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Abstract: The concept of controlling vehicle comfort is a common problem that is faced in most
under- and postgraduate courses in Engineering Schools. The aim of this study is to provide a
simplified approach for the feedback control design and simulation of active suspension systems,
which are applied in vehicles. Firstly, the mathematical model of an active suspension system (a
quarter model of a car) which consists of a passive spring, a passive damper and an actuator is
provided. In this study, we chose to design and compare the following controllers: (a) conventional P,
PI and PID controllers that were tuned through two conventional methodologies (Ziegler–Nichols
and Tyreus–Luyben); (b) an optimal PID controller that was tuned with a genetic algorithm (GA)
optimization framework in terms of the minimization of certain performance criteria and (c) an
internal model controller (IMC) based on the process transfer function. The controllers’ performance
was assessed in a series of realistic scenarios that included set-point tracking with and without
disturbances. In all cases, the IMC controller and the optimal PID showed superior performance.
On the other hand, the P and PI controllers showed a rather insufficient behavior that involved
persistent errors, overshoots and eventually, uncomfortable ride oscillations. Clearly, a step-by-step
approach such as this, that includes modeling, control design and simulation scenarios can be applied
to numerous other engineering examples, which we envisage to lead more students into the area of
automatic control.

Keywords: active car suspension; PID controller; model-based controller; modeling and simulation;
tuning methods; controller performance criteria; optimal PID

1. Introduction

One of the modern applications of automatic control technology in mobile applications
is vehicle control (either with or without a driver) that ensures road-handling ability and
ride comfort. One of these fascinating applications is the cruise control system that adjusts
the car’s speed based on data received by a set of sensors and is implemented with
advanced control techniques [1–3]. Another interesting area is lane-free control systems
that use sensors and cameras to steer vehicles and retain them inside their lane without
any action from the driver. Furthermore, the blind-spot-monitoring control system can
detect when a car or a random object is out of sight. The latter can be combined with
anti-collision warning control systems that warn the driver if such an obstacle is detected
within the vehicle direction. Clearly, the above applications have received significant
attention from researchers [4,5]. Still, however, the suspension control system, which
is responsible for controlling and adjusting the ride comfort with an aim of reducing
oscillations, is always at the forefront of research and lectures in engineering schools
(mainly in undergraduate studies).

The core aim of the suspension system (see Figure 1) is to isolate the vehicle’s cabin
from external road disturbances (e.g., it separates the car body from the wheels) in order
to maximize the driving comfort for the passengers and ensure car stability. Another
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important role of the suspension system is to keep the wheel in contact with the road surface,
as vibrations may be harmful to the passengers and the vehicle itself. These requirements for
improved driving comfort and passenger safety have pushed car manufacturers to develop
new active suspension systems. This type of suspension has the ability to adapt to harsh
road surface conditions and is realized through the ability to store, dissipate and utilize
energy within the system. Compared with the passive suspension (open loop without a
control action), the active suspension performs better due to the force/power actuator. The
actuator is a mechanical control system, which is mounted on the suspension, and can
be pneumatic, hydraulic, electromagnetic, etc. The controller collects data from various
sensors mounted on the vehicle that can analyze the road profile before any control action.
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The design and simulation of a car suspension can be found in various forms in
the literature. Most studies take a mathematical model for the active suspension into
account and simulate it along with a (properly tuned) PID controller. In most case studies,
simulations using a hydraulic actuator and tested in various road surface scenarios (uneven
road, potholes and random road entrances) prove to be an established line of work. Such
results have proven that the active suspension system with PID control improves driving
comfort [6]. In [7], a significant effort was made to reduce the motion of a rail car body and
the damper. The PID controller was tuned through the Ziegler–Nichols methodology, and
the simulated results between the passive and the active suspension system proved that
the active suspension system with PID control improves ride comfort, gives a low peak
overshoot (amplitude) and a faster settling time. Another group of studies discussed the
performance of a PID controller (tuned with the Ziegler–Nichols method or with fuzzy
methods) in a semi-active suspension of a vehicle. Again, the results proved that the active
suspension system significantly improves driving comfort [8–10]. An interesting approach
was reported in a study by A. Al-Zughaibi and H. Davies [11]. The controller was designed
using the Routh–Hurwitz stability criterion and the respective simulations were carried
out in a system with unknown time delays, different masses and road disturbance. The
simulation results showed a significant improvement in performance and disturbance
rejection. A quite interesting study using a combination of commercial software (used
for extracting vehicle responses) and control design investigated the performance of a
K-seat-based PID that is able to enhance motion comfort [12]. Along the same trend, J. Zhu
et al. [13] worked on the nonlinear modeling and control of emergency rescue vehicles (e.g.,
active suspension systems in fire trucks) that lack body stability. Their disturbance rejection
control design provided a complementary perspective to the results derived from feedback
control implementation.

