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Abstract: In this work, one improved symmetric time-variant logarithmic barrier, Lyapunov function
(BLF), is developed for the first time to handle the state constraint problem of nonlinear systems.
It is universal in the sense that the improved barrier function is a general one that can be used not
only in systems with constrained requirements but also in systems without constrained requirements,
without altering the designed controller. First of all, the n-link robotic system is transformed into a
kind of multi-input and multi-output (MIMO) system. Then, a trajectory tracking control scheme is
designed by combining the improved time-variant logarithmic BLF with the disturbance observer
to solve the problems of model uncertainty and position constraint for the robotic system. We give
that under the proposed controller, all the robotic system’s error vectors can trend to the equilibrium
point asymptotically while the constraint conditions on the position are always met. Finally, the
effectiveness of the presented scheme is indicated by completing two simulation experiment cases.

Keywords: adaptive control; barrier Lyapunov function; constraint control; robot; tracking control

1. Introduction

For the past two decades, there has been a growing number of researchers focused
on the control strategies of the MIMO systems [1–4]. The sliding mode control [5–10],
for instance, is used to deal with external disturbances and modeling uncertainties of the
MIMO systems due to its advantages such as fast response, insensitivity to parametric
perturbations and external disturbances, online system identification is not required, and
simple physical implementation, etc. Fuzzy logic systems are applied to handle system
uncertain terms or model-free control problems for MIMO systems [11–13]. Neural net-
works are applied to system modeling and identification [14–17] like fuzzy logic systems.
The uncertain terms and external disturbances of the nonlinear system are solved effec-
tively by fuzzy approximation (universal approximation) or neural network approximation
combined with adaptive control. Some adaptive feedback control methods are developed
for MIMO systems with unknown dynamics and unmeasured states [18–21]. In [22–25],
by manually setting the performance envelope functions of the states or errors, several
excellent approaches are proposed to improve the transient and steady-state performance
of the MIMO systems. However, the MIMO systems with state or error constraint problems
are not studied in the above papers.

In general, there are constraints of various forms in most physical systems, such
as input saturation, actuator dead-zone, safety specification, etc. However, the state
constraint is the most common problem when controlling the system. Recently, utilizing
barrier Lyapunov function (BLF) algorithms, several useful solutions were presented for
the MIMO systems subject to constraint problems. In [26], a time-varying constraint
tracking control scheme is proposed by combining an adaptive sliding mode method
with a novel universal BLF for the MIMO nonlinear system. In [27], aiming at a kind of
MIMO system under output constraint as well as fixed-time convergent requirements,
the adaptive fixed-time constraint control approaches are presented for ensuring control
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performances of tracking control systems. To handle tracking problems for MIMO systems
in the presence of unmeasured states as well as time-variant state constraints, a fuzzy
observer and a logarithmic BLF method are integrated into the designed controller for
guarantee system states located within the constraint boundary [28]. In [29], a one-to-
one nonlinear mapping is introduced to handle the system state constraint problem of
strict-feedback MIMO systems while introducing a command filter to eliminate influences
of “explosion of complexity” on control accuracy. Aiming at a type of MIMO non-affine
nonlinear systems subject to external disturbances as well as performance constraints, a
tracking control scheme is developed by utilizing the performance function, BLF, and
neural networks to obtain better control performance [30]. We know that robotic systems
can be transformed into a class of MIMO systems; thus, we can refer to the above schemes
to complete the trajectory-tracking tasks of robotic systems.

Recently, to overcome the shortcoming that constraint requirements reduce control
performances of the closed-loop systems, some effective constraint control methods have
been used in robot control. In [31], aiming at the position and velocity constraint problems
of the robotic manipulators with uncertain parameters, an approach in which the motion
constraint problems are unified and converted into the nominal input constraint is pro-
posed by combining neural networks to complete trajectory tracking control. Aiming at
the performance requirements of practical applications for the robotic manipulators, the
prescribed performance constraints are transformed into an equivalent non-constrained
error to complete the high-performance tracking control [32]. In [33], by introducing a
nonlinear conversion of state into the designed neuroadaptive tracking controller, the
presented approach can directly handle the time-variant position as well as speed restric-
tions of robotic systems. In [34], an integral BLF is applied to directly handle the position
restriction of a robotic manipulator. In [35–38], the time-invariant logarithmic BLF-based
adaptive tracking control schemes are developed for solving the state or output restrictions
of the robotic systems. For the tracking scheme for robotic manipulators, for instance,
based on neural network and time-invariant logarithmic, BLF is presented to guarantee the
constant output restrictions are not broken [35]. Furthermore, the constant tangent BLF is
also used in dealing with the constraint requirements of the robot [39–41]. However, the
constraint requirement of the physical system is generally time-varying. Time-invariant
constraints are only a special situation. Therefore, in [42,43], the time-varying tangent
and logarithmic BLFs are used in coping with the state restrictions of robot systems, re-
spectively. However, the constraints in [42,43] are symmetrical. When the constraints are
changed to asymmetrical, the control schemes in [42,43] will be useless. Based on this
point, asymmetrical logarithmic BLF is introduced to handle the asymmetric constrained
requirements of robot systems [44–46]. Further analysis of the existing literature indicates
that although the logarithmic BLF can handle asymmetric constraints, it cannot be changed
to an unconstrained form like the tangent BLF. In other words, the logarithmic BLF cannot
work for systems with unconstrained requirements. In addition, we know that when
the constrained error trends to constraint boundary, the system will provide a very large
control input under the barrier function-based methods, which would reduce the control
performance and lead to system input saturation and easy damage to the actuator. Recently,
many effective methods have been proposed to overcome input saturation. For instance,
in [47], the neural dynamic model is used to address the sudden velocity jump at the initial
time; the neural dynamic model can be seen as a low-pass filter to solve unrealistic speed
jumps, which helps generate smooth continuous speed signals accordingly. Smooth and
continuous signals make it difficult for the system to generate excessive control inputs.
In [48], a robust fault-tolerant control method is designed to deal with the adverse effect of
the actuator saturation. The saturation nonlinearity is described by introducing a novel
dead-zone model, and an adaptive method is used to compensate for the nondifferentiable
integral term of the dead-zone model. In [49], an auxiliary dynamics system is constructed
to address the actuator saturation issue in tracking control of the quadrotor UAV with ex-
ternal disturbances. The controller dealing with actuator saturation can ensure the tracking
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errors can trend to small neighborhoods around zero within a finite time. A command
filtering-based fuzzy control is proposed to cope with saturation nonlinearity input in
uncertain MIMO nonlinear systems [50]. There are many approaches to deal with the actu-
ator saturation issues of the nonlinear system. However, the key issue of this article is to
design a novel logarithmic barrier function to constrain the system state. In the future, the
saturation control method will be introduced to deal with the actuator saturation problem
caused by constraint control based on barrier function.

Based on the above discussions, this article tries to modify the existing logarithmic
barrier function so that it can work simultaneously for systems with constrained and
unconstrained requirements. The improved logarithmic barrier function-based tracking
control scheme of a robotic system subject to time-variant position constraints is studied,
and the robotic system is transformed into a type of MIMO system. The contribution points
of this article are listed below.

(1) On the basis of the existing logarithmic barrier function, we multiply the original
barrier function with the constraint boundary to obtain an improved barrier function
for dealing with the symmetric time-varying constraint requirements of robot systems
for the first time. The proposed barrier function can be used for controller design of
systems subject to partial state constraints.

(2) Different from the existing logarithmic BLFs [35–38,43–46], the improved BLF-based
control scheme is a universal one that can be used simultaneously in systems with
constraint requirements and without constraint requirements, without altering the
designed controller. In addition, the inequality condition for the proposed barrier
function is also given to provide a basis for the subsequent proof of system stability.
At the same time, it has been theoretically proven that the proposed barrier function
can directly design the controller for unconstrained systems.

