=1
Sh

x(k−1)
A =

k − 1
k

x(k−1)
A

∣∣∣∣
Sk=S

(40)



Processes 2024, 12, 107 15 of 39

Processes 2024, 12, x FOR PEER REVIEW 15 of 46 
 

 

( )
( )( )

( ) ( )( )
( )( )
( )( )

( )
Δ

= − +
Δ Δ


 

0, 0A 0 A,00 0, ,
k

r Ak k k ks
k k

r A r A

H TCpx T T x
H T H T

 (38)

In the case of constant enthalpy of reaction, Equation (38) can be simplified as follows 
(Equation (39), see Equation (A66) in the Appendix): 

( ) ( ) ( ) ( )( )A,0 A 0,k k k ks

r A

Cpx x T T
H

 − = −  −Δ


   (39)

where the expressions previously obtained for 𝑥 ,  and 𝑇  can be used to express the 
energy balance in terms of just outlet parameters, that is, 𝑥 , 𝑇 , 𝑥  and 𝑇 . 

3.3. Adiabatic-Stage Reactors with Distributed Interstage Feed (See Appendix A.5) 
The last system considered in this analysis is depicted in Figure 11a. In particular, it 

involves the distributed feed of one component along a series of adiabatic reactors, with 
insertion in a mixing node located between two consecutive reactors. Such an interstage 
distributed feed can be used, for example, when the reaction rate is favoured by a low 
concentration of reactants and/or in the case of highly exothermic/endothermic reactions, 
for better and more efficient temperature control. 

 
Figure 11. (a) Scheme of a series of adiabatic-stage reactors (example of three reactors) with the feed 
of one species distributed between two consecutive reactors and (b) corresponding scheme of net-
work with explicit mass balance (in terms of molar flow rates) in the no-reaction case. 

It must be highlighted that, in principle, the distributed stream, which we have con-
sidered here to be composed of a single species, can actually be composed of more than 
one species. However, the design equations related to the latter case can be easily obtained 
as a straightforward extension of the former one. 

The scheme with the mass balance in the absence of reaction is reported as usual to 
express the flow rates as functions of conversion (Figure 11b). To obtain the design equa-
tions for this system, we suppose that species A is the key limiting species and the other 
reactants are in excess. Therefore, the feed of species A is distributed along the series at 
the mixing nodes placed between the inlet and outlet of two consecutive reactors. 

The mass balance on the k-th mixing node is obtained as follows (Equation (40), see 
Equations (A69) in the Appendix): 

1VR 2VR( )1Fi
( )0FA

( )2,0Fi ( )2Fi ( )3,0Fi ( )3Fi( )0Fi A≠

( )1,FA S ( )2,FA S ( )3,FA S
( )1,0Fi

( )0TA

( )0Ti A≠

( )10T
( )0TA

( )0TA
( )0TA

( )1T ( )20T ( )2T ( )30T ( )3T3VR
( ) ( )0,F k
A S k AS F=

1VR 2VR
( )0FA
( )0Fi A≠

( )01 AS F

( ) ( )0 01F Fi A AS≠ +

( )02 AS F ( )03 AS F

1 1r

k
k
S

=
=

(a)

(b)

REACTION CASE

MASS BALANCES IN NO-REACTION CASE

( ) ( )0 01F Fi A AS≠ + ( ) ( )
≠

=
+ 

20 0 1F Fi A A h
h
S ( ) ( )0 0F Fi A A≠ + 3VR

Figure 11. (a) Scheme of a series of adiabatic-stage reactors (example of three reactors) with the
feed of one species distributed between two consecutive reactors and (b) corresponding scheme of
network with explicit mass balance (in terms of molar flow rates) in the no-reaction case.

In Equation (40), we also report the particular case in which all the split ratios are
the same, where it can be observed that the inlet conversion of the k-th reactor depends
on the number of splits as well as on the conversion exiting the preceding reactor. All
these expressions are needed to obtain the design equations for PFR and CSTR in terms
of conversion.

As for the mass balance of the generic species i ̸= A, which is required for the energy
balance (see next sub-section), we first need to write down the molar flow rate of the generic
species as a function of conversion, recalling the definition of the feed ratio θ

(l)
i on the l-th

branch of the network in the absence of reaction and its relation with the feed ratio θi at the
beginning of the network (Equation (41)):

θ
(l)
i ≡ F∗(l)

i

F∗(l)
A

, θi ≡
F∗(0)

i

F∗(0)
A

=
F(0)

i

F(0)
A

F(l)
i = F∗(l)

A

[
θ
(l)
i + νi

a x(l)A

]
, F(l)

A = F∗(l)
A

(
1 − x(l)A

) (41)

In fact, in this particular network configuration, the quantities θi are different from θ
(k)
i ,

since the ratio between the generic species i and the limiting species A in the absence of
reaction is not the same in all network branches because of the partial insertion of the initial
split flow rate in each reactor inlet stream.

As we wish to work with the quantities θi instead of θ
(k)
i because they are known and

fixed at the inlet of the network, we can express such a relation starting directly from their
respective definitions (Equation (42)):

θ
(k)
i =

F∗(k)
i

F∗(k)
A

=


1, i = A

F∗(0)
A θi

F∗(0)
A

k
∑

h=1
Sh

=
θi

k
∑

h=1
Sh

, i ̸= A

F∗(k)
i ̸=A = θ

(k)
i ̸=AF∗(k)

A =
θi ̸=A
k
∑

h=1
Sh

F∗(k)
A

(42)
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Therefore, by writing down the mass balance at the mixing nodes for a generic species
i different from the limiting one A, we obtain Equation (43), in which we remind that the
species is are not contained in the split branches Fk

A,S:

F(0)
i ̸=A = F(1)

i ̸=A,0

F(1)
i ̸=A = F(2)

i ̸=A,0
. . .
F(k−1)

i ̸=A = F(k)
i ̸=A,0

(43)

To prove the consistency of the definitions used in Equation (41), we express Equation (43)
in terms of conversion, expecting to reach the same expressions as those previously obtained
in Equation (40). The result of this checking is reported in Equations (44) and (45), which
just state the full consistency of the expression reported above.

0 = 0 (Mix node 1, trivial : no conversion yet)
F∗(1)

A

[
θ
(1)
i ̸=A + νi

a x(1)A

]
= F∗(2)

A,0

[
θ
(2)
i ̸=A,0 +

νi
a x(2)A,0

]
. . .
F∗(k−1)

A

[
θ
(k−1)
i ̸=A + νi

a x(k−1)
A

]
= F∗(k)

A

[
θ
(k)
i ̸=A,0 +

νi
a x(k)A,0

]
θ
(k−1)
i ̸=A =

θi ̸=A
k−1
∑

h=1
Sh

, θ
(k)
i ̸=A,0 =

θi ̸=A
k
∑

h=1
Sh

F∗(k−1)
A = F(0)

A

k−1
∑

h=1
Sh, F∗(k)

A,0 = F(0)
A

k
∑

h=1
Sh

(44)

F(0)
A

k−1
∑

h=1
Sh

 θi ̸=A
k−1
∑

h=1
Sh

+ νi
a x(k−1)

A

 = F(0)
A

k
∑

h=1
Sh

 θi ̸=A
k
∑

h=1
Sh

+ νi
a x(k)A,0


[

θi ̸=A +
k−1
∑

h=1
Sh

νi
a x(k−1)

A

]
=

[
θi ̸=A +

k
∑

h=1
Sh

νi
a x(k)A,0

]

x(k)A,0 =

k−1
∑

h=1
Sh

k
∑

h=1
Sh

x(k−1)
A

(45)

As for the mass balance on the k-th PFR, it is reported in Equation (46) for both variable
and equal split ratios (see Equations (A72) and (A73) in the Appendix A):