Moving on to modern control techniques, a neural-network-based model predictive
controller (NN-MPC), designed for a non-linear servo-hydraulic vehicle suspension system,
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was compared to a PID controller. The analysis revealed the superior performance of the
NN-MPC over the PID, as it showed a better tracking of the set-point, despite the distur-
bances that emerged [14]. J. Kim et al. [15] developed an MPC algorithm for semi-active
suspension systems with road preview that managed to improve both the ride comfort
and the road-handling performance. In particular, the damping force (input variable) was
minimized towards achieving predefined trajectories. A detailed mathematical methodol-
ogy based on multi-agent communication topology and MPC was presented by N. Zhang
et al. [16] with an aim to minimize the vertical acceleration, pitch acceleration and roll ac-
celeration of the vehicle body. Another meaningful case study dealt with the development
of controllers in motors [17]. The control system was realized and tuned by an artificial
intelligence strategy that is based on heuristic optimization techniques (particle swarm
optimization, PSO). At first, the development of the mathematical model of the DC motor
was carried out. Then, a feedback control system was applied under the adaptive PSO
and the conventional Ziegler–Nichols method. The simulation and comparison of the
above controller with the PSO and Ziegler–Nichols tuning methods showed that the PSO
algorithm can be effectively used to tune the PID controller. In [18], three tuning methods
were used for a PID controller, (heuristic tuning, Ziegler–Nichols tuning and the iterative
learning algorithm). Afterwards, the simulation and comparison of the above-mentioned
tuning methods, as well as of the comparison between the passive and active suspension
system, were carried out for scenarios of three different road disturbances (bump and hole,
sinusoidal and random input). The outcome of the study is that the active suspension
system performs better than the passive suspension system, whereas the PID controller that
was tuned by the iterative learning algorithm performed better than the other two tuning
methods. In a more detailed study regarding the development of a full vehicle model,
an adaptive PID control was designed [19]. Specifically, this study is worth mentioning
because it developed an adaptive controller for active suspension systems with parameter
uncertainties. Their aim was to improve the transient response of the body and to save
the communication resources of the in-vehicle network. An interesting study that tried to
address problems relating to gain estimation was presented by Y. Jeong et al. [20]. This
group designed a linear-quadratic (LQ) static output feedback with a 2-DOF quarter-car
model for an active suspension system. This type of control uses available sensor signals
measured in real vehicles and formulates an optimization problem that can be solved via a
heuristic optimization method. It was concluded that the proposed controller showed the
best performance in terms of ride comfort.

Several other studies can also be found in the literature and include control approaches
such as the linear quadratic regulator [21–23], adaptive sliding control [24], H∞ con-
trol [25,26], advanced fuzzy control [27,28], optimal control [15,29] and neural-network-
based methods for tuning [30,31].

Aside from vehicles, specifically those in train suspension systems, the study by
X. He et al. in [32] studied the riding comfort of high-speed trains (which affect the travel
experience of passengers) and aimed at reducing the vibrations through the application of
a vertical dynamics model of railway vehicles. Furthermore, a unique study with actual
implementation scenarios was reported by K. Ikeda et al. [33]. The purpose of this study
was to estimate the psychological state of an occupant based on biometric information.
Based on the research findings, the ride quality of occupants while driving can be recorded
and control algorithms can be retrofitted in real time.

Since several studies dealing with vehicle suspensions have been carried out in the
literature, the focus of this study is not claimed to be unique among such interesting and
useful studies. The vision of the present study is to provide a simplified step-by-step
approach that can be used as an applied example of modeling and control for engineering
students’ lectures. The concept of active suspension systems has significant benefits, as it
can be comprehensively taught via the following consecutive educational requirements:
(a) the set-up of the mathematical model of a quarter of a car (1/4) active suspension in the
dual form of differential equations, state-space model and transfer functions, (b) the design
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and application of a feedback control system based on P, PI and PID controllers, (c) the
design and application of a feedback control system based on internal model control (IMC)
and (d) the evaluation of the controllers’ performance under different road conditions
(including disturbances). The above are accompanied by applied tuning techniques such
as the methodologies of Ziegler–Nichols and Tyreus–Luyben and optimal tuning through
genetic algorithms (GA).