(3) It can be proven that the system’s error signals can trend to zero asymptotically, and
the position constraint boundary is never violated under the proposed controller. In
the end, the effectiveness of the presented scheme is indicated by performing three
simulation cases.

The remaining work is listed below. The definition and Theorem of the modified
barrier function, as well as the useful Lemma, are given in Section 2. Section 3 describes
the design process of the robotic system’s control scheme as well as stability analysis.
Section 4 completes two simulation examples that demonstrate the effectiveness, as well
as the universality, of the proposed approach. In the end, the conclusion of this paper is
summarized in Section 5.

2. Problem Statements and Preliminaries
2.1. Improved Time-Varying Barrier Function

Definition 1. An improved time-varying logarithmic BLF, which can work for systems with or
without constraint needs, is presented for the first time as

Vt(k(t), e(t)) =
k2(t)

2
log

k2(t)
k2(t)− e2(t)

(1)

where e(t) = x − xd denotes the system’s constrained error, the desired trajectory is set as xd,
and k(t) > 0 represents the time-varying constraint function, log is the natural logarithm. It is
obvious from the definition of Vt(k(t), e(t)) that the functional Vt(k(t), e(t)) is positive continuous,
differentiable, and radially unbounded as |e(t)| → k(t) over the set Ωt := {e(t), |e(t)| < k(t)}.
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Theorem 1. The improved barrier functional Vt(k(t), e(t))constructed in (1) over the set Ωt meets
the following condition

e2(t)
2
≤ Vt(k(t), e(t)) ≤ 1

2
k2(t)e2(t)

k2(t)− e2(t)
(2)

Proof of Theorem 1. Step 1: In this step, we will indicate that the inequality on the left side
of (2) holds. Firstly, the following auxiliary function is defined as

f (e) =
k2(t)

2
log

k2(t)
k2(t)− e2(t)

− e2(t)
2

(3)

Taking the derivative of (3) with respect to the constrained error e(t), we get

∂ f (e)
∂e(t) = k2(t)e(t)

k2(t)−e2(t) − e(t)

= e3(t)
k2(t)−e2(t)

(4)

From (4), we know that ∂ f (e)
∂e(t) < 0 holds when e(t) < 0 and ∂ f (e)

∂e(t) > 0 is true when
e(t) > 0 over the set Ωt. Additionally, f (e) = 0 and e(t) = 0. Therefore, we can deduce

that the inequality e2(t)
2 ≤ Vt(k(t), e(t)) always holds over the set Ωt.

Step 2: In this step, the inequality on the right side of (2) will be proven. Similar to
step 1, the second auxiliary function is constructed as

g(e) =
1
2

k2(t)e2(t)
k2(t)− e2(t)

− k2(t)
2

log
k2(t)

k2(t)− e2(t)
(5)

Taking the derivative of the above equation yields

∂g(e)
∂e(t) = k4(t)e(t)

(k2(t)−e2(t))2 −
k2(t)e(t)

k2(t)−e2(t)

= k2(t)e3(t)
(k2(t)−e2(t))2

(6)

It is obvious from (6) that ∂g(e)
∂e(t) < 0 is true as e(t) < 0 and ∂g(e)

∂e(t) > 0 holds as e(t) > 0
over the set Ωt. Furthermore, by means of (5), g(e) = 0 can be obtained as e(t) = 0. Thus,

it can be inferred that the condition Vt(k(t), e(t)) ≤ 1
2

k2(t)e2(t)
k2(t)−e2(t) is always true over the set

Ωt. �

Remark 1. Almost all logarithmic barrier functions used in existing articles [35–38,43–46] have
the following two types of forms, that is, time-varying and time-invariant types

V =
1
2

log
k2(t)

k2(t)− e2(t)
or =

1
2

log
k2

k2 − e2(t)
(7)

When the systems are without constraint requirements, that is, k and k(t)→ ∞ , we have
V → 0 . Thus, the above logarithmic barrier functions cannot work for general systems with no-
constraint needs. In light of Theorem 1, we know that the improved logarithmic barrier function

meets the condition e2(t)
2 ≤ Vt(t) ≤ 1

2
k2(t)e2(t)

k2(t)−e2(t) . Subsequently, as k(t)→ ∞ , the limit on the
right-hand of (2) is given as

lim
k(t)→∞

1
2

k2(t)e2(t)
k2(t)− e2(t)

=
1
2

e2(t) (8)
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In terms of the Squeeze Theorem (Sandwich Theorem), one gets

lim
k(t)→∞

(
Vt(k(t), e(t)) =

k2(t)
2

log
k2(t)

k2(t)− e2(t)

)
=

e2(t)
2

(9)

Therefore, the improved logarithmic barrier function Vt(t) presented in this work can be
transformed into a general quadratic type Lyapunov function, which works for systems without
constraint requirements. It can be said that the improved logarithmic barrier function has a more
universal and wide application scope than the existing logarithmic barrier functions (7).

Lemma 1. In terms of article [51], we construct the open set N := Rl × Z ∈ Rl+1 as well as
Z := {z ∈ R : |z| < k(t)} ⊂ R with k(t) being the constraint boundary and any positive function.
Aiming at the following system

.
η = h(η, t) (10)

with states of the system η := [ω, z]T ∈ N as well as functional h : R+ ×N→ Rl+1 being locally
Lipschitz in η, uniform in time, t, over set R+×N, and piecewise continuous over time t. Supposing
we can construct the continuous differential as well as positive definite functions U : Rl → R+

andV1 : z→ R+ , such that
V1(z)→ ∞ as |z| → k(t) (11)

γ1(‖ω‖) ≤ U(ω) ≤ γ2(‖ω‖) (12)

with γ1 and γ2 representing class k∞ functions. Constructing a Lyapunov function candidate
as V(η) = V1(z) + U(ω) and supposing that the initial condition z(0) locates within the set
|z| < k(t), taking the derivative of V over the set |z| < k(t), if the following inequality is true

.
V =

∂V
∂η

h ≤ −µV ≤ 0, η ∈ N (13)

with µ being a positive constant, then we can conclude that ω is bounded and z maintains in set
|z| < k(t), ∀t ∈ [0, ∞).

Remark 2. In view of Lemma 1, it can be learned that we can divide states of the systems with
partial state constraints into constrained and unconstrained ones. Then, we need to construct a
barrier function for the constrained state to ensure that the constraint conditions are always met.
At the same time, quadratic form Lyapunov functions are constructed for unconstrained states to
guarantee the system’s stability.

2.2. System Formulation

In this work, a robotic system with n-degrees is depicted as follows [37,52]

M0(q)
..
q + C0

(
q,

.
q
) .
q + G0(q) = τ(t) + fs_un (14)

with fs_un = −∆C
(
q,

.
q
) .
q− ∆M(q)

..
q− ∆G(q)− JT(q) f (t) representing the robotic system’s

uncertain terms, JT(q) being the Jacobian matrix, f (t) denoting the unknown force that
is generated by the contact between the end of the robot and the external environment,
M0(q) ∈ Rn×n standing for the inertia matrix of the robotic system and the condition
M0(q) = MT

0 (q) > 0 being met, G0(q) ∈ Rn and C0
(
q,

.
q
) .
q ∈ Rn standing for the gravita-

tional matrix and the Coriolis-centripetal torque, respectively, q standing for the positions
of the robotic joint as well as their velocity, and acceleration being represented, respectively,
by

.
q and

..
q, control inputs of each robotic arms being denoted by τ(t).
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2.3. Basic Assumptions and System Transformation

Next, the robotic system with n-degrees is changed to a MIMO system by using the
coordinate conversion {

x1 = q
x2 =

.
q

(15)

The robotic system can be depicted as follows
.
x1 = x2.

x2 = M−1
0 (x1)[τ(t) + fun − C0(x1, x2)x2 − G0(x1)]

y = x1

(16)

The control objective in this work attempts to design the tracking controller of uncer-
tain robotic systems based on the improved time-variant symmetric logarithmic barrier
function to make the position vectors y = x1 = q = [q1, q2, · · ·, qn]

T track reference
trajectories xd = qd = [xd1, xd2, · · ·, xdn]

T successfully. All the robotic system’s error
signals are asymptotically stable, and the constraint conditions are always met, namely
|x1| < kc(t) = [kc1(t), kc2(t), · · ·, kcn(t)]

T .

