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Abstract: The process design of hot air reflow soldering is one of the key factors affecting the quality
of PCBA (Printed Circuit Board Assembly) component products. In order to improve the product
quality during the design process, this paper proposes a robust optimization-based finite element
simulation analysis method including significant influencing factor screening, robustness evaluation,
robust optimization, and reliability verification for the reflow soldering process. The simulation
model of the reflow soldering process temperature field based on experiments is constructed and
validated. Sensitivity analysis is used to select important influencing factors, such as the last five set
temperature zones (T5 to T9) in the reflow oven and the thermal properties of materials such as PCBs
(printed circuit boards), BGAs (ball grid arrays), and solder paste, as well as noise factors like the
heating environment during the soldering process. Several surrogate models are used to construct
the response surface, and the optimal fitting scheme is selected to effectively avoid poor fitting caused
by inappropriate surrogate models. The 6σ robust optimization approach is introduced to evaluate
and optimize the robustness of the process design parameter where the heating factor is chosen as
the optimization target. The reliability analysis method is employed to validate the product quality.
This paper establishes a comprehensive robustness analysis method for hot air reflow soldering,
effectively reducing design costs and addressing the lack of robustness analysis in the current hot air
reflow soldering process design.

Keywords: reflow soldering; process design; robust optimization; surrogate model

1. Introduction

With the trend of integration and miniaturization in electronic products, chip compo-
nents have emerged, giving rise to the reflow soldering process, which quickly replaced the
traditional manual soldering method in production processes. However, this advancement
also brings complexity to process design and involves numerous influencing factors. As
process technology continues to develop, high reliability and robustness have become the
industry’s trends, especially in fields such as aerospace, aviation, and missile applications,
where stringent operating environments require the precise design of the reflow soldering
process window to meet high-quality soldering requirements. For most electronic products,
the yield rate is the primary concern in the production process. Achieving high reliability
and robustness in the reflow soldering process is crucial to ensure the optimal performance
and functionality of electronic devices.

In most practical production processes, the process design commonly adopts a limited
number of experiments and adjustments of process parameters, known as the “trial and
error” method, to determine the optimal process parameters. However, this approach is
inherently flawed, as it involves long design cycles and high costs. Additionally, it fails to
account for the impact of uncertain factors such as material fluctuations and environmental
loads, making it challenging to guarantee a high yield rate for products. In recent years,
there have been numerous publications focusing on the analysis of the reflow soldering
process. Esfandyari et al. [1] developed a simulation model using the finite element method
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to study the optimization relationship between process parameters, simulated thermal
processes, and porosity in solder joints of a reflow oven under pressure. Khatibi et al. [2]
conducted finite element simulations of PbSnAg solder using a stress rate and pressure-
related material model to analyze its stress and strain states under static and cyclic loading
conditions. Li Z.H. et al. [3] employed molecular dynamics to investigate the growth of in-
termetallic compounds (IMCs) between low-silver composite solders and copper substrates
during the reflow soldering process. They explored the factors influencing copper atom
diffusion rates, and explained the mechanisms behind the addition of CeOz nanoparticles
in copper atom diffusion behavior and interfacial IMC growth. Long Xu et al. [4] improved
the Coffin–Manson model and utilized the finite element method to predict the fatigue life
of SAC305 solder joints under temperature cycling coupled with an electrical current. They
revealed the performance advantages of lead-free solder with a high yield strength, and
ultimate strength in the thermal fatigue and current density aspects. It is evident that there
has been considerable research on reflow soldering, particularly in terms of reliability, in
response to the trends of high reliability and robustness.

The current research on the robustness of reflow soldering processes is relatively
limited and mainly relies on empirical or semi-empirical designs. Chowdhury et al. [5]
utilized orthogonal experimental design to analyze the main factors causing variations
in lead-free processes and optimized the solder wetting with the goal of achieving the
best combination of strength through thermal cycling verification. Kung Chieh et al. [6]
employed orthogonal experimental design to perform robust design analysis on the thermal-
mechanical reliability of MCM (multi-chip module) packaging with flip-chip technology.
They identified the substrate’s CTE (coefficient of thermal expansion) as the most significant
factor influencing the reliability of coating fatigue and obtained the optimal combination
parameters, resulting in a 554.5% increase in fatigue life under the best combination pa-
rameters. Chun-Sean Lau et al. [7] used the grey Taguchi method to optimize the thermal
stress and cooling rate of BGA solder joints, determining the optimal parameter settings for
multiple performance characteristics and validating the effectiveness of the optimization
results through simulation experiments. Zhou Jicheng et al. [8] applied robust design
and finite element methods, focusing on the thermal-mechanical fatigue life of solder
joints. Considering eight control factors, they employed experimental design to optimize
PBGA (plastic ball grid array) solder joints and obtained the optimal combination scheme.
Tsai Tsung-Nan et al. [9] proposed a Taguchi method based on fuzzy logic to optimize the
fine-pitch steel mesh printing process. They used multiple response optimization and
analysis of variance (ANOVA) to determine the significant factors and compared the op-
timization performance with two hybrid methods. Sridhar Canumalla [10] introduced a
response surface method to address advanced packaging reliability and robustness design
issues. They described the descending life response function derived from the strain energy
principle and presented a systematic approach to solve packaging reliability problems
at the system level. Fupei Wu et al. [11] presented a robust positioning method for PCB
solder joints, which offers higher precision and efficiency for smaller-sized positioning by
eliminating uncertain factors. From the existing literature, it is evident that experimental
design methods have been used to achieve robust design in reflow soldering processes.
However, for aerospace electronic products with stringent requirements, the current meth-
ods still have significant limitations. Additionally, the influence of some important factors
such as the temperature of the preheating zones and the material properties of the PCBA
components on the robustness of the reflow soldering process have not been investigated,
mainly due to the cost of the experimental design methods. Therefore, there is an urgent
need for modern robust optimization methods that consider input fluctuations and ensure
output consistency in the design of reflow soldering processes to meet the development
trends of high reliability and robustness in electronic products.