The structure of the paper is as follows: Section 2 presents the mathematical model of
the active suspension system. In this section, open loop simulations are used to evaluate
the system dynamics under scenarios of varying input force and by applying random
disturbances. Next, Section 3 designs the feedback control system that is realized in
the form of P, PI and PID controllers (tuned via the Ziegler–Nichols and Tyreus–Luyben
methodologies), in the form of an optimal PID controller tuned via a GA optimization
framework and in the form of a feedback internal model controller. The comparison of the
performance of all controllers is evaluated (Section 4) in different scenarios that include
set-point variations with or without the presence of road disturbances.

2. Mathematical Model of the Active Suspension System
2.1. 2nd and 1st (Reduced) Order Differential Equations

Figure 2 shows a typical active suspension system that consists of a passive spring,
a passive damper and an actuator. The actuator can be hydraulic, pneumatic or electro-
magnetic. Through this element, the controller can decide whether to add or dissipate
energy with the help of measurements (sensors that could provide road profile data). When
the mechanical spring, damper and actuator are connected, a hydraulic actuator can be
used and is able to control both the mass of the tire (Mus) and the vehicle mass or vehicle
body (Ms).
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The equations of motion can be written as follows (In the case of Fa = 0, the system
reduces to the open loop passive suspension with no control actions):

Ms
d2Zs

dt2 = Fa(t)− Ks(Zs(t)− Zus(t))− Cs(
dZs

dt
− dZus

dt
) (1)
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Mus
d2Zus

dt2 = −Fa(t) + Kus(Zo(t)− Zus(t)) + Ks(Zs(t)− Zus(t)) + Cs(
dZs

dt
− dZus

dt
) (2)

where Fa [N] is the control force from the hydraulic actuator, Ms [kg] is the sprung mass,
Mus [kg] is the unsprung mass, Zs [m] is the sprung mass position, Zus [m] is the unsprung
mass position, Zo [m] is the road surface anomaly, Ks [N/m] is the suspension spring
(stiffness), Kus [N/m] is the tire spring element and Cs [N·s/m] is the damping co-efficient
of the variable shock absorber.

Due to the fact that Equations (1) and (2) are second-order differential equations, auxil-
iary variables (x1, x2, x3, x4) can be used, so that the reduction process to differential equations
of a first-order magnitude can be carried out. Based on the above, there are four (4) state
variables (x1, x2, x3, x4) and one (1) output is defined as y = (x1 − x3) = (Zs − Zus):

x1 = Zs ⇒ dx1
dt = x2

x2 = dZs
dt

dx2
dt =

(
Fa
Ms

)
−
(

Ks
Ms

)
·x1 +

(
Ks
Ms

)
·x3 −

(
Cs
Ms

)
·x2 +

(
Cs
Ms

)
·x4

x3 = Zus
dx3
dt = x4

x4 = dZus
dt

dx4
dt = −

(
Fa

Mus

)
+
(

Kus
Mus

)
·Z0 −

(
Kus
Mus

)
·x3 +

(
Ks

Mus

)
·x1 −

(
Ks

Mus

)
·x3 +

(
Cs

Mus

)
·x2 −

(
Cs

Mus

)
·x4

⇒
y = (x1 − x3)

(3)

2.2. State-Space form Equations

From the above set of four (4) differential equations, the desired state-space form can
be formulated and used thereafter in the following form {x(t0) = x0 = 0}:

·
x(t) = A·x(t) + B·u(t) + E·d(t)
y(t) = C·x(t) + D·u(t)

(4)

The state-space model of matrices A, B, C, D, E can be realized:
dx1
dt

dx2
dt

dx3
dt

dx4
dt

 =


0 1 0 0
− Ks

Ms
− Cs

Ms
Ks
Ms

Cs
Ms

0 0 0 1
Ks

Mus
Cs

Mus
− (Ks+Kus)

Mus
− Cs

Mus

·


x1
x2
x3
x4

+


0
1

Ms
0
− 1

Mus

·Fa +


0
0
0

Kus
Mus

·Zo (5a)

y = [1 0 − 1 0]·


x1
x2
x3
x4

+ [0]·Fa (5b)