Assumption 1. The uncertain terms of the system are bounded, differentiable, and slowly varying,
namely

| fun| ≤ Fm, Fm > 0
.
f un ≈ 0

(17)

Assumption 2. The matrix M0(x1)is symmetric and invertible, and the matrixes M−1
0 (x1),

C0(x1, x2), and G0(x1)are bounded.

Assumption 3. The reference trajectories xd as well as their derivatives
.
xd are bounded.

Assumption 4. There exist the constant vectors X1 satisfying X1 < kc(t), ∀t ≥ 0 with kc(t) being
the constraint condition of the position state, such that |xd| ≤ X1. Set the constraint boundary of
the position tracking error to be kq(t) = kc(t)− X1.

Remark 3. It should be noted that Assumptions 1–4 are made for subsequent stability analysis.
Assumptions 1–3 are relatively fundamental and reasonable because the uncertain terms, system
matrixes, and desired trajectory of an actual robot are often bounded in practice. The boundedness
and invertibility of the inertia matrix are the keys to ensuring the smooth derivation of the control
law. Assumption 4 provides the basis for selecting the desired trajectory; that is, in order for
constraint control to be successful, the desired trajectory also needs to be maintained within the
constraint boundary kc(t).

3. Design Process of Controller and Stability Analysis

One improved time-varying logarithmic barrier function is applied to designing the
tracking controller for the uncertain robotic arms in this section. First of all, the position as
well as velocity tracking errors are defined, respectively, as e1 = [e11, e12, · · ·, e1n]

T = x1− xd
and e2 = [e21, e22, · · ·, e2n]

T = x2 − α, where α stands for the desired velocity that will be
designed later. To complete the position constraint control, we constructed the following
improved time-varying logarithmic BLF.

V1 =
n

∑
i=1

k2
qi(t)

2
log

k2
qi(t)

k2
qi(t)− e2

1i
(18)

where kq(t) = kc(t)− X1 =
[
kq1(t), kq2(t), · · ·, kqn(t)

]T , |xd| ≤ X1.
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Taking the derivative of V1 yields

.
V1 =

n
∑

i=1

∂V1
∂e1i

de1i
dt +

n
∑

i=1

∂V1
∂kqi(t)

dkqi(t)
dt

=
n
∑

i=1

k2
qi(t)e1i

k2
qi(t)−e2

1i

.
e1i

+
n
∑

i=1

(
kqi(t) log

k2
qi(t)

k2
qi(t)−e2

1i
−

kqi(t)e
2
1i

k2
qi(t)−e2

1i

)
.
kqi(t)

(19)

According to the definition of e1 and differentiating e1, with respect to time, we get

.
e1 =

.
x1 −

.
xd

= e2 + α− .
xd.

e1i = e2i + αi −
.
xdi

(20)

By means of the backstepping method, the desired velocity α is developed as

α =
.
xd − A− B

αi =
.
xdi − A1i − B1i

(21)

where

A =


A11
A12
· · ·
A1n

 =


k11e11
k12e12
· · ·

k1ne1n

 (22)

B = [B11, B12, · · ·, B1n]
T = KdotB′ (23)

and

B′ =



k2
q1(t)−e2

11

k2
q1(t)

(
kq1(t)

e11
log

k2
q1(t)

k2
q1(t)−e2

11
−

kq1(t)e11

k2
q1(t)−e2

11

)
k2

q2(t)−e2
12

k2
q2(t)

(
kq2(t)

e12
log

k2
q2(t)

k2
q2(t)−e2

12
−

kq2(t)e12

k2
q2(t)−e2

12

)
···

k2
qn(t)−e2

1n
k2

qn(t)

(
kqn(t)

e1n
log

k2
qn(t)

k2
qn(t)−e2

1n
− kqn(t)e1n

k2
qn(t)−e2

1n

)


(24)

Kdot = diag
( .

kq1(t),
.
kq2(t), · · ·,

.
kqn(t)

)
(25)

and k1i > 0 is the control gain.

Remark 4. In view of (24), it can be seen that there are tracking errors e1i in the denominator of the
virtual control law α that may cause singularity problems. However, according to L’ Hopital’s rule,
we take the limit as e1iapproaches zero.

lim
e1i→0

kqi(t)

e1i
log

k2
qi(t)

k2
qi(t)− e2

1i
=

2kqi(t)e1i

k2
qi(t)− e2

1i
, i = 1, 2 · · · n (26)

Therefore, the virtual position constraint control law α is well-defined.

Substituting (20) into (19), we get

.
V1 =

n
∑

i=1

k2
qi(t)e1i

k2
qi(t)−e2

1i

(
e2i + αi −

.
xdi
)

+
n
∑

i=1

(
kqi(t) log

k2
qi(t)

k2
qi(t)−e2

1i
−

kqi(t)e
2
1i

k2
qi(t)−e2

1i

)
.
kqi(t)

(27)
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Considering (21)–(25) and (27) becomes

.
V1 =

n

∑
i=1

k2
qi(t)e1i

k2
qi(t)− e2

1i
(e2i − A1i − B1i)

+
n

∑
i=1

(
kqi(t) log

k2
qi(t)

k2
qi(t)− e2

1i
−

kqi(t)e
2
1i

k2
qi(t)− e2

1i

)
.
kqi(t)

=
n

∑
i=1

k2
qi(t)e1i

k2
qi(t)− e2

1i
e2i −

n

∑
i=1

k1ik2
qi(t)e

2
1i

k2
qi(t)− e2

1i

−
n

∑
i=1

e1i

.
kqi(t)

(
kqi(t)

e1i
log

k2
qi(t)

k2
qi(t)− e2

qi
−

kqi(t)e1i

k2
qi(t)− e2

1i

)

+
n

∑
i=1

(
kqi(t) log

k2
qi(t)

k2
qi(t)− e2

1i
−

kqi(t)e
2
1i

k2
qi(t)− e2

1i

)
.
kqi(t)

= −
n

∑
i=1

k1ik2
qi(t)e

2
1i

k2
qi(t)− e2

1i
+

n

∑
i=1

k2
qi(t)e1i

k2
qi(t)− e2

1i
e2i

(28)

By means of (16), taking the derivative of e2 yields

.
e2 = M−1

0 (x1)[τ(t) + fun − C0(x1, x2)x2 − G0(x1)]−
.
α (29)

Due to the presence of uncertain terms in the derivative of velocity tracking errors.
Thus, a disturbance observer is introduced to complete estimation and compensation for
them: {

f̂un = δ f + k f M0x2
.
δ f = −k f δ f − k f [τ(t)− C0x2 −G0 + k f M0x2

] (30)

where k f = diag
(

k f 11, k f 22, · · ·, k f nn

)
is the observer parameter, δ f ∈ Rn presents the

observer state. f̂un is the estimated value of fun, the estimating error is described as
f̃un = fun − f̂un.

Subsequently, the second Lyapunov function is selected

V2 = V1 +
1
2

eT
2 M0e2 +

1
2

f̃ T
un f̃un (31)

Differentiating (31) yields

.
V2 = −

n

∑
i=1

k1ik2
qi(t)e

2
1i

k2
qi(t)− e2

1i
+

n

∑
i=1

k2
qi(t)e1i

k2
qi(t)− e2

1i
e2i + eT

2 M0
.
e2 + f̃ T

un

.

f̃ un (32)

According to Lyapunov stability theory, the controller is designed as

τ(t) = C0x2 + G0 + M0
.
α− f̂un − K2e2

−
[

k2
q1(t)e11

k2
q1(t)−e2

11
,

k2
q2(t)e12

k2
q2(t)−e2

12
, · · ·, k2

qn(t)e1n
k2

qn(t)−e2
1n

]T (33)

with K2 = diag(k21, k22, · · ·, k2n) being the positive definite control parameter.