VRk

F(0)
A

=

(
k
∑

h=1
Sh

) x(k)A∫
k−1

∑
h=1

Sh

k
∑

h=1
Sh

x(k−1)
A

dxA
(−rA)Rk

VRk

F(0)
A

∣∣∣∣
Sk=S

= kS
x(k)A∫

k−1
k x(k−1)

A

dxA
(−rA)Rk

(46)

The mass balance on the k-th CSTR can be written as follows (Equation (47), see
Equations (A76) and (A77) in the Appendix A):

VRk

F(0)
A

=

(
k
∑

h=1
Sh

)
x(k)A −

(
k−1
∑

h=1
Sh

)
x(k−1)

A

(−rA)k
,

r
∑

k=1
Sk = 1

VRk

F(0)
A

∣∣∣∣
Sk=S

= S

[
kx(k)A −(k−1)x(k−1)

A

]
(−rA)k

,
r
∑

k=1
S = rS = 1

(47)
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The energy balance on the k-th mixing node is obtained as follows (Equation (48), see
Equation (A85) in the Appendix A):

T(k)
0 = w1

w1+w2
T(k−1) + w2

w1+w2
T(0)

w1 ≡
[(

k−1
∑

h=1
Sh

)
C̃pA +

n
∑

i=2
θiC̃pi +

(
k−1
∑

h=1
Sh

)
∆C̃pAx(k−1)

A

]
w2 ≡ SkC̃pA

(48)

If ∼ C̃pA is negligible, we obtain Equation (49) (see Equation (A86) in the Appendix A):

T(k)
0

∼= w1
w1+w2

T(k−1) + w2
w1+w2

T(0)

w1 ≡
[(

k−1
∑

h=1
Sh

)
C̃pA +

n
∑

i=2
θiC̃pi

]
w2 ≡ SkC̃pA

(49)

For equal split ratios, we obtain the following expression (Equation (A50), see Equation
(A87) in the Appendix A):

T(k)
0

∣∣∣
Sk=S

=

[
(k − 1)SC̃pA +

n
∑

i=2
θiC̃pi

]
T(k−1) + SC̃pAT(0)[

(k − 1)SC̃pA +
n
∑

i=2
θiC̃pi + SC̃pA

] (50)

The energy balance on the k-th PFR is obtained as follows (Equation (51), see Equation (A92)
in the Appendix A):
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( )
= =
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k k
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h h
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=
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   + Δ = −Δ  
  
 







  

Reaction Contribution
,1

Thermal ReactionNon-linearcontribution Contribucontributionof the feed
,Standalone PFR: 

k
A

h r A
h

S A A r A

dxT S H
dV dV

dTCp x Cp H
dV

tion Adx
dV

  (51)

(
C̃pS − C̃pA

)
Contribution
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other than A

+
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Sh
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(51)

In particular, in Equation (51), the energy balance of the standalone PFR is also reported
for comparison in order to highlight analogies and differences. As for the analogies, the
structure of the equations is similar, with the presence of terms identifying the thermal
contribution of the feed, the non-linear contribution, and the reaction contribution to the
overall thermic extent of the system.

As for the differences, analysing the thermal contribution of the feed, it is clear the
split of this contribution into two parts, respectively related to (1) the reactants fed in an
all-in-one mode and (2) the part of the key-species (A) that is fed in a distributed way along
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the reactors series up to the k-th reactor. That is the reason why the overall contribution of
species A is lower than in the standalone case.

We can make an analogous consideration for the non-linear contribution and for
the reaction contribution, which are both lowered by the fraction of species A fed up to
that reactor.

As for the energy balance on the k-th CSTR of the series, it is obtained as follows
(Equation (52), see Equation (A96) in the Appendix A):[(

C̃ps − C̃pA

)
+

(
k
∑

h=1
Sh

)
C̃pA

](
T(k)

0 − T(k)
)

+

(
k
∑

h=1
Sh

)[
x(k)A,0∆H̃r,A

(
T(k)

0

)
− x(k)A ∆H̃r,A

(
T(k)

)]
= 0

(52)

If the enthalpy of reaction can be considered constant, the previous expression is
simplified as follows (Equation (53), see Equation (A100) in the Appendix A):

(
k
∑

h=1
Sh

)[
x(k)A − x(k−1)

A

]
+ Sk

x(k−1)
A − x(0)A
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2.3.3. Adiabatic-Stage Reactors with Recycle (See Appendix A.2) 
This configuration is already present in several textbooks on chemical reactor design 

(see, e.g., Levenspiel, 1999 [9]) and is considered here for validation purposes. Figure 6a,b 
show the scheme of a series of adiabatic-stage reactors with recycle along with the corre-
sponding scheme in the absence of reaction. 

It is pointed out that we denote as “stage” the repeating unit of the series, consisting 
of a reactor along with the recycle stream. The subscript ‘f’ indicates the outlet of the stage 
to distinguish it from the outlet of reactor (i.e., the stream just before the split node). In 
fact, in this type of system, it is convenient to express the design equations as functions of 
the stage variables instead of those of the reactor. 

=0


=

(
k
∑

h=1
Sh
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C̃pA+(C̃ps−C̃pA)

(−∆H̃r,A)

(
T(k) − T(k−1)

)
+ SkC̃pA

(−∆H̃r,A)

(
T(k−1) − T(0)

)
(53)

where it is also reported as the initial (null) conversion to highlight the analogy between
conversion and temperature differences.

Figure 12 shows a numerical example of the calculation of the intermediate inlet
conversions of the three reactors in the scheme. As input data, we consider certain values
of conversions at the reactor’s outlet and the split ratios as known, calculating the corre-
sponding missing conversion data from setting and solving the mass balances at the mixing
nodes written in terms of conversion.
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Figure 12. Example of application of the presented approach in terms of calculation of inlet conver-
sions to reactors.

Overall, we highlight that, for an infinite number of infinitesimal reactors—composed
of either PFRs or CSTRs—this system in fact coincides with a reactor that in the literature is
referred to as Differential Sidestream Reactors (DSR) [3], which is of practical importance in
a number of applications of interest, especially in the pharmaceutical industry.
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4. Conclusions

In this work, a novel systematic way to obtain the design equations (heat and mass
balances) of networks of ideal reactors (PFRs and CSTRs) was presented. For this purpose,
a general definition of reaction degree and conversion was provided, considering, after
validation with well-known reactor systems, several case studies of real systems of interest
in chemical engineering as examples of application: (a) adiabatic-stage split reactors,
(b) adiabatic-stage reactors intercooled by reactants and (c) adiabatic-stage reactors with
interstage distributed feed. The methodology illustrated in this work also allows one to
combine different types of reactors in the same network, widening the generality of the
presented approach.