2.3. Mathematical Model in the Form of Transfer Functions

Based on the above, the transfer functions of the process (Gp) and of the disturbance
(Gd) can be derived from the following relationships:

Gp(s) =
Y(s)
U(s) =

Zs(s)−Zus(s)
Fa(s)

= C·(sI − A)−1·B + D

Gp(s) =
(Mus+Ms)·s2+Kus

(Ms ·s2+Cs ·s+Ks)·(Mus ·s2+Cs ·s+Ks+Kus)−(Cs ·s+Ks)2

(6a)

Gd(s) =
Y(s)
D(s) =

Zs(s)−Zus(s)
Zo(s)

= C·(sI − A)−1·E

Gd(s) =
−Kus ·Ms ·s2

(Ms ·s2+Cs ·s+Ks)·(Mus ·s2+Cs ·s+Ks+Kus)−(Cs ·s+Ks)2

(6b)
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Y(s) = Gp(s)·U(s) + Gd(s)·D(s) (6c)

Before proceeding to the series of open loop simulations, the main parameters of the
active suspension need to be defined and are shown in Table 1.

Table 1. Active suspension system parameters.

System Parameters Values Units

Ms 243 kg
Mus 40 kg
Cs 370 N·s/m
Ks 14,671 N/m
Kus 124,660 N·s/m

Initial Conditions 0 at t = 0 s

2.4. Open Loop Simulations

Open loop simulations show the dynamic performance of the suspension system
when no control action is applied. Such simulations highlight the need for a proper control
design since oscillations, high overshoots and prolonged settling times are always reported.
Certainly, closed loop simulations are more important, but for a simplified approach that is
trying to force engineering students to delve into control systems, it is worth devoting a
few lines to the open loop performance of the suspension system.

Based on the mathematical model of Section 2 (in either form of the differential equa-
tions, state-space and Laplace domain), we performed the following simulation scenarios
regarding road disturbances (see also Figure 3a,b regarding scenarios C and D):

• (A) Constant force of Fa = 3500 N with no road disturbance Zo = 0 m.
• (B) Variable force with no road disturbance Zo = 0 m:

Fa = {0 N, for 0 < t < 5 s}
Fa = {3500 N, for 5 ≤ t ≤ 12 s}
Fa = {2000 N, for t > 12 s}

• (C) Constant force of Fa = 3500 N and variable (short time bump and hole) road
disturbance:

Zo = {0 m, for 0 < t < 20 s}
Zo = {0.04 m, for 20 ≤ t ≤ 40 s}
Zo = {0.02 m, for 40 < t < 60 s}
Zo = {−0.02 m, for 60 ≤ t ≤ 75 s}
Zo = {−0.05 m, for t > 75 s}

• (D) Constant force of Fa = 3500 N and random (continuous bump and hole) road
disturbance: Zo = {random variation for 0 < t < 100 s}

Figure 4a–d show the displacement deviation (with the output variable of our model
as y = x1 − x3 = Zs − Zus) under the four (4) different and arbitrarily selected scenarios A to
D. As can be seen in Figure 4a, by applying a constant force equal to 3500 N, the suspension
system oscillates for a short period of nearly 8–10 s and stabilizes at a new operation point
(0.24 m displacement with a peak overshoot of 0.4 m). Similarly, Figure 4b shows the effect
of applying a variable force of 0, 2000 and 3500 N. Initially, the system is at the desired
peaceful state (no oscillations). At t = 5 s, a 3500 N force is applied for a short period of time
(until the 12th second) and then a sudden force reduction at 2000 N is applied. In scenario
B, the steady-state displacement is reduced from 0.24 m to 0.135 m, with descending and
detrimental (for the vehicle and the passengers) oscillations. Proceeding to scenario C and
D in Figure 4c,d, the effects of short- and long-term bump and hole disturbances (under a
constant force of 3500 N) are observed, respectively. During the effect of the disturbance,
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the suspension system oscillates (the higher the disturbance→ the higher the oscillation
magnitude) and stabilizes at the displacement of 0.24 m in both scenarios. Clearly, scenario
D is a worst-case scenario, where it is seen that inside the vehicle, the passengers suffer
significantly from road anomalies.

1 
 

 
  

Figure 3. Bump and hole road disturbance (road anomaly) (a) short-term and (b) long-term. 