This study adopts the 6σ criterion and considers the fluctuations in the temperature
parameters of each zone in the reflow oven around their set values, as well as the influence
of material characteristics’ fluctuations of PCBA components on the process. By selecting
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relevant influencing factors, a robustness evaluation module based on surrogate models
and an embedded robustness optimization analysis module are constructed. This enables
the automatic search for optimal robust design solutions, taking into account the impact of
uncertain factors during the initial design stage. The proposed method offers a low-cost,
efficient, and high-quality optimization approach, making it highly valuable for improving
the yield rate in practical engineering applications.

2. Establishing Accurate Simulation Model

Reflow soldering, as one of the key processes in SMT (surface mount technology)
production, directly affects the soldering quality and reliability of electronic products [12].
Its essence lies in the process of “heating”, which involves heating the air and using fans to
deliver the heated airflow to the soldering surface. This action melts the solder paste and
forms solder joints between surface-mounted components and the PCB without altering the
original characteristics of electronic components [13], as shown in Figure 1, the schematic
diagram of the reflow soldering process. The core of this process involves designing
temperature profiles and furnace temperature settings. The temperature profile refers to
the “temperature-time” curve established for the representative packages and solder paste
used in soldering PCBA. It also includes the “temperature-time” curve for testing points
on the PCBA. Only within a reasonable process window can the product achieve high
reliability. On the other hand, furnace temperature settings refer to the temperatures set
by operators for each zone’s built-in thermocouples on the control panel, according to the
designed temperature profile.
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Figure 1. Schematic of the reflow soldering process.

During the production process, the temperature profile at the solder joints is either
equal to or fixed at a certain difference from the furnace temperature setting. As they are
mainly influenced by factors such as the environment, materials, or structural dimensions,
it is generally necessary to adjust process parameters through design. This includes
temperature adjustments in various zones, conveyor belt speed, airflow, etc. [14] to achieve
the appropriate process requirements and ensure a higher yield of good-quality products.

To establish an accurate simulation analysis of the reflow soldering process, this paper
utilizes the Ansys Icepak finite element simulation module, which effectively addresses
the inconsistency between the temperature profile at the solder joints and the furnace
temperature setting. By designing the specified temperature, the simulation can obtain the
desired temperature profile at the solder joints, allowing for an assessment of the rationality
of process parameters. This approach omits the calculation of convective heat transfer
coefficients during the intermediate process, thereby reducing the errors introduced in the
intermediate steps.

This paper focuses on a specific model of hot air reflow soldering oven as the research
subject. The main objective is to establish an accurate simulation model for the thermal
field of the reflow soldering process. This is achieved through three steps: first, the actual
dimensions of the reflow oven cavity are measured; second, an equivalent geometric model



Processes 2023, 11, 2716 4 of 19

of the real PCBA components is created; and third, an equivalent thermal property parame-
ter model is established. By addressing the challenges of measuring certain parameters,
this approach enables the construction of a precise simulation model for the hot air reflow
soldering process.

2.1. Reflow Soldering Oven Chamber Size

The reflow soldering oven has eight front heating zones and two rear cooling zones,
with each zone having a transition area between them. As shown in Figure 2, based on
actual measurements, the width of each individual reflow zone (W) is W = 630 mm,
the length (L) is L = 320 mm, and the height from the outlet to the conveyor rail (H) is
H = 45 mm. Each circular nozzle has a diameter (D) of D = 7.5 mm and is arranged in a
regular hexagonal pattern. The horizontal spacing (D1) between the nozzles is D1 = 25 mm,
and the vertical spacing (D2) is D2 = 12.5 mm. The distribution of the oven cavity is
consistent both vertically and horizontally. The experimental conveyor speed is set at
80 cm/min.

Processes 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

transfer coefficients during the intermediate process, thereby reducing the errors intro-
duced in the intermediate steps. 

This paper focuses on a specific model of hot air reflow soldering oven as the research 
subject. The main objective is to establish an accurate simulation model for the thermal 
field of the reflow soldering process. This is achieved through three steps: first, the actual 
dimensions of the reflow oven cavity are measured; second, an equivalent geometric 
model of the real PCBA components is created; and third, an equivalent thermal property 
parameter model is established. By addressing the challenges of measuring certain pa-
rameters, this approach enables the construction of a precise simulation model for the hot 
air reflow soldering process. 

2.1. Reflow Soldering Oven Chamber Size 
The reflow soldering oven has eight front heating zones and two rear cooling zones, 

with each zone having a transition area between them. As shown in Figure 2, based on 
actual measurements, the width of each individual reflow zone (W) is 𝑊 = 630 mm, the 
length (L) is 𝐿 = 320 mm, and the height from the outlet to the conveyor rail (H) is 𝐻 =45 mm. Each circular nozzle has a diameter (D) of 𝐷 = 7.5 mm and is arranged in a regu-
lar hexagonal pattern. The horizontal spacing (D1) between the nozzles is 𝐷1 = 25 mm, 
and the vertical spacing (D2) is 𝐷2 = 12.5 mm. The distribution of the oven cavity is con-
sistent both vertically and horizontally. The experimental conveyor speed is set at 80 cm/min. 

 
Figure 2. Furnace cavity model based on actual measurements: (a) image of the furnace cavity; (b) 
single-zone furnace cavity model; (c) inlet port size. 