Theorem 2. Considering a robotic system with n-degrees subject to position constraints as well
as unknown uncertain terms and supposing Assumptions 1–4 are always met, and the initial
positions are located within |e1i(0)| < kqi(0). Then, the robotic system’s error signals can trend
asymptotically to zero, and the position constraint boundaries are never violated under the proposed
controller.
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Proof of Theorem 2. Substituting (29) into (32) yields

.
V2 = −

n
∑

i=1

k1ik2
qi(t)e

2
1i

k2
qi(t)−e2

1i
+

n
∑

i=1

k2
qi(t)e1i

k2
qi(t)−e2

1i
e2i

+eT
2
(
[τ(t) + fs_un − C0(x1, x2)x2 − G0(x1)]−M0

.
α
)
+ f̃ T

un

.

f̃ un

(34)

Differentiating f̂un yields

.
f̂ un =

.
δ f + k f M0

.
x2

= −k f δ f − k f

(
k f M0x2

)
+ k f fun

= −k f

(
δ f + k f M0x2

)
+ k f fun

= −k f f̂un + k f fun = k f f̃un

(35)

Considering (33) and (35), (34) can be rewritten as

.
V2 = −

n
∑

i=1

k1ik2
qi(t)e

2
1i

k2
qi(t)−e2

1i
− eT

2 K2e2 + eT
2 f̃un − f̃ T

unk f f̃un

≤ −
n
∑

i=1

k1ik2
qi(t)e

2
1i

k2
qi(t)−e2

1i
− eT

2

(
K2 − 1

2 In

)
e2 − f̃ T

un

(
k f − 1

2 In

)
f̃un

(36)

with In = diag(1, 1, . . . , 1)n×n representing the identity matrix.
The coefficients K2 and k f are set to meet the following conditions:

λmin

(
K2 − 1

2 In

)
> 0

λmin

(
k f − 1

2 In

)
> 0

(37)

By means of Theorem 1, (36) can be rewritten as

.
V2 ≤ −

n
∑

i=1
2k1i

k2
qi(t)
2 log

k2
qi(t)

k2
qi(t)−e2

1i
− eT

2

(
K2 − 1

2 In

)
e2 − f̃ T

un

(
k f − 1

2 In

)
f̃un

≤ −ρV2 ≤ 0
(38)

where

ρ = min

2k1i,
2λmin

(
K2 − 1

2 In

)
λmax(M0)

, 2λmin

(
k f −

1
2

In

) (39)

In light of Lemma 1 and (38), we learned that the errors e2 and f̃un are bounded, and the
position errors meet conditions |e1i(t)| < kqi(t) all the time. Next, we will use mathematical
methods to further describe Theorem 2. Seeking the solution of the differential Equation
(38), we have

0 ≤ V2 ≤ V2(0)e−ρt (40)

In terms of (18) and (31), we have

V2 =
n

∑
i=1

k2
qi(t)

2
log

k2
qi(t)

k2
qi(t)− e2

1i
+

1
2

eT
2 M0e2 +

1
2

f̃ T
un f̃un (41)

In view of (40), we have

k2
qi(t)

2
log

k2
qi(t)

k2
qi(t)− e2

1i
≤ V2(0)e−ρt ≤ V2 (42)

where V2 is bounded positive constant.
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Using (42), we can obtain

e2
1i ≤ k2

qi(t)

1− e
−2V2
k2
qi(t)

 < k2
qi(t) (43)

Thus, we have
∣∣e1i

∣∣ < kqi(t). In light of Assumption 4 and kq(t) = kc(t)− X1, |xd| ≤
X1, the position constraint condition |x1| < kc(t) are met at all time. By means of Theorem
1, we can further obtain

e2
1i
2
≤

k2
qi(t)

2
log

k2
qi(t)

k2
qi(t)− e2

1i
≤ V2(0)e−ρt (44)

Considering (40), (41), and (44), the following inequalities hold

|e1| ≤
√

2V2(0)e−ρt

|e2| ≤
√

2V2(0)e−ρt

λmin(M0)∣∣∣ f̃un

∣∣∣ ≤ √2V2(0)e−ρt

(45)

To sum up, the robotic system’s error signals can trend exponentially asymptotically
to zero, and position constraint boundaries are always met under the proposed method. �

Remark 5. By means of the proof of Theorem 2, it can arrive at the conclusion that the pro-
posed controller based on the improved time-varying logarithmic barrier function can not only
ensure the constraint conditions are always met but also ensure the system’s constrained errors
are asymptotically stable to the equilibrium point. The logarithmic function used in the existing
literature [35–38,43–46] can only guarantee that the system’s constrained error trends to a specific
region. It can be said that the presented method is more general and advantageous.

Remark 6. In addition to the barrier Lyapunov function, there are also methods for state constraint
control of the nonlinear system. For example, the control barrier function in [53]. In [53], the
constraint boundary is dependent on the control input and states of the system. This constraint
boundary is closer to the limit space of the actual system. However, this article focuses on designing
new barrier functions, therefore only artificially setting a boundary condition for the robot state to
verify the effectiveness of the proposed barrier function. In future works, the boundary condition
that depends on state and control input will be focused on.

Remark 7. Control barrier functions as a new safety control method that aims to guarantee safety
by limiting the control input such that the system state is located within a set safe range [53–55].
In [55], a controller is proposed based on a disturbance observer to estimate the effect of the
disturbance on safety; the estimation value and control barrier function are used to achieve
provably safe dynamic behavior. The form of the observer is similar to that of the observer
in this article, and the observers are all used to estimate the unknown terms of the system.
In the control barrier function method, the safety condition depends on control input and
states. This safety condition is very practical and effective in engineering control. However,
the constraint condition is artificially set to verify the effectiveness of the novel logarithmic
barrier function proposed in this paper. The constraint condition setting did not take into
account the actual safety space of the robot. We hope to consider more complex constraint
boundary-setting methods in future research work.

4. Simulation and Discussion

In this section, a robotic system with two degrees is applied to simulation experiments
to indicate the feasibility of the presented method in this paper. The joint mass and length
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of the simulated robot object are represented by mi and li, i = 1, 2, respectively. To facilitate
the establishment of the robot mathematical model, we suppose that equivalent masses are
located at the end of each link. The displacement between joint i− 1 and the centroid of
link i is denoted by ri.

The joint position vector is set as

q =

[
q1
q2

]
=

[
θ1
θ2

]
(46)

The relevant matrixes of the two-degree robot are given as [37,52]

M0(q) =
[

M11 M12
M21 M22

]
(47)

C0
(
q,

.
q
)
=

[
C11 C12
C21 C22

]
(48)

G0(q) =
[
G11 G12

]T (49)

J(q) =
[
−
(
l1 sin q1 + l2 sin(q1 + q2)

)
−l2 sin(q1 + q2)

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
(50)

and
M11 = m1r2

1 + m2
(
l2
1 + r2

2 + 2l1r2 cos q2
)
+ I1 + I2

M12 = m2
(
r2

2 + l1r2 cos q2
)
+ I2

M21 = m2
(
r2

2 + l1r2 cos q2
)
+ I2

M22 = m2r2
2 + I2

C11 = −m2l1r2
.
q2 sin q2

C12 = −m2l1r2
( .
q2 +

.
q1
)

sin q2
C21 = m2l1r2

.
q1 sin q2

C22 = 0
G11 =

(
m1r2 + m2l1

)
g cos q1 + m2r2g cos(q1 + q2)

G12 = m2r2g cos(q1 + q2).