2 

 
  

Figure 4. Open loop simulations for scenarios A–D: displacement of the suspension system as
y = Zs − Zus (a) constant force without disturbance, (b) variable force without disturbance, (c) con-
stant force with short-term disturbance and (d) constant force with long-term disturbance.
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3. Feedback Control System Design

The open loop simulation scenarios presented above show that a control system is
needed if we want to provide ride comfort for the vehicle passengers. Its aim should be
quick disturbance rejection (e.g., from road anomalies) in a way that will not stress the
hydraulic actuator of the feedback controller. With this in mind, this section is devoted to
the investigation of the suitability of two types of controllers, (a) conventional P, PI and
PID controllers and (b) internal model control, IMC. Figure 5 shows the proposed feedback
control system. The transfer functions of each element involved, are shown afterwards in
Table 2.
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Table 2. Closed loop transfer functions (based on Table 1).

Transfer Function

Gp(s) 283·s2+124660
(243·s2+370·s+14671)·(40·s2+370·s+139331)−(370·s+14671)2

Gd(s) −30292380·s2

(243·s2+370·s+14671)·(40·s2+370·s+139331)−(370·s+14671)2

Gv(s) 1
10s+1

Gm(s) 1
30s+1

Gc(s) Equations (7) and (10)

3.1. PID Controller

The PID controller takes the following form:

PID Controller : Gc(s) = Kc·(1 +
1

τ I·s + τD·s) (7)

In order to apply and evaluate a feedback control system, the following steps are
implemented and discussed in detail afterwards (see also Figures 6 and 7 for the GA
framework):

• Step 1: Tuning of the different (P, PI and PID) controllers via the Ziegler–Nichols and
Tyreus–Luyben methods and a by using genetic algorithms (PID (OPT)).

• Step 2: Implementation of the selected type of controllers (either, P, PI or PID) and
fine tuning (only if necessary for the cases using Ziegler–Nichols and Tyreus–Luyben
tuning) and verification via realistic simulation scenarios.

• Step 3: Selection of the best type of controller to be compared with the IMC afterwards.

The methodologies of Ziegler–Nichols and Tyreus–Luyben tuning have some limita-
tions in terms of applications. Some of these refer to (a) the tuned parameters of a PID are
not optimal and require fine tuning prior to implementation, (b) the output of the controller
has its own limitations (e.g., a maximum force to be applied) and these limits cannot be
surpassed due to mechanical reasons and (c) PID control might end up with saturation
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issues that can only be solved through anti-wind-up techniques (it is beyond the scope of
this study to include their implementation).
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3.2. Optimal Tuning Via Genetic Algorithms

The evaluation of optimal PID controllers is also an interesting topic of research in the
literature. M. Kaldas et al. [34] estimated controller parameters by using a gradient-based
optimization routine with an objective function that includes both ride comfort and road
holding. The ride performance of the road preview control strategy was evaluated through
a stochastic road profile and the results highlighted the importance of the road preview
control strategy, which significantly improves ride performance. A similar approach was
recently published by G. Abbas et al. [35], who used a similar optimization pattern with
the integral squared error (ISE) as their objective function. In that particular study, a low
overshoot and fast settling times have been reported.

In this study, we selected the MATLAB optimization toolbox for the optimal PID tun-
ing [36]. Specifically, we selected the genetic algorithm (GA) to be our optimization solver
since it is an established method for both constrained and unconstrained problems. The
algorithm modifies a population of individual solutions. For each step, the GA randomly
selects individuals from the current population and uses them as parents to produce the
children for the next generation. Over successive generations, the population evolves and
the best point in the population approaches an optimal solution [36]. For our problem, the
optimal tuning was performed by seeking the optimal solution (equivalently the pairing of
the PID controller parameters Kc, τI and τD) that minimizes the performance criterion of
the squared error:

Jopt = min[
t∫

0

(Y(t)−Ysp(t))
2dt] (8)
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where Ysp(t) is the set-point in m and Y(t) is the Zs(t) − Zus(t) system output variable in m.
Table 3 shows the controller parameters (Kc gain, τI integral time and τD derivative

time) for steps 1 and 2. In the cases of Ziegler–Nichols and Tyreus–Luyben tuning, it was
observed that all controllers led to a very aggressive control action and we had to reduce
Kc by a factor of 100 and increase τI by a factor of 10 (as respective to the critical gain
and period that were found through root locus analysis at the values of Kcr = 1.9 × 107

and Pcr = 2.85 s). The implementation and comparison of the above controllers will be
compared and discussed in Section 4.