2.2. PCBA Component Equivalent Model 
This experiment focuses on a specific PCBA produced by a certain manufacturer. The 

printed circuit board consists of a material substrate with copper foil for electrical inter-
connections. The board integrates various packaged components, including ball grid ar-
rays (BGAs), chips, and resistors. An equivalent geometric model of the PCBA compo-
nents based on the actual components is established for the research. Considering the pre-
cision requirements for smaller-sized components that have a minimal impact on the tem-
perature field, they are either neglected or treated with a simplified approach. Complex 
components such as BGAs are simplified using a thermal resistance network model to 
obtain the simplified model, as shown in Figure 3, and the thermal material properties of 
each component are obtained and listed in Table 1. 

Figure 2. Furnace cavity model based on actual measurements: (a) image of the furnace cavity;
(b) single-zone furnace cavity model; (c) inlet port size.

2.2. PCBA Component Equivalent Model

This experiment focuses on a specific PCBA produced by a certain manufacturer.
The printed circuit board consists of a material substrate with copper foil for electrical
interconnections. The board integrates various packaged components, including ball
grid arrays (BGAs), chips, and resistors. An equivalent geometric model of the PCBA
components based on the actual components is established for the research. Considering
the precision requirements for smaller-sized components that have a minimal impact on the
temperature field, they are either neglected or treated with a simplified approach. Complex
components such as BGAs are simplified using a thermal resistance network model to
obtain the simplified model, as shown in Figure 3, and the thermal material properties of
each component are obtained and listed in Table 1.

Table 1. Thermal properties of various materials.

Material Density
(kg/m3)

Specific Heat Capacity
(J/(kg·◦C))

Thermal Conductivity
(W/m·◦C)

Cu 8839

20 ◦C 356.8
80 ◦C 375.5

120 ◦C 388.0
160 ◦C 400.4
200 ◦C 412.8
225 ◦C 420.6
240 ◦C 425.3

20 ◦C 521.5
80 ◦C 532.0

120 ◦C 539.0
160 ◦C 546.0
200 ◦C 553.3
225 ◦C 557.7
240 ◦C 560.0
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Table 1. Cont.

Material Density
(kg/m3)

Specific Heat Capacity
(J/(kg·◦C))

Thermal Conductivity
(W/m·◦C)

Substrate 1859

20 ◦C 1100
80 ◦C 1400

120 ◦C 1500
160 ◦C 1550
200 ◦C 1600
225 ◦C 1610
240 ◦C 1640

0.29

Solder paste
Sn63Pb37 8218 196 50.2

Components 1800

40 ◦C 840
80 ◦C 850

120 ◦C 900
160 ◦C 960
200 ◦C 1000
225 ◦C 1050
240 ◦C 900

18
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2.3. Parameter Correction

In Icepak simulation analysis, determining the temperature and airflow velocity of
the nozzles is crucial. The temperature of the nozzles represents the set temperature, while
the airflow velocity is a challenging parameter to measure accurately, yet it significantly
affects the temperature field. To ensure the precision of the model within a deviation
range of ±10 ◦C, establishing an accurate simulation model is essential. In the previous
literature, the calculation of airflow velocity has been based on H. Martin’s formula [15].
However, this approach has certain limitations [16], and when applied to this experiment,
it introduces considerable errors, as shown in Figure 4. The simulated curve exhibits poor
fitting to the measured curve, indicating significant discrepancies.

Therefore, this experiment adopts the method of temperature field correction based
on established real measurement data, including four processes: building the reflow sol-
dering process simulation model, determining the experimental design, constructing the
response surface model, and optimizing and solving. Specifically, using aluminum alloy
2A12− H112 plate as the test object, with the nozzle air velocity of 10 temperature zones as
the variable, and minimizing the difference between the simulated curve and the measured
curve at monitoring points as the objective, the optimized parameters of air velocity in
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each temperature zone are obtained through the response surface optimization method.
The before and after correction, the error between the measured temperature curve and the
simulated temperature curve is shown in Figure 5. It can be observed that the error before
correction is mostly around 66.7% greater than ±10 ◦C, and even reaches nearly 20 ◦C at
the maximum deviation. However, after correction, the error is mainly within the range of
(−5, 5) ◦C, indicating a significant improvement in the correction effect.
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To ensure the reliability of the correction results, the actual printed circuit board
assembly component mentioned above was used as the validation object. By comparing
the measured results of the PCBA component with the corrected simulation results, the
accuracy of the correction effect was verified. The final results are shown in Table 2. It
can be observed that the temperature differences between the two simulations and the
measurements are all less than 6 ◦C, thus meeting the accuracy requirement.

Table 2. Parameters’ correction results for each temperature zone.

Temperature Zone 1 2 3 4 5 6 7 8 9 10

Set Temperature (◦C ) 160 170 180 180 180 210 260 250 130 130
Corrected Result (Wind Speed, m/s ) 15.37 14.21 11.59 11.50 11.06 6.02 5.04 7.07 6.88 2.51

Max Temperature Difference ∗ ∆1 (◦C) 5.04 2.85 3.61 3.60 2.89 0.73 5.47 1.37 3.99 5.01
Max Temperature Difference ∆2 (◦C) 2.56 3.47 2.41 0.51 2.45 4.48 5.61 1.25 4.91 1.02

∗ ∆1 represents the maximum error between simulation and measurement for each temperature zone of the alu-
minum alloy plate. ∆2 represents the maximum error between simulation and measurement for each temperature
zone of the printed circuit board.
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3. Parameter Selection Strategy Based on Sensitivity Analysis
3.1. Theoretical Basis

Sensitivity analysis is a technique that explores the extent to which the output re-
sponses of a system or model are influenced by changes in various input variables. It
mainly includes local sensitivity analysis [17] and global sensitivity analysis [18]. Currently,
mainstream global sensitivity analysis methods include the correlation coefficient method,
the Morris filtering method, variance-based methods, etc. In this study, the variance-based
global sensitivity analysis is adopted, specifically using a surrogate model-based approach.
The fundamental idea is to construct an approximate mathematical model based on a set of
training samples to replace the real model.