Funding: This work received funding from the “Ministero dell’Università e della Ricerca” through
the Project PRIN 2022 PNRR: “Innovative Multifunctional Electrolyzer-integrated CO-generative
MEmbrane Reactor for methanol production from bio-syngas (MECOMER)”, Codes: P2022K2449,
CUP MASTER: F53D23009730001 and CUP UNIT: H53D23008570001. This project is funded by the Eu-
ropean Union through the programme: “Next Generation EU, componente M4C2, investimento 1.1”.
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Abbreviations

C̃p Specific heat, J mol−1 K−1

F Flow rate, mol s−1

H Molar enthalpy, J mol−1 K−1

{n, m, r, b} Number of: {species, reactions, reactors, network branches}
rA Reaction rate (of the key-species A), mol s−1 m−3

Rk Recycle ratio (at the k-th reactors)
Sk Split ratio (at the k-th reactors)
T Temperature, K
V Volume, m3

xA Conversion (of the key-species)
Greek Symbols
θi Feed ratio, moli molA−1

νij Stoichiometric coefficients
ξj Reaction extent for the jth reaction
Subscripts/Superscripts
‘f’ Final (with respect to a stage with recycle or split)
{i, j, k, l} Indices for: {species, reactions, reactors, network branches}
‘r’ Reaction (enthalpy of) or number of reactors
‘r, A’ Reaction enthalpy expressed per mole of A consumed
‘ref’ Reference (temperature)
‘S’ Summation (referred to specific heat)
‘*’ Refers to the network in the absence of a reaction
‘0

′
Reference state (enthalpy)

‘IG’ Ideal gas
‘Res’ Residual quantity (with respect to the ideal-gas state)
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Appendix A. Detailed Development of Design Equations

Appendix A.1. Enthalpy and Flow Rate Expressions

In general, the enthalpy rate of the i-th species in the l-th branch of the network can be
written in molar form as follows (Equation (A1)):

F(l)
i H̃(l)

i =


Enthalpy Rate of
i−th Species on
the l−th Branch

 (A1)

By neglecting any possible mixing enthalpy, which is usually negligible in chemical
reactors, the enthalpy rate of the i-th species can be expressed as a function of pressure and
temperature as (Equation (A2)):

H̃i(T, P) =


H̃ IG

i (T), Ideal Gas
H̃ IG

i (T) + ∆H̃Res
i (T, P), Real Gas

H̃L
i (T), Liquid

H̃ IG
i (T) = ∆H̃ IG

f ,i

(
Tre f

)
+ C̃pIG

i

(
T − Tre f

)
≡ ∆H̃0,IG

i + C̃pIG
i

(
T − Tre f

)
H̃L

i (T) = ∆H̃L
f ,i

(
Tre f

)
+ C̃pL

i

(
T − Tre f

)
≡ ∆H̃0,L

i + C̃pL
i

(
T − Tre f

)
∆H̃Res

i (T, P) ⇐ Equation of State for Real Gases

(A2)

where we suppose that all specific heats are constant with temperature within the tem-
perature range considered. Should such a hypothesis become too strong—and this occurs
typically for highly exothermic/endothermic reactions in the gas phase—we would need
to evaluate the integral of specific heats using, for example, temperature-dependent poly-
nomial forms.

Provided that, neglecting also the non-ideal contribution for the real gases (which
anyway is usually small unless working at relatively high pressure), the enthalpy of the
i-th species in the l-th branch of the network can be expressed as (Equation (A3)):

H̃(l)
i =

[
∆H̃0

f ,i + C̃pi

(
T(l) − Tre f

)]
(A3)

where ∆H̃0
f ,i and Tref are the standard enthalpy of formation and the corresponding refer-

ence temperature (usually 298.15 K), respectively.
According to the extended definition of conversion reported in Equations (1) and (2),

the flow rate of the i-th species is expressed in terms of conversion as follows (Equation (A4)):

F(l)
i = F∗(l)

A

(
θi +

νi
a

x(l)A

)
(A4)

where F∗(l)
A is the flow rate of the limiting reactant (i.e., the key-species) in the l-th branch

of the network in the absence of a reaction. Therefore, combining the previous expressions,
we obtain Equation (A5):

F(l)
i H̃(l)

i = F∗(l)
A

(
θi +

νi
a

x(l)A

)[
∆H̃0

i + C̃pi

(
T − Tre f

)]
(A5)

Equation (A5) is the expression of the enthalpy rate that will be used to obtain the
design equations for all the cases considered in this work, given that it can also be used to
develop the design equations for other systems.
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Appendix A.2. Adiabatic-Stage Reactors with Recycle

Appendix A.2.1. Mass Balances

Mass Balance on the Mixing Nodes

The flow rates in the k-th branch of the reactor network can be expressed as functions of
the conversion and of the respective no-reaction flow rates in that branch (Equation (A6)):

F(k)
A,0 = F∗(k)

A,0

(
1 − x(k)A,0

)
= (Rk + 1)F(0)

A, f

(
1 − x(k)A,0

)
F(k)

A = F∗(k)
A

(
1 − x(k)A

)
= (Rk + 1)F(0)

A, f

(
1 − x(k)A

) (A6)

To obtain the design equations in canonical form, beside the mass and energy balances
on the reactors, it is also necessary to make balances on the mixing node. This holds not
only for this type of reactor network but also for other ones, some of which are reported
in the present work. Specifically for this case, the mass balance in the mixing node can be
expressed as follows (Equation (A7)):

F(k−1)
A, f + RkF(k)

A, f = F(k)
A,0

F(0)
A, f

(
1 − x(k−1)

A, f

)
+ RkF(0)

A, f

(
1 − x(k)A, f

)
= (Rk + 1)F(0)

A, f

(
1 − x(k)A,0

) (A7)

Equation (A7) leads to expressing the conversion at the reactor inlet as a function of
the conversion at the reactor outlet, which coincides with that at the outlet of the stage
(Equation (A8)):

x(k)A,0 =
1

(Rk + 1)
x(k−1)

A, f +
Rk

(Rk + 1)
x(k)A, f (A8)

It is useful to show that, if we write Equation (A7) for a generic species of the stream
(reported in Equation (A9)), we obtain the same expression as that reported in Equation (A8):

F(k−1)
i, f + RkF(k)

i, f = F(k)
i,0

F(k−1)
i, f = F∗(k−1)

A, f

(
θi +

νi
a x(k−1)

A, f

)
= F(0)

A, f

(
θi +

νi
a x(k−1)

A, f

)
F(k)

i, f = F∗(k)
A, f

(
θi +

νi
a x(k)A, f

)
= F(0)

A, f

(
θi +

νi
a x(k)A, f

)
F(k)

i,0 = F∗(k)
A,0

(
θi +

νi
a x(k)A,0

)
= (Rk + 1)F(0)

A, f

(
θi +

νi
a x(k−1)

A, f

)
⇓

F(0)
A, f

(
θi +

νi
a x(k−1)

A, f

)
+ RkF(0)

A, f

(
θi +

νi
a x(k)A, f

)
= (Rk + 1)F(0)

A, f

(
θi +

νi
a x(k)A,0

)(
θi +

νi
a x(k−1)

A, f

)
+
(

θi +
νi
a x(k)A, f

)
= (Rk + 1)

(
θi +

νi
a x(k)A,0

)
⇓

x(k)A,0 = 1
(Rk+1) x(k−1)

A, f + Rk
(Rk+1) x(k)A, f

(A9)

This occurrence indicates once more the self-consistency of the so-extended definition
of conversion.