Table 3. Selection of controllers based on the Ziegler-Nichols (Z-N), Tyreus-Luyben (T-L) and optimal
(OPT) tuning method.

Controller Kc τI τD

P (Z-N) 98,500 - -
PI (Z-N) 88,650 23.79 -
PID (Z-N) 118,200 14.27 0.357
PI (T-L) 197,000 62.8 -
PID (T-L) 197,000 62.8 0.453
PID (OPT) 19,461 40 7.39

3.3. IMC Controller

The IMC controller can be easily designed based on the system’s Gp function (see
Table 2) via the following equation [37]:

GP(s) = G−p(s)·G+
p(s) (9)

where G−p(s) is the minimum phase and G+
p(s) is the non-minimum phase (which will

be equal to 1 in our case). In our case that we have the transfer functions of Gc and Gm, the
theory allows as to add them (unless it is mentioned otherwise).

The Gc(s) transfer function of the controller can be derived through the following
equation:

Gc(s) =
1

G−p(s)
· 1
(λ·s + 1)r − G+p(s)

(10)

where r is the difference between the order of the denominator and the order of the
nominator and λ is a time constant that can be defined from the user (we will use λ = 5 in
our case).

3.4. Controller Performance Criteria

In order to evaluate and screen the performance of the controllers, a series of controller
performance criteria have been used [37,38]:

Integral Squared Error (ISE) Integral time Squared Error (ITSE)

ISE =
∞∫
0

e2(t)dt ITSE =
∞∫
0

t·e2(t) dt

Integral Absolute Error (IAE) Integral Time Absolute Error (ITAE)

IAE =
∞∫
0
|e(t) | dt IATE =

∞∫
0

t·|e(t) | dt

4. Evaluation and Comparison of Feedback Controllers

Based on the analysis performed in the previous section, the evaluation of all feedback
controllers is to be compared under two road scenarios:

(a) Scenario 1: the displacement Zs − Zus is 0.05 m (set-point) and no disturbances are
applied.
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(b) Scenario 2: the displacement Zs − Zus is 0.05 m (set-point) and disturbances are
applied as shown in Figure 3b (with the difference that the time period will be
prolonged to 300 s).

4.1. Simulation Scenario 1: Set-Point Tracking under No Disturbances

Based on the above two scenarios, the P, PI and PID controllers that were tuned via
Z-N and T-L methods, and presented in Table 3, are compared in the following figures.
The force actuator represents the exit variable from the hydraulic actuator, U(s), shown
in Figure 5. Table 4 summarizes control parameters such as overshoot (%), peak time,
rise time, settling time and steady-state error for Scenario 1 (the IMC will be discussed in
Section 4.3).

Table 4. Performance criteria for the comparison of controllers during simulation scenario 1.

Overshoot,
%

Peak
Time, s

Rise Time,
s

Settling Time
(±5%), s

Steady-State
Error, m

P 198.6 9 1.8 -- 0.0062

PI (Z-N) 245.6 10 1.9 90.5 0

PI (T-L) 400 4 0.8 82.5 0

PID (Z-N) 340.4 9 1.3 118.5 0

PID (T-L) 370 6 0.3 59.5 0

PID (OPT) 59 0.5 0.3 4.5 0

IMC 74 16.5 8.5 46 0

As shown in Figure 8a, the P controller (red color) fails to reach the set-point of 0.05 m
and after 90–100 s reaches its steady state value at 0.0435 (featuring a persistent steady-state
error of 13%). On the other hand, both PI controllers reach the desired set-point at nearly
the same settling point of ~80–90 s after a few oscillations. The PI controller tuned via the
T-L method shows a more aggressive action since an overshoot of 0.2 m (~400%) occurs,
whereas the PI controller tuned via the Z-N method shows a lower, but still high, overshoot
of 0.1 m (~245%). Figure 8b shows the respective dynamic performance of the control
actuator for the three (3) controllers. As expected, PI tuned via the T-L method shows the
most aggressive action, and the P controller the least aggressive.