However, global sensitivity analysis based on surrogate models encounters two main
sources of error: firstly, the approximation error of the surrogate model to the real model;
secondly, the error arising from the low accuracy of the surrogate model leading to high-
dimensional integration approximation. To enhance the accuracy of sensitivity analysis,
this chapter adopts a method that connects the Icepak simulation analysis model with
optiSLang data. Moreover, multiple surrogate models are selected for fitting, and the
optimal fitting approach is determined based on the determination coefficient (R2) and the
Coefficient of Prognosis (CoP) of each constraint and objective function.

3.2. Establishment of Optimization Objective

In the reflow soldering process, common process defects include solder voids, solder
cracks, poor solder formation, and inappropriate intermetallic compound [19,20] thickness,
among others. With the advancement of SMT, these common defects have been effectively
controlled. However, for products with high reliability requirements, such as aerospace
products, additional considerations need to be taken into account, including reliability and
thermal fatigue life. These aspects cannot be rapidly identified, hence the need for early
consideration during the process design phase. Based on existing research, it has been
found that the thickness of the IMC significantly affects the reliability of solder joints [21].
Moreover, using the heating factor concept proposed by Professor Wu Yiping [22], a robust
correlation has been established between the solder joint temperature curve and the IMC
thickness, defined as follows:

Qη =
∫ t2

t1
(T(t)− Tm)dt (1)

In the equation, Qη represents the heating factor, Tm is the melting temperature of the
solder alloy, and t1 and t2 are the start and end times when the reflow curve reaches Tm,
respectively. Please refer to Figure 6, where the black region represents this timeframe.
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The proposed heating factor is not necessarily better as it becomes larger (or smaller);
rather, there exists an optimal range. Therefore, while aiming to ensure that all solder
joints of the entire printed circuit board component fall within the optimal range of the
heating factor, it is necessary to identify the most temperature-sensitive “hot spots” and
the least temperature-sensitive “cold spots” on the printed circuit board component. By
controlling the heating factor of the “cold spots” and “hot spots” within a favorable
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range, the optimization can be achieved. Based on the above analysis, this paper sets
up monitoring points as shown in Figure 7, mainly analyzing the temperature curves of
solder joints near the BGA and solder paste, and uses Qη as the optimization objective.
Constraints are established according to the process requirements for Sn63/Pb37 solder
paste reflow soldering, as shown in Table 3.
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Table 3. Objective and constraint settings.

Variables Type Range

Cold spots Qη1, Qη2, Qη3, Qη4 (◦C·s) Objective Minimum
Heating factor Qη1 ∼ Qη4 (◦C·s) Constraint 800~1600

Peak temperature Tem (◦C) Constraint 210~230
Time above liquidus teq (s) Constraint 60~90

Soak time teb (
◦C) Constraint 60~90

Cooling rate Vol (
◦C/s) Constraint 1.2~4

Qη1∼4, respectively, represent the heating factors at the designated four monitoring points, with the point having
the minimum heating factor referred to as the cold point. Tem represents peak temperature, teq represents time
above the liquidus, teb denotes soak time, and Vol signifies cooling rate.

3.3. Identification of Significant Influencing Factors

The above-mentioned objectives and constraints determine the noise factors and
design variables. From the definition of the heating factor, it is known that the main
factors causing changes in the heating factor are in the reflow zone, specifically the
fifth to ninth zones (T5 to T9). Therefore, this study takes T5 to T9 as the optimized design
variables. The noise factors that affect the heating factor of the solder joints mainly include
the material thermal properties of the Sn63/Pb37 solder paste, the components, the BGA
solder balls, the PCB, and the thermal properties of the environmental load nitrogen gas
(N2). This study considers the design errors and defects in various materials, as well as the
facts that the reflow oven’s chambers are not completely isolated and the sides of the cham-
bers have direct contact with the outside environment. As a result, the variable fluctuations
were selected within the range of 1% to 5%. Using the Latin hypercube sampling method,
a total of 100 simulations were performed to obtain the sample points and complete the
sensitivity analysis of noise factor identification. The results of the analysis are shown in
Table 4.

The sensitivity analysis above shows that the noise factors significantly affecting the
objective function and constraint conditions include ρpcb, Cpcb, ρN2 , and CN2 . This indicates
that the PCB has the highest proportion in the entire PCBA assembly and is exposed to
N2 atmosphere during reflow soldering, which has a significant impact on the monitoring
points. On the other hand, BGA solder balls and Sn63/Pb37 solder paste have smaller
volumes, mainly influencing the temperature curves at their respective monitoring points.
Based on these findings, ρpcb, Cpcb, ρN2 , and CN2 were selected as the noise factors.
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Table 4. Quantitative analysis of material sensitivity to constraints and objectives.

Factors Number Qη1 (%) Qη2 (%) Qη3 (%) Qη4 (%) Tem (%) teq (%) teb (%) Vol (%)

PCB Density ρpcb 28.2 27.9 25.5 27.3 27.5 25.1 9.5 28.9
PCB SHC Cpcb 29.5 32.2 32.5 30.7 30.4 29.0 2.8 30.3

PCB Thermal Conductivity Kpcb 2.8
N2 Density ρN2 26.1 25.1 25.2 25.1 26.3 14.3 2.7 23.9

N2 SHC CN2 15.4 13.1 14.0 14.6 14.9 9.2 6.4 15.1
N2 Thermal Conductivity KN2

BGA Solder Ball Density ρBGA 0.6 1.3 2.8
BGA Solder Ball SHC CBGA 2.2 2.6

BGA Solder Ball Thermal
Conductivity KBGA

Sn63/Pb37 Solder Density ρSn−Pb 0.5
Sn63/Pb37 Solder SHC CSn−Pb 5.5 6.1

Sn63/Pb37 Solder Thermal
Conductivity KSn−Pb

In the table, SHC is an abbreviation for specific heat capacity.