(51)

Referring to papers [37,52], the main parameters of the robot with two degrees are
set as: m1 = 2 kg, m2 = 0.85 kg, l1 = 0.35 m, l2 = 0.31 m, r1 = 1

2 l1, r2 = 1
2 l2, I1 = 1

4 m1l2
1 ,

I2 = 1
4 m2l2

2 , and g = 9.81 m/s2.
The initial joint position vectors are presumed as{

q1(0) = −0.08, q2(0) = 0.05
.
q1(0) = 0,

.
q2(0) = 0

(52)

The reference trajectories are set as

xd = [0.14 sin(t), 0.14 cos(t)]T (53)

The uncertain terms of the robotic system are presumed as

fun = M0[0.3 sin(t), 0.3 cos(t)]T + C0[0.3 cos(0.5t), 0.3 sin(0.5t)]T (54)

In order to determine the feasibility of the presented approach, the numerical sim-
ulations are separated into two cases. In the first case, when the constraint boundary is
changed into a time-invariant situation. The controller (21), without compensation for
uncertain terms, can be rewritten as

α =
.
xd − A

αi =
.
xdi − A1i

(55)
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where

A =


A11
A12
· · ·
A1n

 =


k11e11
k12e12
· · ·

k1ne1n

 (56)

and (33) can be rewritten as

τ(t) = C0x2 + G0 + M0
.
α− K2e2 −

[
k2

q1e11

k2
q1 − e2

11
,

k2
q2e12

k2
q2 − e2

12
, · · ·,

k2
qne1n

k2
qn − e2

1n

]T

(57)

In the second case, the controllers (21) and (33) are applied to indicate that the im-
proved time-variant logarithmic barrier function is feasible.

In the third case, we set the constraint boundary to infinite as kq1(t) = kq2(t) = 108 to
verify that the proposed method can be applied to address the tracking control issue of the
unconstrained system.

Remark 8. In order to verify the effectiveness of the proposed method and achieve better control
effects in the different control conditions, we set up three different simulation scenarios: (1) The
constraint boundary is time-invariant. (2) The constraint boundary is time-varying. (3) The
constraint boundary is set to be infinite. In the condition (1), we choose controller (57) to deal
with time-invariant constraint issues. The controller (33) is used to address the time-varying
constraint problems in condition (2). When the constraint condition kqi(t)→ ∞ in condition (3),
the controller (33) is also selected to cope with the general system stability issues. Therefore, we can
select the controller according to the above three conditions to achieve better control effects.

4.1. Control in Case 1

For the time-invariant constraint control, to guarantee the position constraints |q| <
kc = [0.24, 0.24]T and to make the reference trajectory meet |xd| ≤ X1, we select X1 =

[0.14, 0.14]T , according to Assumption 4, the constraint boundary of the position tracking
error is kq = kc − X1 = [0.1, 0.1]T . The parameters of the robotic tracking control system
are selected as k11 = k12 = 1.8, and K2 = diag(20, 20).

The simulation results of time-invariant constraint control based on improved loga-
rithmic barrier function for a two-degree robot are shown in Figures 1–4. The performance
curve and error curve of the robotic system’s position vector tracking desired targets are
described in Figures 1 and 2. The error curves of the joint velocity vector of the robotic
system tracking desired targets α are given in Figure 3. Figure 4 depicts the control inputs
of the two robotic arms.

Observing Figures 1 and 2, we can see that when the constraint boundary kq is altered
into a time-invariant situation and the improved logarithmic barrier function-based control
approach without compensation for unknown terms of the robotic system (14), the control
performance can still be accepted. The simulation effects evidence the universality of the
presented improved logarithmic BLF (1), which can handle both systems with time-varying
constraint requirements and systems with time-invariant constraint requirements. It is
clear from Figures 1 and 2 that the position vector of joints 1 and 2 is successful in tracking
the desired targets, although the tracking errors of the joints fluctuate a little bit around
zero. Further, despite the controller not compensating for the system’s uncertain terms,
the position errors still do not violate the constrained boundary conditions kq1 and kq2.
In Figure 3, in the initial time, the errors of the joint velocity vector of the robotic system
tracking desired targets α are of a larger order of magnitude since the desired trajectory is
required to be tracked as soon as possible, which needs a large initial desired velocity. The
control inputs of the two robotic arms are depicted in Figure 4. In the initial stage, large
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control inputs are required to ensure convergence of velocity errors and avoid position
tracking errors exceeding boundaries.
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4.2. Control in Case 2

For the time-variant constraint control of the robotic system, in order to ensure po-
sition constraints |q| < kc(t) = [0.24 + 0.05 cos(t), 0.24 + 0.05 sin(t)]T and to make the
reference trajectory meet |xd| ≤ X1, we select X1 = [0.14, 0.14]T , according to Assump-
tion 4, the constraint boundary of the position tracking error is kq(t) = kc(t) − X1 =

[0.1 + 0.05 cos(t), 0.1 + 0.05 sin(t)]T . The parameters of the robot tracking control system
are set as k11 = k12 = 1.8 and K2 = diag(20, 20), the observer parameter is chosen as
k f = diag(20, 20).

The simulation results of time-variant constraint control by using an improved loga-
rithmic barrier function for a two-link robot are given in Figures 5–9. The position-tracking
performance of the robotic arms as well as corresponding tracking errors are depicted in
Figures 5 and 6. Figure 7 describes the joint velocity vector’s tracking error of the robotic
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arms tracking desired targets α. Figure 8 gives the control inputs of the robot with two
degrees. The unknown terms of the system and estimations are described in Figure 9.

Processes 2023, 11, x FOR PEER REVIEW 16 of 24 
 

 

constrained boundary conditions 1qk  and 2qk . In Figure 3, in the initial time, the errors 
of the joint velocity vector of the robotic system tracking desired targets α  are of a 
larger order of magnitude since the desired trajectory is required to be tracked as soon as 
possible, which needs a large initial desired velocity. The control inputs of the two ro-
botic arms are depicted in Figure 4. In the initial stage, large control inputs are required 
to ensure convergence of velocity errors and avoid position tracking errors exceeding 
boundaries. 

4.2. Control in Case 2 
For the time-variant constraint control of the robotic system, in order to ensure po-

sition constraints ( ) ( ) ( )0 24 0 05cos 0 24 0 05sin T
cq k t . . t , . . t< = + +    and to make the ref-

erence trajectory meet 1dx X≤ , we select [ ]1 0 14 0 14 TX . , .= , according to Assumption 4, 
the constraint boundary of the position tracking error is 

( ) ( ) ( ) ( )1 0 1 0 05cos 0 1 0 05sin T
q ck t k t X . . t , . . t= − = + +   . The parameters of the robot track-

ing control system are set as 11 12 1 8k k .= =  and ( )2 diag 20 20K ,= , the observer param-
eter is chosen as ( )diag 20 20fk ,= . 

The simulation results of time-variant constraint control by using an improved 
logarithmic barrier function for a two-link robot are given in Figures 5–9. The 
position-tracking performance of the robotic arms as well as corresponding tracking 
errors are depicted in Figures 5 and 6. Figure 7 describes the joint velocity vector’s 
tracking error of the robotic arms tracking desired targets α . Figure 8 gives the control 
inputs of the robot with two degrees. The unknown terms of the system and estimations 
are described in Figure 9. 

 
Figure 5. Tracking performance and error of joint 1 (second case). Figure 5. Tracking performance and error of joint 1 (second case).

Processes 2023, 11, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 6. Tracking performance and error of joint 2 (second case). 

 
Figure 7. The velocity tracking errors (second case). 

Figure 6. Tracking performance and error of joint 2 (second case).



Processes 2023, 11, 2785 16 of 22

Processes 2023, 11, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 6. Tracking performance and error of joint 2 (second case). 

 
Figure 7. The velocity tracking errors (second case). Figure 7. The velocity tracking errors (second case).