 

3 

 
  

Figure 8. Comparison of P and PI controllers during scenario 1: (a) displacement of the active
suspension system and (b) force actuator control action.
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Following the above analysis, Figure 9a shows the performance of the three (3) PID
controllers. As can be seen, the optimal PID controller shows an extremely superior
performance since the values of overshoot (59%) and settling time (<5 s) are extremely low.
On the other hand, the two PID controllers (Z-N and T-L) present a descending oscillation
that is more evident in the PID (Z-N) with a settling time of ~120 s as compared to the
lower settling time of the PID (T-L) at ~60 s. Meanwhile, both these controllers indicate a
significant overshoot of 0.17–0.18 m (~340–370%). Figure 9b supplements the analysis by
depicting the control actuator dynamics for the three PID controllers. As expected, the least
action is provided by the optimal PID and the highest by the PID (Z-N) and the PID (T-L).
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4.2. Simulation Scenario 2: Set-Point Tracking and Disturbance Rejection

Following the previous analysis, this subsection presents the control simulation of
scenario 2. Since we have both a constant set-point tracking and a simultaneous disturbance
rejection, we skipped the information regarding overshoot, peak time, rise time, etc., that
are more or less similar to scenario 1 and shown in Table 4. As can be seen in Figure 10a,
the P controller fails to reach set-point at 0.05 m, and after the effect of disturbances (see
Figure 3b for the road anomaly profiles) it reaches its steady state value at 0.0435 (featuring a
constant error of 13%). On the other hand, the other two PI controllers reach the desired set-
point at nearly the same settling point after oscillating significantly during the disturbance
emergence. The PI (T-L) controller shows more aggressive action in all time periods where
a bump or hole is encountered, followed by a slightly more comfortable performance by
the PI (Z-N). Figure 10b shows the respective dynamic performances of the control actuator
for the three (3) controllers and, as expected, the PI (T-L) shows the most aggressive action
and the P controller the least aggressive. Overall, the controller performances are similar to
the ones in scenario 1, and the spikes refer to the emerged road anomalies.

Figure 11a shows the performance of the three (3) PID controllers. Similar to the
previous case in scenario 1, the optimal PID controller shows an extremely superior perfor-
mance as it exhibits the lowest oscillations (in magnitude and duration) among the three
controllers. The two PID controllers (Z-N and T-L) present a more aggressive oscillation
which is persistent over time. Among the two, the PID (T-L) shows a better performance in
terms of low peaks and settling times. Figure 11b depicts the control actuator dynamics for
the three PID controllers. As expected, the least overall action is provided by the optimal
PID and the highest by the PID (Z-N). It is worth mentioning that the optimal PID presents
a very aggressive action during the imminent disturbance effect, and this needs to be taken
into account during implementation.
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Figure 10. Comparison of P and PI controllers during scenario 2: (a) displacement of the active
suspension system and (b) force actuator control action. 
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Figure 11. Comparison of PID controllers during scenario 2: (a) displacement of the active suspension
system and (b) force actuator control action.

4.3. Simulation Scenarios 1 and 2: Comparison of IMC and Optimal PID Controllers

Based on the previous analyses in Sections 4.1 and 4.2, it was revealed that the optimal
PID is the best choice among all controllers. Hence, in this section, the IMC controller and
the optimal PID will be compared in the same scenario 1 and in a modified scenario 2 (here,
the disturbance shown in Figure 3b will be applied, not from t = 0, but from t = 100 s and
thereafter). Regarding scenario 1, as shown in Figure 12a and Table 4, the optimal PID
controller presents the lowest overshoot (59%) and settling time (4.5 s). The IMC presents
an overshoot of 74% (see also Table 4) that last for about 45–50 s (settling time), but in a
very smooth way. If we compare the control actions of both controllers in Figure 12b, we
observe the minimum effort provided by the IMC (nearly zero action). This result shows
that the actuator in the IMC controller design will face the least pressure during road riding
and this is considered an asset of this feedback controller.

Regarding the modified scenario 2 shown in Figure 13a, the optimal PID controller
presents the lowest overshoot and settling time during the disturbance emergence at
t = 100 s and afterwards. The IMC indicates a very smooth performance in the same time
period. If we compare the control actions of both controllers in Figure 13b, we can again
observe the minimum effort provided by the IMC (nearly zero action). This result shows
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that the actuator in the IMC controller design will face the least pressure during road riding
compared to the optimal PID. Clearly, this should be a concern during implementation,
since min/max hard constraints on the actuator could lead to a problematic control action.
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Figure 12. Comparison of optimal PID and IMC controllers during scenario 1: (a) displacement of
the active suspension system and (b) force actuator control action. 

7 

 

Figure 13. Comparison of optimal PID and IMC controllers during modified scenario 2: (a) displace-
ment of the active suspension system and (b) force actuator control action.