4. Model Establishment of Surrogate Model

Due to the high computational cost of the original Icepak simulation model, as well
as the consideration of noise factors and the influence of variable fluctuations in the
subsequent robust optimization design, it is challenging to achieve. Therefore, a surrogate
model was adopted to replace the original model [23].

4.1. The Method for Constructing the Surrogate Model

Unlike existing surrogate models constructed using certain approximation methods
such as polynomial regression or kriging, this study utilized optiSLang with the Metamodel
of Optimal Prognosis (MOP) proposed by Most and Will [24]. The fundamental idea of the
MOP is to search for the optimal input variable set and the most suitable approximation
model. It introduces an independent approach to evaluate the model quality, known as the
Coefficient of Prognosis (CoP), which is defined as follows:

CoP = 1−
SSPrediction

E
SST

=

(
E
[
YTest·ŶTest

]
σYTest σŶTest

)2

(2)

In the formula, SSPrediction
E represents the sum of the squares of the prediction errors;

SST represents the total change in output; YTest represents the real output dataset; ŶTest rep-
resents the output dataset predicted based on the meta-model; σYTest and σŶTest

, respectively,
represent the true and predicted variances. The measure R2, which usually evaluates the
approximate quality of the regression model, is defined as

R2 = 1− SSE
SST

(3)

The difference lies in the selection of the datasets. In simple terms, the calculation of the
CoP values involves using data points that were not used to construct the approximation
model. This means that the model quality is estimated only based on points that were not
used in building the approximation model.

However, the MOP uses the prediction error rather than the fitting error, making it
suitable for both regression and interpolation models. Moreover, to construct fast and
reliable approximation models, linear or quadratic bases of polynomials or moving least
squares approximation (MLS) were the preferred choices.
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4.1.1. Polynomial Regression

Polynomial regression is a commonly used approximation method that has the advan-
tages of simplicity in construction, low computational complexity, and fast convergence.
The model’s response is typically composed of linear or quadratic polynomial basis func-
tions, with or without interaction terms. Its basic theory is as follows:

y(x) = ŷ(x) + ε (4)

In the equation, y(x) represents the actual response function, which is an unknown
function. ŷ(x) represents the approximate function of the response, which needs to be
obtained through fitting. ε represents the error between the approximation and the actual
response.

As a polynomial response model, ŷ(x) is represented as

ŷ(x) = pT(x)β̂ (5)

where pT(x) is the polynomial basis function, defined as

pT(x) =
[
1 x1 x2 · · · x2

1 x2
2 · · · x1x2 · · ·

]
(6)

The vector β̂ is a collection of unknown regression coefficients, obtained through
fitting the model to a set of sample points, assuming independent errors and variances for
each observation. Using matrix representation, the least squares solution is given using

β̂ =
(

PPT
)−1

Py (7)

where P is the polynomial basis matrix containing the sample points, and y is the vector of
sample point values.

4.1.2. Moving Least Squares (MLS) Approximation

In the moving least squares approximation, the local characteristics of regression
were obtained by introducing position-dependent radial weighting functions. The basis
functions can include any type of function, but typically only linear and quadratic terms
are used. This basis function allows for an accurate representation by obtaining the best
local fit to the actual interpolation points. The approximation function is defined as follows:

ŷ(x) = pT(x)a(x) (8)

To obtain the local regression model in the MLS method, a distance-dependent weight-
ing function ω = ω(s) was introduced, where s represents the normalized distance between
the interpolation point and the selected supporting point, given by using

si =
‖x− xi‖

D
(9)

where D is the influence radius, defined as a numerical parameter. All types of functions
can be used as the weighting function ω(s), and in most cases, the well-known Gaussian
weighting function is employed:

ωexp(d) = exp
(
− s2

α2

)
(10)

where α is a numerical constant, and the final approximation function is represented as

ŷ(x) = pT(x)
(

PTW(x)P
)−1

PTW(x)y (11)

where the diagonal matrix W(x) contains the values of the weight function corresponding
to m support points.
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W(x) = diag(ω(d1), ω(d2), . . . , ω(dm)) (12)

4.2. Establishing Response Surface

We selected appropriate variable ranges for the screened design variables. Due to
considering subsequent response surface optimization analysis, some variable ranges
needed to be appropriately expanded. Therefore, the variable ranges for T5~T9 were
selected as follows: T5 (160–220), T6 (180–240), T7 (210–270), T8 (210–270), and T9 (80–150).
The heating factor was chosen as the target value, with the reflow soldering process
requirements as constraints, and considering the influence of noise factors. Through the
established accurate temperature field simulation model, sample points were obtained
using Latin hypercube sampling, and different proxy models were fitted using the above-
mentioned methods. The quality of the approximate model was evaluated using the CoP
and R2, and a correlation analysis report was obtained. The proxy model with the highest
fitting degree was selected to construct the response surface. The basic process is shown in
Figure 8.

Processes 2023, 11, x FOR PEER REVIEW 12 of 20 
 

 

control factors
T5:160~220Ŀ
T6:180~240Ŀ
T7:210~270Ŀ
T8:210~270Ŀ
T9: 80~150Ŀ

temperature field 
simulation model

noise factors

sample 
points

surrogate 
mode 2

surrogate 
mode 3

surrogate 
mode l

MOP

optimal 
output

 
Figure 8. Schematic of response surface construction. 