Mass Balance on PFR

The general design equation for the generic k-th PFR, expressed in terms of the key-
species A, mostly taken as the limiting reactant, is (Equation (A10)):

dFA
dV

= rA (A10)
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which can be expressed in terms of conversion as follows (Equations (A11)):

(Rk + 1)F(0)
A, f

dxA
dV = (−rA)

(Rk + 1)
x(k)A∫

x(k)A,0

dxA
(−rA)

=
VRk

F(0)
A, f

(A11)

The final expression of the PFR design equation, obtained by replacing the inlet “local”
conversions x(k)A0 and x(k)A with its expression in terms of stage conversions x(k−1)

A, f and x(k)A, f ,
is (Equation (A12)):

VRk

F(0)
A, f

= (Rk + 1)

x(k)A, f∫
1

(Rk+1) x(k−1)
A, f +

Rk
(Rk+1) x(k)A, f

dxA
(−rA)

(A12)

Mass Balance on CSTR

As for CSTR, the mass balance can be written as follows (Equation (A13)):

F(k)
A,0 − F(k)

A + rAk VRk = 0 (A13)

In terms of conversion, we have the following (Equations (A33) and (A34)):

(Rk + 1)F(0)
A, f

(
1 − x(k)A,0

)
− (Rk + 1)F(0)

A, f

(
1 − x(k)A

)
+ rAk VRk = 0 (A14)

VRk

F(0)
A, f

= (Rk + 1)

(
x(k)A −x(k)A.0

)
(
−rAk

)
VRk

F(0)
A, f

=

(
x(k)A, f −x(k−1)

A, f

)
(
−rAk

) (A15)

Appendix A.2.2. Energy Balances

Energy Balance on the Mixing Nodes

The energy balance on the mixing nodes of the generic k-th stage is stated in
Equation (A16):

n
∑

i=1
F(k−1)

i, f H̃i

(
T(k−1)

f

)
+

n
∑

i=1
F(k)

i,R H̃i

(
T(k)

R

)
=

n
∑

i=1
F(k)

i,0 H̃i

(
T(k)

0

)
F(0)

A, f

(
θi +

νi
a x(k−1)

A, f

)
+ RkF(0)

A, f

(
θi +

νi
a x(k)A, f

)
= (Rk + 1)F(0)

A, f

(
θi +

νi
a x(k)A,0

)
F(0)

A, f

n
∑

i=1

(
θi +

νi
a x(k−1)

A, f

)[
∆H̃0

i + C̃pi

(
T(k−1)

f − Tre f

)]
+RkF(0)

A, f

n
∑

i=1

(
θi +

νi
a x(k)A, f

)[
∆H̃0

i + C̃pi

(
T(k)

R − Tre f

)]
= (Rk + 1)F(0)

A, f

n
∑

i=1

(
θi +

νi
a x(k)A,0

)[
∆H̃0

i + C̃pi

(
T(k)

0 − Tre f

)]
C̃pST(k−1)

f + x(k−1)
A, f

[
∆H̃0

r,A + ∆C̃pA

(
T(k−1)

f − Tre f

)]
+Rk

[
C̃pST(k)

R + x(k)A, f

[
∆H̃0

r,A + ∆C̃pA

(
T(k)

R − Tre f

)]]
= (Rk + 1)

[
C̃pST(k)

0 + x(k)A,0

[
∆H̃0

r,A + ∆C̃pA

(
T(k)

0 − Tre f

)]]

(A16)
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Inserting Equation (A8) into the last of Equation (A16), the exiting temperature T(k)
0 fi-

nally results in a weighted average of the temperatures of the entering streams
(Equation (A17)):

T(k)
0 = 1

(Rk+1)

(
C̃pS+∆C̃pAx(k−1)

A, f

C̃pS+∆C̃pAx(k)A,0

)
T(k−1)

f + Rk
(Rk+1)

(
C̃pS+∆C̃pAx(k)A, f

C̃pS+∆C̃pAx(k)A,0

)
T(k)

f

T(k) = T(k)
f

(A17)

In the particular case in which ∆C̃pA can be neglected with respect to C̃pS (conversion
is always lower than unity), Equation (A17) is simplified as follows (Equation (A18)):

T(k)
0 =

1
(Rk + 1)

T(k−1)
f +

Rk
(Rk + 1)

T(k)
f (A18)

which have the same form as the previously obtained one for conversion (Equation (A8)).
This confirms that in a {xA vs. T} plot, the working points of the three streams of a mixing
node are connected by a straight line.

Energy Balance on PFR

The energy balance for a PFR is expressed as follows (Equation (A19)):

d
dV

(
n

∑
i=1

Fi H̃i

)
= 0 (A19)

which leads to Equation (A20) if expressing it in terms of conversion:

d
dV

(
n
∑

i=1

[
(Rk + 1)F(0)

A, f
(
θi +

νi
a xA

)][
∆H̃0

i + C̃pi

(
T − Tre f

)])
= 0

d
dV

(
n
∑

i=1

(
θi +

νi
a xA

)[
∆H̃0

i + C̃pi

(
T − Tre f

)])
= 0

d
dV

([
C̃pS

(
T − Tre f

)
+ ∆H̃0

r,AxA + ∆C̃pAxA

(
T − Tre f

)])
= 0

(
C̃pS + ∆C̃pAxA

)
dT
dV =

(
−∆H̃r,A

)
dxA
dV

dT
dV =

(−∆H̃r,A)
dxA
dV

(C̃pS+∆C̃pAxA)

(A20)

Inserting the mass balance (Equations (A11)) into Equation (A20), we finally obtain
a canonical form of the energy balance for an adiabatic PFR (Equation (A21)).

dT
dV

=

(
−∆H̃r,A

)
(−rA)

F(0)
A, f (Rk + 1)

(
C̃pS +

∆C̃p
a xA

) (A21)

Energy Balance on CSTR

The energy balance for a CSTR can be written as follows (Equation (A22)):

n

∑
i=1

Fi H̃i

∣∣∣∣∣
IN

−
n

∑
i=1

Fi H̃i

∣∣∣∣∣
OUT

= 0 (A22)

which leads to Equation (A23):
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n
∑

i=1

[
F(0)

A, f (Rk + 1)
(

θi +
νi
a x(k)A,0

)
H̃i

(
T(k)

0

)]
−

n
∑

i=1

[
F(0)

A, f (Rk + 1)
(

θi +
νi
a x(k)A

)
H̃i

(
T(k)

)]
= 0

n
∑

i=1

[(
θi +

νi
a x(k)A,0

)
H̃i

(
T(k)

0

)]
−

n
∑

i=1

[(
θi +

νi
a x(k)A

)
H̃i

(
T(k)

)]
= 0

n
∑

i=1

(
θi +

νi
a x(k)A,0

)[
∆H̃0

i

(
Tre f

)
+ C̃pi

(
T(k)

0 − Tre f

)]
−

n
∑

i=1

(
θi +

νi
a x(k)A

)[
∆H̃0

i

(
Tre f

)
+ C̃pi

(
T(k) − Tre f

)]
= 0

(A23)

Simplifying appropriately the previous expressions, we obtain (Equation (A24)):

C̃pS

(
T(k)

0 − T(k)
)
+
[

x(k)A,0∆H̃r,A

(
T(k)

0

)
− x(k)A ∆H̃r,A

(
T(k)

)]
= 0

x(k)A,0 = 1
(Rk+1) x(k−1)

A, f + Rk
(Rk+1) x(k)A, f , x(k)A = x(k)A, f

(A24)

If the reaction enthalpy can be considered the same at inlet and outlet, Equation (A24)
assumes the following form in terms of stage conversions (Equation (A25)):

C̃pS

(
T(k)

0 − T(k)
)
+

(−∆H̃r,A)
(Rk+1)

(
x(k)A, f − x(k−1)

A, f

)
= 0(

x(k)A, f − x(k−1)
A, f

)
= (Rk + 1)

C̃pS

(
T(k)−T(k)

0

)
(−∆H̃r,A)

(A25)

Appendix A.3. Adiabatic-Stage Reactors with Split

Appendix A.3.1. Mass Balances

Mass Balance on the Mixing Nodes

The flow rates along the branches of the k-th stage of the series are expressed in terms
of conversion as follows (Equation (A26)):

F(k)
A,0 = F∗(k)

A,0

(
1 − x(k)A,0

)
= (1 − Sk)F(0)

A

(
1 − x(k)A,0

)
F(k)

A,S = F∗(k)
A,S

(
1 − x(k)A,S

)
= SkF(0)

A, f

(
1 − x(k)A,S

)
F(k)

A = F∗(k)
A

(
1 − x(k)A

)
= (1 − Sk)F(0)