Processes 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 8. The control inputs of the two robotic arms (second case). 

 
Figure 9. Uncertain term and estimation (second case). 

Observing the simulation results about the time-variant constraint requirements of 
the robotic system in the second case, it can be seen that the improved time-variant 
logarithmic barrier function-based controllers (21) and (33) are feasible. Considering the 
simulation effects of Case 1 and Case 2 comprehensively, we arrive at the conclusion that 
the tracking method presented in this work is applicable to both systems subject to 
time-variant constraint requirements and systems subject to time-invariant constraint 
requirements. Next, we perform further analysis of the simulation effects. It is learned 
from Figures 1, 2, 5 and 6 that the position tracking precision of Case 2 is higher than 
that of Case 1. Meanwhile, the time-variant position constraint boundaries ( )qk t  are 
always met. By comprehensively observing the simulation effects in Figures 3 and 7, it 

Figure 8. The control inputs of the two robotic arms (second case).



Processes 2023, 11, 2785 17 of 22

Processes 2023, 11, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 8. The control inputs of the two robotic arms (second case). 

 
Figure 9. Uncertain term and estimation (second case). 

Observing the simulation results about the time-variant constraint requirements of 
the robotic system in the second case, it can be seen that the improved time-variant 
logarithmic barrier function-based controllers (21) and (33) are feasible. Considering the 
simulation effects of Case 1 and Case 2 comprehensively, we arrive at the conclusion that 
the tracking method presented in this work is applicable to both systems subject to 
time-variant constraint requirements and systems subject to time-invariant constraint 
requirements. Next, we perform further analysis of the simulation effects. It is learned 
from Figures 1, 2, 5 and 6 that the position tracking precision of Case 2 is higher than 
that of Case 1. Meanwhile, the time-variant position constraint boundaries ( )qk t  are 
always met. By comprehensively observing the simulation effects in Figures 3 and 7, it 

Figure 9. Uncertain term and estimation (second case).

Observing the simulation results about the time-variant constraint requirements of the
robotic system in the second case, it can be seen that the improved time-variant logarithmic
barrier function-based controllers (21) and (33) are feasible. Considering the simulation
effects of Case 1 and Case 2 comprehensively, we arrive at the conclusion that the tracking
method presented in this work is applicable to both systems subject to time-variant con-
straint requirements and systems subject to time-invariant constraint requirements. Next,
we perform further analysis of the simulation effects. It is learned from Figures 1, 2, 5 and 6
that the position tracking precision of Case 2 is higher than that of Case 1. Meanwhile, the
time-variant position constraint boundaries kq(t) are always met. By comprehensively ob-
serving the simulation effects in Figures 3 and 7, it can be seen that the order of magnitude
of the velocity tracking error e2 of Case 2 is significantly smaller than that of Case 1. The
inputs of the robotic arm under the time-variant constraint and time-invariant constraint
control strategies are basically similar. The evolution curves of the unknown terms fun and
estimations f̂un are given in Figure 9, and the observation effect is satisfactory.

4.3. Control in Case 3

In order to verify the method is successful in dealing with the tracking control issue of the
unconstrained system, we set the constraint boundary to infinite as kq1(t) = kq2(t) = 108. In
addition, the traditional logarithmic time-varying barrier function is introduced into Case
3 to complete the comparative simulation [43]. However, when the constraint boundary is
set as kq1(t) = kq2(t) = 108, the time-varying barrier function (3) and its derivative (6) are
zero in [43]. Therefore, this does not satisfy the Lyapunov stability theory. In Case 3, the
controller in [43] is only used in simulation, and the parameters of the two controllers are set
to be the same. The parameters of the robot tracking control system are set as k11 = k12 = 8
and K2 = diag(30, 30), and the observer parameter is chosen as k f = diag(20, 20).

The simulation results when the tracking error constraint boundary is set to kq1(t) =
kq2(t) = 108 are shown in Figures 10–13. Observing the simulation results, we can see that
the improved time-variant logarithmic barrier function-based controllers (21) and (33) are
feasible in dealing with tracking control of the unconstrained system. In addition, when
we set the constraint boundary to be kq1(t) = kq2(t) = 108, the traditional BLF in [43] also
ensures that the tracking control is successful, although it does not meet the Lyapunov
stability theory. From Figures 10 and 11, it can be seen that the two controllers have similar
tracking effects due to the same virtual control law and the same parameters selected.
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However, the velocity tracking error and control input have significant shake at the initial
moment in Figures 12 and 13. In addition, it can be seen from the simulation results of the
three cases that the initial control input increases sharply due to the large position tracking
error and the fact that the tracking error is very close to the constraint boundary. This
phenomenon can easily lead to the failure of control tasks and damage to actuators. In
order to ensure the smooth progress of robot tracking control tasks, the problem of input
saturation will be further studied in our future articles.
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5. Conclusions and Future Research

In this work, by developing an improved universal logarithmic barrier function for the
first time to deal with symmetric time-variant and time-invariant state constraints of the
system and system without state-constrained requirements, the adaptive constraint control
approach is presented for trajectory tracking problems for the n-link robotic system with
system uncertain terms. The presented algorithm with the improved universal logarithmic
BLF is a general one that is not only applicable to systems with constrained needs but also
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to systems without constrained needs. And the corresponding Theorem on the proposed
barrier function is also provided to prove the stability of the robotic system. An observer is
led into estimating and compensating for the uncertain terms of the system. We indicate,
from the results of three simulation cases, that the robotic system’s position error vector
can trend to zero asymptotically with acceptable accuracy.

In the future, we will change the symmetric logarithmic BLF proposed in this paper to
an asymmetric one. The time-varying logarithmic barrier function proposed for the first
time in this article is in a symmetric form; however, when the constraint boundary of the
state becomes asymmetric, the control schemes based on the proposed barrier function
will be useless. Although the barrier function in this article has the advantage of handling
unconstrained systems compared to existing barrier functions, we still need to improve the
barrier function in this article to handle asymmetric constraint problems. Moreover, the
input saturation phenomenon often occurs in barrier function-based control tasks. In order
to address the adverse effects of actuator saturation on control, it is necessary to introduce
saturation control technology into robot constraint control.

Author Contributions: Conceptualization, methodology, software, validation, resources, writing—
original draft preparation, visualization, and funding acquisition, T.Z.; formal analysis, investigation,
data curation, writing—review and editing, supervision, and project administration, J.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Start-up Fee for Scientific Research of High-level Talents
in 2022 under Grant Nos. WGKQ2022006 and WGKQ2022052 and the Scientific Research Projects of
Universities in Anhui Province under Grant No. 2022AH051674.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data utilized to support the findings of this work are contained in
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, L.; Chen, G.; Wang, X.; Tang, W.K.S. Controllability of networked mimo systems. Automatica 2016, 69, 405–409. [CrossRef]
2. Liu, L.; Tian, S.; Xue, D.; Zhang, T.; Chen, Y.; Zhang, S. A Review of Industrial MIMO Decoupling Control. Int. J. Control Autom.