The results of response analysis are presented in Table 5. Since all constraints and 
objectives were ensured to be within the appropriate process window, it is necessary to 
consider the minimum and maximum values of each response. 

Table 5. Optimal metamodel results report. 

Response Type Model Variables 𝑹𝟐 CoP 𝑄ఎ𝑚𝑖𝑛  Objective, Constraint Kriging (Isotropic kernel) 9 0.999 0.995 𝑄ఎ𝑚𝑎𝑥 Constraint Kriging (Isotropic kernel) 9 0.999 0.995 𝑡௘௕𝑚𝑎𝑥 Constraint Kriging (Isotropic kernel) 2 0.951 0.939 𝑡௘௕𝑚𝑖𝑛 Constraint Kriging (Isotropic kernel) 2 0.929 0.904 𝑉௢௟𝑚𝑎𝑥 Constraint Linear Regression of order 1(no mixed terms) 7 0.983 0.983 𝑉௢௟𝑚𝑖𝑛 Constraint Linear Regression of order 1(with mixed terms) 9 1.000 0.999 𝑇௘௠𝑚𝑎𝑥 Constraint Linear Regression of order 1(no mixed terms) 8 0.997 0.996 𝑇௘௠𝑚𝑖𝑛 Constraint Linear Regression of order 1(no mixed terms) 8 0.994 0.993 𝑡௘௤𝑚𝑎𝑥 Constraint Kriging (Isotropic kernel) 9 0.989 0.952 𝑡௘௤𝑚𝑖𝑛 Constraint Kriging (Isotropic kernel) 9 0.982 0.942 𝑄ఎଵ Objective Kriging (Isotropic kernel) 9 1.000 0.997 𝑄ఎଶ Objective Kriging (Isotropic kernel) 9 0.999 0.995 𝑄ఎଷ Objective Linear Regression of order 1(no mixed terms) 9 0.981 0.980 𝑄ఎସ Objective Linear Regression of order 2(no mixed terms) 9 0.988 0.985 
In the table, “min” represents the minimum value of the variables, and “max” represents the maxi-
mum value of the variables. 

4.3. Accuracy Verification 
To ensure the accuracy of the response surface, it was necessary to perform accuracy 

validation on the constructed response functions. The specific approach involved compar-
ing the optimization results based on the response surface with the results obtained from 
the original temperature field simulation model under the same parameters, ensuring that 
the error for each response was not greater than 5%. In this validation process, noise fac-
tors were not considered, and their values were set to fixed initial values. Particle swarm 
optimization (PSO) [25] was employed for a quick local search on the response surface 
approximated using the proxy model. A gradient-based optimization module was con-
structed using the response surface, and the optimal set of temperatures for T5 to T9 was 
obtained, as shown in Table 6. 

  

Figure 8. Schematic of response surface construction.

The results of response analysis are presented in Table 5. Since all constraints and
objectives were ensured to be within the appropriate process window, it is necessary to
consider the minimum and maximum values of each response.

Table 5. Optimal metamodel results report.

Response Type Model Variables R2 CoP

Qηmin Objective, Constraint Kriging (Isotropic kernel) 9 0.999 0.995
Qηmax Constraint Kriging (Isotropic kernel) 9 0.999 0.995
tebmax Constraint Kriging (Isotropic kernel) 2 0.951 0.939
tebmin Constraint Kriging (Isotropic kernel) 2 0.929 0.904
Volmax Constraint Linear Regression of order 1(no mixed terms) 7 0.983 0.983
Volmin Constraint Linear Regression of order 1(with mixed terms) 9 1.000 0.999
Temmax Constraint Linear Regression of order 1(no mixed terms) 8 0.997 0.996
Temmin Constraint Linear Regression of order 1(no mixed terms) 8 0.994 0.993
teqmax Constraint Kriging (Isotropic kernel) 9 0.989 0.952
teqmin Constraint Kriging (Isotropic kernel) 9 0.982 0.942

Qη1 Objective Kriging (Isotropic kernel) 9 1.000 0.997
Qη2 Objective Kriging (Isotropic kernel) 9 0.999 0.995
Qη3 Objective Linear Regression of order 1(no mixed terms) 9 0.981 0.980
Qη4 Objective Linear Regression of order 2(no mixed terms) 9 0.988 0.985

In the table, “min” represents the minimum value of the variables, and “max” represents the maximum value of
the variables.
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4.3. Accuracy Verification

To ensure the accuracy of the response surface, it was necessary to perform accuracy
validation on the constructed response functions. The specific approach involved com-
paring the optimization results based on the response surface with the results obtained
from the original temperature field simulation model under the same parameters, ensuring
that the error for each response was not greater than 5%. In this validation process, noise
factors were not considered, and their values were set to fixed initial values. Particle
swarm optimization (PSO) [25] was employed for a quick local search on the response
surface approximated using the proxy model. A gradient-based optimization module was
constructed using the response surface, and the optimal set of temperatures for T5 to T9
was obtained, as shown in Table 6.

Table 6. Optimization results based on response surface.

Process Parameters Initial Design Optimized Design

T5 (◦C) 180 183.3
T6 (◦C) 210 202.8
T7 (◦C) 260 239.4
T8 (◦C) 250 244.2
T9 (◦C) 130 122.5

T5~T9 represent the temperatures of the fifth to ninth temperature zones in the reflow oven.

Using the optimal set temperatures (T5~T9) obtained through the response surface
optimization, we input them into the original temperature field simulation model to obtain
the corresponding response values, as shown in Table 7.

Table 7. Comparison of optimization results and original model simulation response values.