A, f

(
1 − x(k)A

) (A26)

where the split ratios Sk are generally different from each other.
The mass balance on the mixing nodes just after the outlet of each reactor is needed to

express the conversion at the outlet of the k-th reactor as a function of the conversions at
the inlet and outlet of the stage. Equation (A27) reports the steps from the mass balance to
the final expression of the outlet conversion xA,0:

F(k)
A + SkF(k−1)

A, f = F(k)
A, f

(1 − Sk)F(0)
A, f

(
1 − x(k)A

)
+ SkF(0)

A, f

(
1 − x(k)A,S

)
= F(0)

A, f

(
1 − x(k)A, f

)
x(k)A − Skx(k)A + Skx(k−1)

A, f = x(k)A, f

(A27)

which leads to the following final expression (Equation (A28)):

x(k)A =
1

1 − Sk
x(k)A, f −

Sk
1 − Sk

x(k−1)
A, f (A28)

Mass Balance on PFR

We start again from the generic k-th PFR, expressed in terms of the limiting reactant A
(Equation (A29)):

dFA
dV

= rA (A29)
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which can be expressed in terms of conversion as follows (Equation (A30)):

(1 − Sk)F(0)
A, f

dxA
dV = (−rA)

(1 − Sk)
x(k)A∫

x(k)A,0

dxA
(−rA)

=
VRk

F(0)
A, f

(A30)

The final expression of the PFR design equation, obtained by replacing the inlet
conversion with its expression in terms of stage conversions, is (Equation (A31)):

VRk

F(0)
A, f

= (1 − Sk)

1
1−Sk

x(k)A, f −
Sk

1−Sk
x(k−1)

A, f∫
x(k−1)

A, f

dxA
(−rA)

(A31)

Mass Balance on CSTR

As for CSTR, the mass balance can be written as follows (Equation (A32)):

F(k)
A,0 − F(k)

A + rAk VRk = 0 (A32)

In terms of conversion, we have the following (Equations (A33) and (34)):

(1 − Sk)F(0)
A, f

(
1 − x(k)A,0

)
− (1 − Sk)F(0)

A, f

(
1 − x(k)A

)
+ rAk VRk = 0 (A33)

VRk

F(0)
A, f

= (1 − Sk)

(
x(k)A −x(k)A,0

)
(
−rAk

)
VRk

F(0)
A, f

=

(
x(k)A, f −x(k−1)

A, f

)
(
−rAk

) (A34)

Appendix A.3.2. Energy Balances

Energy Balance on the Mixing Nodes

The energy balance on the mixing nodes can be expressed as follows (Equation (A35)):

n
∑

i=1
F(k)

i H̃i

(
T(k)

)
+

n
∑

i=1
F(k)

i,S H̃i

(
T(k−1)

f

)
=

n
∑

i=1
F(k)

i, f H̃i

(
T(k)

f

)
n
∑

i=1
F(k)

i H̃i

(
T(k)

)
+

n
∑

i=1
SkF(k−1)

i, f H̃i

(
T(k−1)

f

)
=

n
∑

i=1
F(k)

i, f H̃i

(
T(k)

f

)
n
∑

i=1
(1 − Sk)F(0)

A, f

(
θi +

νi
a x(k)A

)[
∆H̃0

i + C̃pi

(
T(k) − TRe f

)]
+

n
∑

i=1
SkF(0)

A, f

(
θi +

νi
a x(k−1)

A, f

)[
∆H̃0

i + C̃pi

(
T(k−1)

f − TRe f

)]
=

n
∑

i=1
F(0)

A, f

(
θi +

νi
a x(k)A, f

)[
∆H̃0

i + C̃pi

(
T(k)

f − TRe f

)]
(1 − Sk)

[
C̃pST(k) + x(k)A ∆H̃r,A(Tk)

]
+Sk

[
C̃pST(k−1)

f + x(k−1)
A, f ∆H̃r,A

(
T(k−1)

f

)]
=
[
C̃pST(k)

f + x(k)A, f ∆H̃r,A

(
T(k)

f

)]

(A35)
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which leads to the following explicit expression (Equation (A36)):

T(k) =

(
C̃pS + ∆C̃pAx(k)A, f

)
T(k)

f − Sk

(
C̃pS + ∆C̃pAx(k−1)

A, f

)
T(k−1)

f[(
C̃pS + ∆C̃pAx(k)A, f

)
− Sk

(
C̃pS + ∆C̃pAx(k−1)

A, f

)] (A36)

If ∆C̃pA can be neglected with respect to C̃pS, Equation (A36) can be simplified as
follows (Equation (A37)):

T(k) =
1

(1 − Sk)
T(k)

f − Sk
(1 − Sk)

T(k−1)
f (A37)

Energy Balance on PFR

The energy balance on the generic k-th PFR is written as follows (Equation (A38)):

d
dV

(
n
∑

i=1

[
(1 − Sk)F(0)

A, f
(
θi +

νi
a xA

)][
∆H̃0

i + C̃pi

(
T − Tre f

)])
= 0(

C̃pS + ∆C̃pAxA

)
dT
dV =

(
−∆H̃r,A

)
dxA
dV

dT
dV =

(−∆H̃r,A)
dxA
dV

(C̃pS+∆C̃pAxA)

(A38)

Combining Equation (A30) (differential mass balance) and Equation (A38), we finally
obtain the following expression (Equation (A39)):

dT
dV

=

(
−∆H̃r,A

)
(−rA)

F(0)
A, f (1 − Sk)

(
C̃pS +

∆C̃p
a xA

) (A39)

Energy Balance on CSTR

The general expression of the energy balance on the generic k-th CSTR is (Equation (A40)):

n

∑
i=1

Fi H̃i

∣∣∣∣∣
IN

−
n

∑
i=1

Fi H̃i

∣∣∣∣∣
OUT

= 0 (A40)

which leads to Equation (A.41) when expressing the flow rates in terms of the respective
conversions:

n
∑

i=1

[
F(0)

A, f (1 − Sk)
(

θi +
νi
a x(k)A,0

)
H̃i

(
T(k)

0

)]
−

n
∑

i=1

[
F(0)

A, f (1 − Sk)
(

θi +
νi
a x(k)A

)
H̃i

(
T(k)

)]
= 0

n
∑

i=1

[(
θi +

νi
a x(k)A,0

)
H̃i

(
T(k)

0

)]
−

n
∑

i=1

[(
θi +

νi
a x(k)A

)
H̃i

(
T(k)

)]
= 0

(A41)
Simplifying appropriately the previous expressions and expressing the outlet conver-

sion as a function of the stage conversions, we obtain (Equation (A42)):

C̃pS

(
T(k)

0 − T(k)
)
+
[

x(k)A,0∆H̃r,A

(
T(k)

0

)
− x(k)A ∆H̃r,A

(
T(k)

)]
= 0

x(k)A = 1
1−Sk

x(k)A, f −
Sk

1−Sk
x(k−1)

A, f , x(k)A,0 = x(k−1)
A, f

(A42)

If the reaction enthalpy can be considered the same at the inlet and outlet (∆C̃pA ≈ 0),
Equation (A42) assumes the following form in terms of stage conversions (Equation (A43)):

C̃pS

(
T(k)

0 − T(k)
)
+

(−∆H̃r,A)
1−Sk

[
x(k)A, f − x(k−1)

A, f

]
= 0(

x(k)A, f − x(k−1)
A, f

)
= (1 − Sk)

C̃pS

(
T(k)−T(k)

0

)
(−∆H̃r,A)

(A43)
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Expressing inlet and outlet temperatures as functions of the respective stage temper-
atures, we obtain the following expression (Equation (A44)), in which there is no formal
dependency on the split ratio:

T(k)
0 = T(k−1)

f , T(k) = 1
(1−Sk)