Syst. 2019, 17, 1246–1254. [CrossRef]
3. Ji, R.; Li, D.; Ma, J.; Ge, S.S. Saturation-Tolerant Prescribed Control of MIMO Systems With Unknown Control Directions. IEEE

Trans. Fuzzy Syst. 2022, 30, 5116–5127. [CrossRef]
4. Tang, F.; Niu, B.; Wang, H.; Zhang, L.; Zhao, X. Adaptive Fuzzy Tracking Control of Switched MIMO Nonlinear Systems With

Full State Constraints and Unknown Control Directions. IEEE Trans. Circuit Syst. II Express Briefs 2022, 69, 2912–2916. [CrossRef]
5. Yang, T.; Sun, N.; Fang, Y. Adaptive Fuzzy Control for a Class of MIMO Underactuated Systems With Plant Uncertainties and

Actuator Deadzones: Design and Experiments. IEEE Trans. Cybern. 2022, 52, 8213–8226. [CrossRef]
6. Homaeinezhad, M.R.; Yaqubi, S.; Gholyan, H.M. Control of MIMO mechanical systems interacting with actuators through

viscoelastic linkages. Mech. Mach. Theory 2020, 147, 103763. [CrossRef]
7. Hou, Q.; Ding, S. GPIO Based Super-Twisting Sliding Mode Control for PMSM. IEEE Trans. Circuit Syst. II Express Briefs 2021, 68,

747–751. [CrossRef]
8. Cao, J.; Xie, S.Q.; Das, R. MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles. IEEE Trans. Control

Syst. Technol. 2018, 26, 274–281. [CrossRef]
9. Hu, X.; Hu, C.; Si, X.; Zhao, Y. Robust Sliding Mode-Based Learning Control for MIMO Nonlinear Nonminimum Phase System in

General Form. IEEE Trans. Cybern. 2019, 49, 3793–3805. [CrossRef]
10. Bagheri, F.; Komurcugil, H.; Kukrer, O.; Guler, N.; Bayhan, S. Multi-Input Multi-Output-Based Sliding-Mode Controller for

Single-Phase Quasi-Z-Source Inverters. IEEE Trans. Ind. Electron. 2020, 67, 6439–6449. [CrossRef]
11. Sui, S.; Tong, S. Finite-Time Fuzzy Adaptive PPC for Nonstrict-Feedback Nonlinear MIMO Systems. IEEE Trans. Cybern. 2023, 53,

732–742. [CrossRef]
12. He, W.; Kong, L.; Dong, Y.; Yu, Y.; Yang, C.; Sun, C. Fuzzy Tracking Control for a Class of Uncertain MIMO Nonlinear Systems

With State Constraints. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 543–554. [CrossRef]
13. Kadri, M.B. Model-Free Fuzzy Adaptive Control for MIMO Systems. Arab. J. Sci. Eng. 2017, 42, 2799–2808. [CrossRef]

https://doi.org/10.1016/j.automatica.2016.03.013
https://doi.org/10.1007/s12555-018-0367-4
https://doi.org/10.1109/TFUZZ.2022.3166244
https://doi.org/10.1109/TCSII.2022.3149886
https://doi.org/10.1109/TCYB.2021.3050475
https://doi.org/10.1016/j.mechmachtheory.2019.103763
https://doi.org/10.1109/TCSII.2020.3008188
https://doi.org/10.1109/TCST.2017.2654424
https://doi.org/10.1109/TCYB.2018.2874682
https://doi.org/10.1109/TIE.2019.2938494
https://doi.org/10.1109/TCYB.2022.3163739
https://doi.org/10.1109/TSMC.2017.2749124
https://doi.org/10.1007/s13369-017-2441-2


Processes 2023, 11, 2785 21 of 22

14. Zeng, Z.G.; Zheng, W.X. Multistability of neural networks with time-varying delays and concave-convex characteristics. IEEE
Trans. Neural Netw. Learn. Syst. 2012, 23, 293–305. [CrossRef] [PubMed]

15. Zeng, Z.G.; Zheng, W.X. Multistability of two kinds of recurrent neural networks with activation functions symmetrical about the
origin on the phase plane. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1749–1762. [CrossRef] [PubMed]

16. Jin, Q.; Wang, H.; Su, Q.; Jiang, B.; Liu, Q. A novel optimization algorithm for MIMO Hammerstein model identification under
heavy-tailed noise. Isa Trans. 2018, 72, 77–91. [CrossRef]

17. Wallam, F.; Tan, C.P. Output feedback Cross-Coupled Nonlinear PID based MIMO control scheme for Pressurized Heavy Water
Reactor. J. Frankl. Inst. 2019, 356, 8012–8048. [CrossRef]

18. Lee, H.; Snyder, S.; Hovakimyan, N. L1 Adaptive Output Feedback Augmentation for Missile Systems. IEEE Trans. Aerosp.
Electron. Syst. 2018, 54, 680–692. [CrossRef]

19. Tong, S.; Li, Y. Adaptive Fuzzy Output Feedback Control of MIMO Nonlinear Systems With Unknown Dead-Zone Inputs. IEEE
Trans. Fuzzy Syst. 2013, 21, 134–146. [CrossRef]

20. Nguyen, C.H.; Leonessa, A. Adaptive Predictor-Based Output Feedback Control for a Class of Unknown MIMO Linear Systems.
J. Nonlinear Sci. 2017, 27, 1257–1290. [CrossRef]

21. Li, Y.; Li, K.; Tong, S. Finite-Time Adaptive Fuzzy Output Feedback Dynamic Surface Control for MIMO Non-strict Feedback
Systems. IEEE Trans. Fuzzy Syst. 2019, 27, 96–110. [CrossRef]

22. Shi, W. Adaptive Fuzzy Output-Feedback Control for Nonaffine MIMO Nonlinear Systems With Prescribed Performance. IEEE
Trans. Fuzzy Syst. 2021, 29, 1107–1120. [CrossRef]

23. Dimanidis, I.S.; Bechlioulis, C.P.; Rovithakis, G.A. Output Feedback Approximation-Free Prescribed Performance Tracking
Control for Uncertain MIMO Nonlinear Systems. IEEE Trans. Autom. Control 2020, 65, 5058–5069. [CrossRef]

24. Sui, S.; Xu, H.; Tong, S.; Chen, C.L.P. Prescribed Performance Fuzzy Adaptive Output Feedback Control for Nonlinear MIMO
Systems in a Finite Time. IEEE Trans. Fuzzy Syst. 2022, 30, 3633–3644. [CrossRef]

25. Bikas, L.N.; Rovithakis, G.A. Prescribed Performance Tracking of Uncertain MIMO Nonlinear Systems in the Presence of Delays.
IEEE Trans. Autom. Control 2023, 68, 96–107. [CrossRef]

26. Wang, J.; Li, R.; Zhang, G.; Wang, P.; Guo, S. Continuous sliding mode iterative learning control for output constrained MIMO
nonlinear systems. Inf. Sci. 2021, 556, 288–304. [CrossRef]

27. Jin, X. Adaptive Fixed-Time Control for MIMO Nonlinear Systems With Asymmetric Output Constraints Using Universal Barrier
Functions. IEEE Trans. Autom. Control 2019, 64, 3046–3053. [CrossRef]

28. Liu, Y.-J.; Gong, M.; Liu, L.; Tong, S.; Chen, C.L.P. Fuzzy Observer Constraint Based on Adaptive Control for Uncertain Nonlinear
MIMO Systems With Time-Varying State Constraints. IEEE Trans. Cybern. 2021, 51, 1380–1389. [CrossRef]

29. Qiu, J.; Sun, K.; Rudas, I.J.; Gao, H. Command Filter-Based Adaptive NN Control for MIMO Nonlinear Systems With Full-State
Constraints and Actuator Hysteresis. IEEE Trans. Cybern. 2020, 50, 2905–2915. [CrossRef]

30. Wu, L.-B.; Park, J.H.; Xie, X.-P.; Liu, Y.-J. Neural Network Adaptive Tracking Control of Uncertain MIMO Nonlinear Systems With
Output Constraints and Event-Triggered Inputs. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 695–707. [CrossRef]

31. Li, M.; Li, Y.; Ge, S.S.; Lee, T.H. Adaptive Control of Robotic Manipulators With Unified Motion Constraints. IEEE Trans. Syst.
Man Cybern. Syst. 2017, 47, 184–194. [CrossRef]

32. Ouyang, Y.; Dong, L.; Sun, C. Critic Learning-Based Control for Robotic Manipulators With Prescribed Constraints. IEEE Trans.
Cybern. 2022, 52, 2274–2283. [CrossRef] [PubMed]