Constraints and Objectives
teb (s) Vol (m/s) teq (s) Tem (◦C) Qη (◦C·s)

Max Min Max Min Max Min Max Min Max Min

Calculated 68 64 1.69 1.32 65.95 60.77 212.6 209.7 1055.2 973.4
MOP 68.1 62 1.76 1.32 66.26 60.23 212.8 210.0 1032.4 966.9

Deviation % 0.14 3.12 4.14 0 0.47 0.89 0.09 0.14 1.21 0.67

In the table, “Min” represents the minimum value of the variables, and “Max” represents the maximum value of
the variables.

As shown in the table above, the deviations between the constraints and objectives
obtained from the optimization based on the response surface and the simulation results of
the original temperature field were all less than 5%. Therefore, the accuracy requirements
were met.

5. Robust Optimization Design

Robustness refers to the insensitivity of the dependent variable (outcome or response)
to small variations in the factors (causes or inputs). In simple terms, it involves analyzing
the probability distribution of a product’s design standard. Robustness primarily focuses
on the properties of the probability density curve near its mean, aiming to reduce sensitivity
to variations in material properties and loads. This differs from reliability, which considers
the tail properties of the probability density curve and requires the standard to be greater
than the safety indicator. While these two concepts have differences, they also share certain
connections.

5.1. 6σ Design Theory

To improve the yield of batch products, this study adopts the 6σ robust design method,
considering the influence of noise factors and control factor fluctuations on product quality.
The concept of 6σ originated from the field of quality engineering, and it refers to raising
the probability of producing qualified products to a 6σ level by measuring, analyzing, and
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controlling the impact of uncertainty factors on product quality [26,27]. The purpose of 6σ
design is to ensure that the mean of the objective function and design parameters still meet
the constraint boundaries within the ±6σ range, achieving a product qualification rate of
up to 99.9999998%. Even with the wear of processing molds causing a deviation of 1.5σ in
product manufacturing accuracy, the defective rate is only 0.00034% [28].

Applying the robust design based on 6σ to the reflow soldering process serves two
main purposes: firstly, to analyze the robustness of batch products under a specific process
scheme and establish a robustness evaluation module; secondly, to embed the robustness
evaluation module into the optimization analysis model, constructing a robust optimization
analysis module. Through automated optimization, the most robust process scheme was
obtained. The basic definition is as follows:

minF = ±µ f (x) + 6σf (x)
s.t.Gj = µ f + nσf ≤ Bupper

Gj = µ f − nσf ≥ Blower

(13)

In the equation, x represents the design variables, F represents the objective function,
Gj represents the constraint conditions, µ f represents the mean of the response, σf repre-
sents the variance of the response, and Blower and Bupper are the lower and upper bounds of
the constraint conditions.

5.2. Robustness Evaluation Module

The above fitted response functions were used to replace the original temperature
field simulation model, and a robustness analysis module based on the response surface
was constructed. Parameters such as noise factors ρpcb, Cpcb, ρN2 , CN2 , and control variables
T5~T9 were set with the parameter type, distribution type, and coefficient of variation
(CoV). A total of 100 samples were generated using the ordinary Monte Carlo random
sampling method to complete the initialization of the robustness assessment module.
By connecting the gradient-based optimization module with the robustness assessment
module based on the response surface, the optimized process parameters (Table 6) were
subjected to robustness evaluation. First, the cumulative distribution functions (CDF) of
each response were analyzed to determine if they followed a normal distribution. Figure 9
shows the distribution of Qηmin.
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It can be observed that the distribution function of Qηmin is approximately normal, in-
dicating that the probability distribution of Qηmin follows a normal distribution. Similarly,
the analysis shows that other constraint conditions also satisfy the normal distribution. The
final results of the robustness evaluation are presented in Figure 10.
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and 𝑡௘௤𝑚𝑖𝑛  fail to achieve the 6𝜎  level. Additionally, 𝑇௘௠𝑚𝑖𝑛  and 𝑡௘௤𝑚𝑖𝑛  have high 
failure probabilities and low 𝜎 levels. Therefore, in the optimization design scheme, with-
out considering noise factors and fluctuations in control variables in practical production, 
it may result in some products failing to meet the desired process requirements. When 
deviations are significant, the final outcome may lead to product failure. 

5.3. Embedded Robustness Optimization Analysis Module 
By embedding the robustness evaluation module into the newly established optimi-

zation analysis module, data interaction is achieved. The adaptive optimization method 
is employed to reconfigure the constraint conditions and complete the configuration of 
the optimization analysis module. 

Figure 10. Robustness analysis bar chart for each response value: (a) Qηmin; (b) Qηmax; (c) Temmin;
(d) Temmax; (e) teqmin; (f) teqmax; (g) tebmin; (h) tebmax; (i) Volmin; (j) Volmax.

The specific σ levels and failure probabilities are shown in Table 8.

Table 8. Summary of σ levels and failure probabilities for each response.

Response Optimized Result Mean CoV Failure Probability σ Level

Qηmin 966.9 962.46 0.0416 2.53 × 10−5 4
Qηmax 1032.4 1028.27 0.0409 0 13
Temmin 210.0 209.95 0.0034 0.52 0.06
Temmax 212.8 212.73 0.0034 0 23
teqmin 60.23 60.15 0.0204 0.45 0.12
teqmax 66.26 66.13 0.0229 0 15
tebmin 62 61.88 0.0112 0 24
tebmax 68.1 68.00 0.0114 0 28
Volmin 1.32 1.32 0.0252 0 9
Volmax 1.76 1.76 0.0243 0 52

Where CoV stands for coefficient of variation, and Mean represents the average or mean value.

From Table 8, it can be observed that although the mean values of the optimized
process parameters based on the response surface optimization are close to the optimal
values, and the maximum coefficient of variation (CoV) is relatively small, Qηmin, Temmin,
and teqmin fail to achieve the 6σ level. Additionally, Temmin and teqmin have high failure
probabilities and low σ levels. Therefore, in the optimization design scheme, without
considering noise factors and fluctuations in control variables in practical production, it
may result in some products failing to meet the desired process requirements. When
deviations are significant, the final outcome may lead to product failure.