T(k)
f − Sk

(1−Sk)
T(k−1)

f

(
x(k)A, f − x(k−1)

A, f

)
=

C̃pS

(
T(k)

f −T(k−1)
f

)
(−∆H̃r,A)

(A44)

Appendix A.4. Adiabatic-Stage Reactors Intercooled/Interheated by Reactants

Appendix A.4.1. Mass Balances

Mass Balance on the Mixing Nodes

Similarly to what was performed in the previous cases, we make here the mass
balance on the mixing nodes to express the inlet conversion as a function of the outlet ones
(Equation (A45)):

F(k−1)
A + F(k)

A,S = F(k)
A,0

F(k−1)
A + SkF(0)

A = F(k)
A,0

(A45)

Such a balance can be serialised to the k-th node, as shown in Equation (A46):

F(1)
A,0 = F∗(1)

A,0

(
1 − x(1)A,0

)
= S1F(0)

A

(
1 − x(1)A,0

)
= S1F(0)

A

F(1)
A = F∗(1)

A

(
1 − x(1)A

)
= S1F(0)

A

(
1 − x(1)A

)
F(2)

A,0 = F∗(2)
A,0

(
1 − x(2)A,0

)
= (S1 + S2)F(0)

A

(
1 − x(2)A,0

)
F(2)

A = F∗(2)
A

(
1 − x(2)A

)
= (S1 + S2)F(0)

A

(
1 − x(2)A

)
. . .

F(k)
A,0 = F∗(k)

A,0

(
1 − x(k)A,0

)
=

(
k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A,0

)
F(k)

A = F∗(k)
A

(
1 − x(k)A

)
=

(
k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A

)
r
∑

h=1
Sh = 1

(A46)

Therefore, we obtain the following compact form stating the relationship among
conversions (Equation (A47)):(

k−1

∑
h=1

Sh

)(
1 − x(k−1)

A

)
+ Sk =

(
k

∑
h=1

Sh

)(
1 − x(k)A,0

)
(A47)

Making the inlet conversion explicit, we obtain (Equation (A48)):

x(k)A,0 =

k−1
∑

h=1
Sh

k
∑

h=1
Sh

x(k−1)
A

x(k)A,0

∣∣∣
Sk=S

= k−1
k x(k−1)

A

(A48)

Mass Balance on PFR

The differential form of the mass balance on PFR is (Equation (A49)):

dFA
dV

= rA

∣∣∣∣
Rk

(A49)
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Using the general definition of conversion on the reactor branch, we obtain Equation (A50):

FA =

(
k
∑

h=1
Sh

)
F(0)

A (1 − xA)(
k
∑

h=1
Sh

)
F(0)

A
dxA
dV = (−rA)|Rk

(A50)

The corresponding integral form is obtained (Equation (A51)):

VRk

F(0)
A

=

(
k

∑
h=1

Sh

) x(k)A∫
k−1

∑
h=1

Sh

k
∑

h=1
Sh

x(k−1)
A

dxA
(−rA)

(A51)

For equal values of split ratio, we can simplify Equation (A51) as follows
(Equation (A52)):

VRk

F(0)
A

∣∣∣∣∣
Sk=S

= kS

x(k)A∫
k−1

k x(k−1)
A

dxA
(−rA)

(A52)

Mass Balance on CSTR

The mass balance on the k-th CSTR is written as follows (Equation (A53)):

F(k)
A,0 − F(k)

A = VRk (−rA)|Rk
(A53)

Expressing the flow rates as functions of the respective conversions, we obtain
(Equation (A54)):

F(k)
A =

(
k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A

)
F(k)

A,0 =

(
k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A,0

)
(

k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A,0

)
−
(

k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A

)
= VRk (−rA)|Rk

VRk

F(0)
A

=

(
k
∑

h=1
Sh

) (
x(k)A −x(k)A,0

)
(−rA)k

(A54)

Expressing the inlet conversion as a function of the outlet conversion of the previous
stage, we obtain Equation (A55):

VRk

F(0)
A

=

[(
k
∑

h=1
Sh

)
x(k)A −

(
k−1
∑

h=1
Sh

)
x(k−1)

A

]
(−rA)k

VRk

F(0)
A

∣∣∣∣
Sk=S

= S

[
kx(k)A −(k−1)x(k−1)

A

]
(−rA)k

(A55)

Appendix A.4.2. Energy Balances

Energy Balance on the Mixing Nodes

The energy (enthalpy) balance on the mixing nodes is reported in Equation (A56):

n

∑
i=1

F(k−1)
i H̃i

(
T(k−1)

)
+

n

∑
i=1

F(k)
i,S H̃i

(
T(0)

)
=

n

∑
i=1

F(k)
i,0 H̃i

(
T(k)

0

)
(A56)
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Expressing Equation (A56) in terms of conversions, Equation (A57) is obtained:

n
∑

i=1

(
k−1
∑

h=1
Sh

)
F(0)

A

(
θi +

νi
a x(k−1)

A

)
H̃i

(
T(k−1)

)
+

n
∑

i=1
SkF(0)

A θi H̃i

(
T(0)

)
=

n
∑

i=1

(
k
∑

h=1
Sh

)
F(0)

A

(
θi +

νi
a x(k)A,0

)
H̃i

(
T(k)

0

) (A57)

Using some algebraic calculations, Equation (A57) is expressed in terms of specific
heat and enthalpy of reaction (Equation (A58)):

[
C̃pST(k−1)

(
k−1
∑

h=1
Sh

)
+ x(k−1)

A

(
k−1
∑

h=1
Sh

)
∆H̃r,A

(
T(k−1)

)]
+ SkC̃pST(0)

=

[
C̃pST(k)

0

(
k
∑

h=1
Sh

)
+ x(k)A,0

(
k
∑

h=1
Sh

)
∆H̃r,A

(
T(k)

0

)]
[

C̃pST(k−1)
(

k−1
∑

h=1
Sh

)
+ x(k−1)

A

(
k−1
∑

h=1
Sh

)[
∆C̃pA

(
T(k−1) − T(k)

0

)]]
+ SkC̃pST(0) =

[
C̃pST(k)

0

(
k
∑

h=1
Sh

)]
∆C̃pA ≡ ∆C̃p

a

(A58)

Finally, we obtain the inlet temperature as the weighted mean value of the outlet
temperature of the previous stage and the initial temperature (Equation (A59)):

T(k)
0 =

(
k−1
∑

h=1
Sh

)[
C̃pS + x(k−1)

A ∆C̃pA

]
(

k
∑

h=1
Sh

)[
C̃pS + x(k)A,0∆C̃pA

] T(k−1) +
SkC̃pS(

k
∑

h=1
Sh

)[
C̃pS + x(k)A,0∆C̃pA

]T(0) (A59)

If ∆C̃pA ≈ 0, we obtain the following expressions for the inlet temperature
(Equation (A60)):

T(k)
0 =

(
k−1
∑

h=1
Sh

)
(

k
∑

h=1
Sh

)T(k−1) + Sk(
k
∑

h=1
Sh

)T(0)

T(k)
0

∣∣∣
Sk=S

= k−1
k T(k−1) + 1

k T(0)

(A60)

Energy Balance on PFR

The energy balance on PFR is expressed as follows (Equation (A61)):

d
dV

(
n
∑

i=1

(
k
∑

h=1
Sh

)
F(0)