33. Zhao, K.; Song, Y. Neuroadaptive Robotic Control Under Time-Varying Asymmetric Motion Constraints: A Feasibility-Condition-
Free Approach. IEEE Trans. Cybern. 2020, 50, 15–24. [CrossRef] [PubMed]

34. Tang, Z.-L.; Ge, S.S.; Tee, K.P.; He, W. Adaptive neural control for an uncertain robotic manipulator with joint space constraints.
Int. J. Control 2016, 89, 1428–1446. [CrossRef]

35. Zhang, S.; Dong, Y.; Ouyang, Y.; Yin, Z.; Peng, K. Adaptive Neural Control for Robotic Manipulators With Output Constraints
and Uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5554–5564. [CrossRef]

36. He, W.; David, A.O.; Yin, Z.; Sun, C. Neural Network Control of a Robotic Manipulator With Input Deadzone and Output
Constraint. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 759–770. [CrossRef]

37. He, W.; Chen, Y.; Yin, Z. Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints. IEEE Trans. Cybern.
2016, 46, 620–629. [CrossRef]

38. Li, D.-P.; Li, D.-J. Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown
Time-Varying Delays. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2219–2228. [CrossRef]

39. Sun, W.; Su, S.-F.; Xia, J.; Nguyen, V.-T. Adaptive Fuzzy Tracking Control of Flexible-Joint Robots With Full-State Constraints.
IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2201–2209. [CrossRef]

40. Yang, C.; Huang, D.; He, W.; Cheng, L. Neural Control of Robot Manipulators With Trajectory Tracking Constraints and Input
Saturation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4231–4242. [CrossRef]

41. Yu, X.; He, W.; Li, H.; Sun, J. Adaptive Fuzzy Full-State and Output-Feedback Control for Uncertain Robots With Output
Constraint. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 6994–7007. [CrossRef]

42. Sun, W.; Wu, Y.; Lv, X. Adaptive Neural Network Control for Full-State Constrained Robotic Manipulator With Actuator
Saturation and Time-Varying Delays. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3331–3342. [CrossRef]

https://doi.org/10.1109/TNNLS.2011.2179311
https://www.ncbi.nlm.nih.gov/pubmed/24808508
https://doi.org/10.1109/TNNLS.2013.2262638
https://www.ncbi.nlm.nih.gov/pubmed/24808609
https://doi.org/10.1016/j.isatra.2017.10.001
https://doi.org/10.1016/j.jfranklin.2019.06.029
https://doi.org/10.1109/TAES.2017.2764218
https://doi.org/10.1109/TFUZZ.2012.2204065
https://doi.org/10.1007/s00332-017-9368-3
https://doi.org/10.1109/TFUZZ.2018.2868898
https://doi.org/10.1109/TFUZZ.2020.2969110
https://doi.org/10.1109/TAC.2020.2970003
https://doi.org/10.1109/TFUZZ.2021.3119750
https://doi.org/10.1109/TAC.2021.3135276
https://doi.org/10.1016/j.ins.2020.12.003
https://doi.org/10.1109/TAC.2018.2874877
https://doi.org/10.1109/TCYB.2019.2933700
https://doi.org/10.1109/TCYB.2019.2944761
https://doi.org/10.1109/TNNLS.2020.2979174
https://doi.org/10.1109/TSMC.2016.2608969
https://doi.org/10.1109/TCYB.2020.3003550
https://www.ncbi.nlm.nih.gov/pubmed/32649288
https://doi.org/10.1109/TCYB.2018.2856747
https://www.ncbi.nlm.nih.gov/pubmed/30080154
https://doi.org/10.1080/00207179.2015.1135351
https://doi.org/10.1109/TNNLS.2018.2803827
https://doi.org/10.1109/TSMC.2015.2466194
https://doi.org/10.1109/TCYB.2015.2411285
https://doi.org/10.1109/TSMC.2017.2703921
https://doi.org/10.1109/TSMC.2018.2870642
https://doi.org/10.1109/TNNLS.2020.3017202
https://doi.org/10.1109/TSMC.2019.2963072
https://doi.org/10.1109/TNNLS.2021.3051946


Processes 2023, 11, 2785 22 of 22

43. Lu, S.-M.; Li, D.-P.; Liu, Y.-J. Adaptive Neural Network Control for Uncertain Time-Varying State Constrained Robotics Systems.
IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2511–2518. [CrossRef]

44. Liu, Y.-J.; Lu, S.; Tong, S. Neural Network Controller Design for an Uncertain Robot With Time-Varying Output Constraint. IEEE
Trans. Syst. Man Cybern. Syst. 2017, 47, 2060–2068. [CrossRef]

45. Wu, Y.; Huang, R.; Wang, Y.; Wang, J. Adaptive tracking control of robot manipulators with input saturation and time-varying
output constraints. Asian J. Control 2020, 23, 1476–1489. [CrossRef]

46. He, W.; Huang, H.; Ge, S.S. Adaptive Neural Network Control of a Robotic Manipulator With Time-Varying Output Constraints.
IEEE Trans. Cybern. 2017, 47, 3136–3147. [CrossRef]

47. Liu, K.; Gao, H.; Ji, H.; Hao, Z. Adaptive Sliding Mode Based Disturbance Attenuation Tracking Control for Wheeled Mobile
Robots. Int. J. Control Autom. Syst. 2020, 18, 1288–1298. [CrossRef]

48. Wang, Y.; Liu, K.; Ji, H. Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external
disturbances and input saturation. Nonlinear Dyn 2022, 108, 207–222. [CrossRef]

49. Liu, K.; Wang, R.; Wang, X.; Wang, X. Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for
a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 2021, 115, 106790. [CrossRef]

50. Yu, J.; Shi, P.; Dong, W.; Lin, C. Command Filtering-Based Fuzzy Control for Nonlinear Systems With Saturation Input. IEEE
Trans. Cybern. 2017, 47, 2472–2479. [CrossRef]

51. Tee, K.P.; Ge, S.S.; Tay, E.H. Barrier Lyapunov Functions for the control of output-constrained nonlinear systems. Automatica 2009,
45, 918–927. [CrossRef]

52. Liang, X.; Wang, H.; Zhang, Y. Adaptive nonsingular terminal sliding mode control for rehabilitation robots. Comput. Electr. Eng.
2022, 99, 107718. [CrossRef]

53. Ames, A.D.; Xu, X.; Grizzle, J.W.; Tabuada, P. Control Barrier Function Based Quadratic Programs for Safety Critical Systems.
IEEE Trans. Autom. Control 2017, 62, 3861–3876. [CrossRef]

54. Clark, A. Control barrier functions for stochastic systems. Automatica 2021, 130, 109688. [CrossRef]
55. Alan, A.; Molnar, T.G.; Das, E.; Ames, A.D.; Orosz, G. Disturbance Observers for Robust Safety-Critical Control With Control

Barrier Functions. IEEE Control Syst. Lett. 2023, 7, 1123–1128. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSMC.2017.2755377
https://doi.org/10.1109/TSMC.2016.2606159
https://doi.org/10.1002/asjc.2305
https://doi.org/10.1109/TCYB.2017.2711961
https://doi.org/10.1007/s12555-019-0262-7
https://doi.org/10.1007/s11071-021-07182-9
https://doi.org/10.1016/j.ast.2021.106790
https://doi.org/10.1109/TCYB.2016.2633367
https://doi.org/10.1016/j.automatica.2008.11.017
https://doi.org/10.1016/j.compeleceng.2022.107718
https://doi.org/10.1109/TAC.2016.2638961
https://doi.org/10.1016/j.automatica.2021.109688
https://doi.org/10.1109/LCSYS.2022.3232059

	Introduction 
	Problem Statements and Preliminaries 
	Improved Time-Varying Barrier Function 
	System Formulation 
	Basic Assumptions and System Transformation 

	Design Process of Controller and Stability Analysis 
	Simulation and Discussion 
	Control in Case 1 
	Control in Case 2 
	Control in Case 3 

	Conclusions and Future Research 
	References