5.3. Embedded Robustness Optimization Analysis Module

By embedding the robustness evaluation module into the newly established optimiza-
tion analysis module, data interaction is achieved. The adaptive optimization method is
employed to reconfigure the constraint conditions and complete the configuration of the
optimization analysis module.
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

obj.µQηmin → min
s.t.µQηmin − 6σQηmin ≥ 800
µQηmax + 6σQηmax ≤ 1600
µTemmin − 6σTemmin ≥ 210
µTemmax + 6σTemmax ≤ 230

µteqmin − 6σteqmin ≥ 60
µteqmax + 6σteqmax ≤ 90
µtebmin − 6σtebmin ≥ 60
µtebmax + 6σtebmax ≤ 90
µVolmin − 6σVolmin ≥ 1.2
µVolmax + 6σVolmax ≤ 4

(14)

The final result of the most robust solution is shown in Figure 11.
Analyzing the robustness of the optimization results, since the aforementioned Qηmin,

Temmin, and teqmin did not reach the 6σ level, the following mainly focuses on the robust-
ness analysis of the responses Qηmin, Temmin, and teqmin. The specific analysis results are
shown in Figure 12 and Table 9.
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Table 9. Analysis of robust optimization results.

Response Mean CoV Failure Probability σ Level
(Robust Optimization)

σ Level (Response
Surface Optimization)

Qηmin 1180.34 0.0332 0 9 4
Qηmax 1244.11 0.0332 0 9 13
Temmin 209.95 0.0034 9.06 × 10−11 6 0.06
Temmax 217.4 0.0030 0 19 23
teqmin 68.39 0.0195 1.55 × 10−10 6 0.12
teqmax 73.54 0.0217 0 10 15
tebmin 61.18 0.0144 0 18 24
tebmax 67.86 0.0143 0 22 28
Volmin 1.28 0.0234 0 9 9
Volmax 1.76 0.0228 0 55 52

Where CoV stands for coefficient of variation, Mean represents the average or mean value.

From Tables 8 and 9, it can be observed that the failure probabilities and σ levels
significantly improved through robust optimization. The failure probability for the su-
percritical fluid line time decreased from 0.45 to 1.55 × 10−10, while the σ level increased
from 0.12σ to 6σ. Similarly, the failure probability for the peak temperature decreased from
0.52 to 9.06 × 10−11, and the σ level increased from 0.06σ to 6σ. The results obtained from
the robust optimization analysis demonstrate significant improvement in optimization
performance, providing a substantial guarantee for the product’s yield rate.

5.4. Reliability Analysis and Verification

To verify the reliability of the optimized results and ensure that the influence of
intermediate errors on the results is minimal, a reliability analysis was conducted on the
results after robust optimization.

Firstly, a reliability analysis model was established to verify the intermediate errors.
In this analysis, the reflow soldering process simulation model established in Chapter 2
was used as the original model. The noise factors and variables were reconfigured, and the
extreme conditions and desired σ levels of the process requirements were set to initialize the
reliability analysis. The robust optimization module was then connected to the reliability
analysis module, and the resulting data from the robust optimization were transferred to
the reliability analysis module for further analysis.

By performing reliability analysis calculations, a reliability analysis report was gener-
ated. The report indicated that the embedded robust optimization response had reached
a level of 5.7σ, with a failure probability of 8.6 × 10−9 and a standard deviation error of
5.1 × 10−9, thereby confirming the effectiveness of the optimization results. A scatter plot,
as shown in Figure 13, was obtained for the input variables T5 and T8—peak temperature
Temmin. The red areas in the plot represent the unsafe regions, clearly indicating the unsafe
domain.
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6. Conclusions

Reliability and robustness are important indicators for evaluating product quality. To
ensure high product quality during the design phase, this paper focuses on the problem of
yield uncertainty in the hot air reflow soldering process due to material, environmental,
and design variable fluctuations. The 6σ robust optimization approach is applied to the
design of the reflow soldering process. A robust optimization design is achieved through
the establishment of sensitivity analysis modules for identifying significant influencing
parameters, a robustness evaluation module based on surrogate models, an embedded
robustness optimization analysis module, and a reliability verification module. The specific
advantages of the robust optimization design for the reflow soldering process are as follows:

1. Precision control: This includes three aspects. First, a simulation model of the reflow
soldering process temperature field based on experiments was constructed and vali-
dated through experiments to ensure the accuracy of the simulation model. Second,
sensitivity analysis was used to select important influencing factors and avoid a rapid
decrease in the quality of the approximate model with an increasing number of vari-
ables. Finally, multiple surrogate models were used to fit the objective function and
constraint conditions, and the optimal fitting scheme was selected to effectively avoid
poor fitting caused by inappropriate surrogate models, which could affect the final
results.

2. Establishment of robust optimization model: A robust optimization model was built
with robustness evaluation indicators as constraint conditions, which allowed for
automatic iteration to find the most robust solution. This effectively avoids the
inefficiency and inaccuracy of manual iteration, reducing the design cycle.

3. A complete robust optimization design method for the hot air reflow soldering pro-
cess was established, including significant influencing factor screening, robustness
evaluation, robust optimization, and reliability verification. It is a modern robust
optimization method that considers input variability and ensures output consistency.

Author Contributions: Conceptualization, L.R. and Y.G.; Methodology, L.R., C.C. and Y.G.; Soft-
ware, D.C. and C.C.; Validation, D.C.; Data curation, L.R. and C.C.; Writing—original draft, L.R.;
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published version of the manuscript.
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