A
(
θi +

νi
a xA

)[
∆H̃0

f ,i + C̃pi

(
T − Tre f

)])
= 0

n
∑

i=1

(
νi
a

dxA
dV

)[
∆H̃0

f ,i + C̃pi

(
T − Tre f

)]
+

n
∑

i=1

(
θi +

νi
a xA

)
C̃pi

dT
dV = 0

dxA
dV

n
∑

i=1

[
νi
a ∆H̃0

f ,i +
νi
a C̃pi

(
T − Tre f

)]
+ dT

dV

n
∑

i=1

(
θiC̃pi +

νi
a C̃pixA

)
= 0

∆H̃r,A
dxA
dV +

(
C̃pS + ∆C̃pAxA

)
dT
dV = 0(

C̃pS + ∆C̃pAxA

)
dT
dV =

(
−∆H̃r,A

)
dxA
dV

(A61)
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After substituting the expression of the conversion derivative in terms of reaction rate,
the differential equation reported in Equation (A62) is obtained:

dT
dV =

(−∆H̃r,A)(−rA)(
k
∑

h=1
Sh

)
F(0)

A (C̃pS+∆C̃pAxA)

T(Vk = 0) = T(k)
0

(A62)

If the split ratios are equal, Equation (A62) turns into Equation (A63):
dT
dV

∣∣∣
Sk=S

=
(−∆H̃r,A)(−rA)

kS F(0)
A (C̃pS+∆C̃pAxA)

T(Vk = 0) = T(k)
0

(A63)

Energy Balance on CSTR

The energy balance on a generic adiabatic CSTR of the series is stated in the expressions
reported in Equations (A64) and (A65):

F(0)
A

(
k
∑

h=1
Sh

)(
n
∑

i=1

(
θi +

νi
a x(k)A,0

)
H̃i

(
T(k)

0

)
−

n
∑

i=1

(
θi +

νi
a x(k)A

)
H̃i

(
T(k)

))
= 0

n
∑

i=1

(
θi +

νi
a x(k)A,0

)[
∆H̃0

f ,i + C̃pi

(
T(k)

0 − Tre f

)]
+

−
n
∑

i=1

(
θi +

νi
a x(k)A

)[
∆H̃0

f ,i + C̃pi

(
T(k) − Tre f

)]
= 0

n
∑

i=1

[(
θi∆H̃0

f ,i +
νi∆H̃0

f ,i
a x(k)A,0

)
+
(

θiC̃pi +
νiC̃pi

a x(k)A,0

)(
T(k)

0 − Tre f

)]
+

−
n
∑

i=1

[(
θi∆H̃0

f ,i +
νi∆H̃0

f ,i
a x(k)A

)
+
(

θiC̃pi +
νiC̃pi

a x(k)A

)(
T(k) − Tre f

)]
= 0

[(
∆H̃0

r,Ax(k)A,0

)
+
(

C̃ps + ∆C̃pAx(k)A,0

)(
T(k)

0 − Tre f

)]
+

−
[(

∆H̃0
r,Ax(k)A

)
+
(

C̃ps + ∆C̃pAx(k)A

)(
T(k) − Tre f

)]
= 0

(
∆H̃0

r,Ax(k)A,0 − ∆H̃0
r,Ax(k)A

)
+ C̃ps

(
T(k)

0 − T(k)
)

+∆C̃pAx(k)A,0

(
T(k)

0 − Tre f

)
− ∆C̃pAx(k)A

(
T(k) − Tre f

)
= 0

C̃ps

(
T(k)

0 − T(k)
)
+ x(k)A,0∆H̃0

r,A

(
T(k)

0

)
− x(k)A ∆H̃0

r,A

(
T(k)

)
= 0

(A64)

x(k)A ∆H̃0
r,A

(
T(k)

)
= C̃ps

(
T(k)

0 − T(k)
)
+ x(k)A,0∆H̃0

r,A

(
T(k)

0

)

x(k)A = C̃ps
∆H̃0

r,A(T(k))

(
T(k)

0 − T(k)
)
+

∆H̃0
r,A

(
T(k)

0

)
∆H̃0

r,A(T(k))
x(k)A,0

(A65)

The previous equation is simplified into Equation (A66) if the enthalpy of the reaction
can be considered constant with temperature:

[
x(k)A,0 − x(k)A

]
=

C̃ps

−∆H̃r,A

(
T(k)

0 − T(k)
)

(A66)



Processes 2024, 12, 107 31 of 39

Appendix A.5. Adiabatic-Stage Reactors with Distributed Interstage Feed

Appendix A.5.1. Mass Balances

Mass Balance on the Mixing Nodes

The mass balance of A on the mixing node before the entrance of each reactor allows us
to express the inlet molar flow rate F(k)

A,0 as a function of the outlet one exiting the preceding

reactor F(k−1)
A and of the initial split flow rate F(k)

A,S = SkF(0)
A (Equation (A67)).

S1F(0)
A = F(1)

A,0

F(1)
A + S2F(0)

A = F(2)
A,0

. . .
F(k−1)

A + SkF(0)
A = F(k)

A,0
. . .
F(r−1)

A + SrF(0)
A = F(r)

A,0

(A67)

The flow rates at the inlet and outlet of reactors are expressed in terms of conversion
as follows (Equation (A68)):

F(1)
A,0 = F∗(1)

A,0

(
1 − x(1)A,0

)
= S1F(0)

A

(
1 − x(1)A,0

)
F(1)

A = F∗(1)
A

(
1 − x(1)A

)
= S1F(0)

A

(
1 − x(1)A

)
F(2)

A,0 = F∗(2)
A,0

(
1 − x(2)A,0

)
= (S1 + S2)F(0)

A

(
1 − x(2)A,0

)
F(2)

A = F∗(2)
A

(
1 − x(2)A

)
= (S1 + S2)F(0)

A

(
1 − x(2)A

)
. . .

F(k)
A,0 = F∗(k)

A,0

(
1 − x(k)A,0

)
=

(
k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A,0

)
F(k)

A = F∗(k)
A

(
1 − x(k)A

)
=

(
k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A

)
r
∑

h=1
Sh = 1

(A68)

where the split ratios Sk are generally different from each other and can be subjected to
optimisation to maximise the reactive network performance. Substituting the mass balances
reported in Equation (A68) into Equation (A67), we obtain the inlet conversions xA,0 as
functions of the outlet ones (Equation (A69)), in analogy to the previously detailed case of
recycle reactors.

x(1)A,0 = 0

x(2)A,0 = S1
S1+S2

x(1)A
Sk=S
= S

2S x(1)A = 1
2 x(1)A

. . .

x(k)A,0 =

k−1
∑

h=1
Sh

k
∑

h=1
Sh

x(k−1)
A , x(k)A,0

∣∣∣
Sk=S

= k−1
k x(k−1)

A

(A69)

Mass Balance on PFR

In the same way as performed before, we first write the general differential mass
balance inside the generic PFR in terms of the key-species A (Equation (A70)):

dFA
dV

= rA (A70)
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Then, for each k-th reactor, we express the molar flow rate as a function of the respective
conversion—defined as usual with respect to the molar flow rate of A in the absence of
reaction (Equation (A71)):

S1F(0)
A

dxA
dV = (−rA)1

(S1 + S2)F(0)
A

dxA
dV = (−rA)2

. . .(
r−1
∑

k=1
Sk

)
F(0)

A
dxA
dV = (−rA)r−1

F(0)
A

dxA
dV = (−rA)r

(A71)

From these expressions, we finally obtain the design equation for the generic k-th
reactor written in its canonical integral form along with the necessary integration upper
and lower limits (Equation (A72)):

VR1

F(0)
A

= S1

x(1)A∫
0

dxA
(−rA)R1

VR2

F(0)
A

= (S1 + S2)
x(2)A∫

S1
S1+S2

x(1)A

dxA
(−rA)R2

. . .

VRk

F(0)
A

=

(
k
∑

h=1
Sh

) x(k)A∫
k−1

∑
h=1

Sh

k
∑

h=1
Sh

x(k−1)
A

dxA
(−rA)Rk

(A72)

In the particular case in which all the split ratios are equal, we obtain the following
simplified expressions (Equation (A73)):

S
x(1)A∫
0

dxA
(−rA)R1

=
VR1

F(0)
A

2S
x(2)A∫

1
2 x(1)A

dxA
(−rA)R2

=
VR2

F(0)
A

. . .

kS
x(k)A∫

k−1
k x(k−1)

A

dxA
(−rA)Rk

=
VRk

F(0)
A

(A73)

Mass Balance on CSTR

The mass balances on the CSTRs of the series are (Equation (A74)):

S1F(0)
A − S1F(0)

A

(
1 − x(1)A

)
= (−rA)1VR1

(S1 + S2)F(0)
A

(
1 − x(2)A,0

)
− (S1 + S2)F(0)

A

(
1 − x(2)A

)
= (−rA)2VR2

. . .(
k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A,0

)
−
(

k
∑

h=1
Sh

)
F(0)

A

(
1 − x(k)A

)
= (−rA)kVRk

(A74)
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After a further simplification, Equation (A74) becomes (Equation (A75)):

S1F(0)
A x(1)A = (−rA)1VR1

(S1 + S2)F(0)
A

(
x(2)A − x(2)A,0

)
= (−rA)2VR2

. . .(
k
∑

h=1
Sh

)
F(0)

A

(
x(k)A − x(k)A,0

)
= (−rA)kVRk

(A75)

Eliminating the inlet conversions xA,0, we finally obtain (Equation (A76)):

S1F(0)
A x(1)A = (−rA)1VR1(

(S1 + S2)x(2)A − S1x(1)A

)
= (−rA)2

VR2

F(0)
A

. . .[(
k
∑

h=1
Sh

)
x(k)A −

(
k−1
∑

h=1
Sh

)
x(k−1)

A

]
= (−rA)k

VRk

F(0)
A

VRk

F(0)
A

=

[(
k
∑

h=1
Sh

)
x(k)A −

(
k−1
∑

h=1
Sh

)
x(k−1)

A

]
(−rA)k

(A76)

If all split ratios are equal, we obtain (Equation (A77)):

SF(0)
A x(1)A = (−rA)1VR1

S
(

2x(2)A − x(1)A

)
= (−rA)2

VR2

F(0)
A

. . .

S
[
kx(k)A − (k − 1)x(k−1)

A

]
= (−rA)k

VRk

F(0)
A

VRk

F(0)
A

= S

[
kx(k)A −(k−1)x(k−1)

A

]
(−rA)k

(A77)

Appendix A.5.2. Energy Balances

Energy Balance on the Mixing Nodes

Applying Equation (A41) to the generic branches entering and exiting the mixing
node just before the k-th reactor, the energy balance on the k-th mixing node is written as
a function of conversion as follows (Equation (A78)):

n
∑

i=1
F(k−1)

i H̃i

(
T(k−1)

)
+ F(k)

A,S H̃A

(
T(0)
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=
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i=1
F(k)

i,0 H̃i

(
T(k)

0

)

F(k−1)
i =


F(0)

A

(
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∑

h=1
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)(
1 − x(k−1)

A

)
, i = A

F(0)
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∑

h=1
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)(
θ
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i ̸=A + νi
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, i ̸= A

=


F(0)

A

(
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∑

h=1
Sh

)(
1 − x(k−1)
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)
, i = A

F(0)
A

(
θi ̸=A +

k−1
∑

h=1
Sh

νi
a x(k−1)

A

)
, i ̸= A

F(k)
i,0 =


F(0)

A

(
k
∑

h=1
Sh

)(
1 − x(k)A,0

)
, i = A

F(0)
A

(
k
∑

h=1
Sh

)(
θ
(k−1)
i ̸=A,0 +

νi
a x(k)A,0

)
, i ̸= A

=


F(0)

A

(
k
∑

h=1
Sh

)(
1 − x(k)A,0

)
, i = A

F(0)
A

(
θi ̸=A +

k
∑

h=1
Sh

νi
a x(k)A,0

)
, i ̸= A

(A78)

Developing Equation (A78) through the algebraic calculations detailed in Equations
(A79)–(A84), we obtain Equation (A85), which states, as expected, that the resulting temper-
ature T(k)

0 exiting the mixing k-th node is comprised between the temperature entering the
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node from the preceding reactor T(k−1) and the temperature of the split initial feed e T(0)
A of

the limiting reactant A.

F(k−1)
A H̃A

(
T(k−1)

)
+

n
∑

i=2
F(k−1)

i H̃i

(
T(k−1)
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+ F(k)

A,S H̃A

(
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A

)
=
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F(k)
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T(k)
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)
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)(
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)
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(
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)
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T(k)
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(
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)
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∑
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∑
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∑
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(
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+
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∑
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If ∆C̃pA can be neglected with respect to the other terms of the sum, we obtain
Equation (A86):
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If the split ratios are the same, we obtain the expression reported in Equation (A87):
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] (A87)
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Energy Balance on PFR

The general energy balance for a PFR is recalled here from Equation (A19):

d
dV

(
n

∑
i=1

Fi H̃i

)
= 0 (A88)

For the k-th reactor of the series, expressing this balance in terms of conversion, we
obtain the final expression (Equation (A92)) through Equation (A89)–(A91):
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For equal split ratios, we obtain the following expression (Equation (A50), see Equa-
tion (A87) in the Appendix): 
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The energy balance on the k-th PFR is obtained as follows (Equation (51), see Equa-
tion (A92) in the Appendix): 
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Energy Balance on CSTR

The energy balance on the k-th CSTR is obtained starting from Equation (A93):

F(k)
A,0

[
H̃A

(
T(k)

0

)]
+

n
∑

i=2

[
F(k)

i,0

][
H̃i

(
T(k)

0

)]
+

−F(k)
A

[
H̃A

(
T(k)

)]
−

n
∑

i=2

[
F(k)

i

][
H̃i

(
T(k)

)]
= 0

F(k)
i,0 =


F(0)

A

(
k
∑

h=1
Sh

)(
1 − x(k)A,0

)
, i = A

F(0)
A

(
θi ̸=A +

k
∑

h=1
Sh

νi
a x(k)A,0

)
, i ̸= A

F(k)
i =


F(0)

A

(
k
∑

h=1
Sh

)(
1 − x(k)A

)
, i = A

F(0)
A

(
θi ̸=A +

k
∑

h=1
Sh

νi
a x(k)A

)
, i ̸= A

(A93)

After some algebraic calculations (see Equations (A94), (A95) and (A99)), we can
finally obtain the form reported in Equation (A96).
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We remind that, from the previously obtained mass and energy balance on the mix-
ing nodes, the following relationships hold for the inlet conversion and temperature
(Equations (A98) and (A99)):
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Substituting Equations (A98) and (A99) into Equation (A97), we obtain the following
expression (Equation (A100)):

(
k
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2.3.3. Adiabatic-Stage Reactors with Recycle (See Appendix A.2) 
This configuration is already present in several textbooks on chemical reactor design 

(see, e.g., Levenspiel, 1999 [9]) and is considered here for validation purposes. Figure 6a,b 
show the scheme of a series of adiabatic-stage reactors with recycle along with the corre-
sponding scheme in the absence of reaction. 

It is pointed out that we denote as “stage” the repeating unit of the series, consisting 
of a reactor along with the recycle stream. The subscript ‘f’ indicates the outlet of the stage 
to distinguish it from the outlet of reactor (i.e., the stream just before the split node). In 
fact, in this type of system, it is convenient to express the design equations as functions of 
the stage variables instead of those of the reactor. 
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