4.4. Performance Criteria and Critical Analysis

Tables 5 and 6 show the controller performance criteria (see Section 3.4) for both
scenarios and for all controllers. The green color represents the two lowest (best) values
(which are attributed to the optimal PID and IMC controllers. The optimally tuned PID
shows superior performance for scenario 1 that depicts set-point tracking. Similarly, Table 6,
which depicts the results of scenario 2 with the inclusion of disturbance rejection, shows
that the optimally tuned PID again shows an excellent performance. As can be inferred, the
PID controller tuned optimally via genetic algorithms (see Section 3.2 and Figure 7) can be
applied in a vehicle active suspension system, provided that the operating and mechanical
limits of the actuator can handle the performance as shown earlier (high force is required
during control). The latter is crucial, as any violation of the mechanical constraints will
lead to disruptive control actions. On the other hand, the IMC controller is also an excellent
choice as it exhibits (a) a smooth operation with low overshoot, (b) a peaceful settling to
the desired set-point and (c) the lowest effort from the force actuator.
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Table 5. Performance control criteria for scenario 1.

Performance Criterion P PI (Z-N) PI (T-L) PID (Z-N) PID (Z-N) PID (OPT) IMC

ISE 0.239 0.406 0.716 0.780 0.592 0.004 0.065
IAE 6.721 5.692 6.532 8.911 5.550 0.138 2.126
ITSE 6.355 6.116 7.591 13.551 5.386 0.0012 0.916
ITAE 622.37 139.4 121.13 276.1 87.97 0.618 38.39

Table 6. Performance control criteria for scenario 2.

Performance Criterion P PI (Z-N) PI (T-L) PID (Z-N) PID (Z-N) PID (OPT) IMC

ISE 0.247 0.413 0.720 0.787 0.597 0.0167 0.079
IAE 6.899 5.802 6.633 8.879 5.693 0.967 2.431
ITSE 6.672 6.424 7.895 13.539 5.697 0.397 1.348
ITAE 631.44 147.79 130.12 274.39 99.77 31.01 56.5

To conclude the analysis, it worth highlighting that the presented material is suited to
educational courses such as “Fundamentals/Introduction in Control Theory” and includes
the following parts that could be taught in a step-by-step process: (a) mathematical mod-
eling of mechanical systems, (b) linear models and transfer functions, (c) PID tuning via
conventional and optimization methods, (d) model-based control, (e) performance criteria
and (f) evaluation in realistic scenarios.

5. Conclusions

The core aim of this study was the establishment of a feedback control system for
an active suspension system. The open loop simulations revealed that the presence of
disturbances induces high overshoots and continuous oscillations that are persistent in time.
With this indication in mind, the need for a control system design was verified. Next, the
evaluation and comparison of three sets of feedback controllers took place: (a) P, PI and PID
tuned controllers via the Ziegler–Nichols and Tyreus–Luyben methods, (b) an optimally
tuned PID controller via genetic algorithms and (c) an internal model controller. Through a
set of simulation scenarios that involved set-point tracking with and without the effect of
bumps and holes (road disturbances), it was shown that the optimally tuned PID and IMC
controllers exhibit a superior performance in terms of ride comfort and minimum control
actions. Among the two, the IMC controller exhibited the lowest (overall) action from the
actuator, whereas the optimal PID controller presented the best results for the performance
criteria of errors, peak overshoots and settling and rise times, but with extreme mechanical
effort from the actuator elements.

Future studies regarding the effective control of active suspension systems should
involve the application of advanced methodologies such as model predictive control. This
way, the optimal action from the actuator could be applied in order to sustain a predefined
trajectory despite emerged disturbances. Furthermore, the application of the most crucial
research findings could be implemented using lab hardware equipment, which could
involve a similar mechanical structure accompanied by automation utilities.
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Nomenclature

A, B, C, D, E State-space matrices
Cs the damping co-efficient of the variable shock absorber, N·s/m
E the error to the controller
Fa the control force from the hydraulic actuator, N
Gc, Gp, Gv, Gm, Gd transfer functions denoting controller (c), process (p), actuator (v), sensor (m),

disturbance (d)
Kc controller gain
Ks the suspension spring (stiffness), N/m
Kus the tire spring element, N/m
Ms the sprung mass, kg
Mus the unsprung mass, kg
t time, s
tI controller integral time, s
tD controller derivative time, s
P output variable from the controller to the actuator
U output variable from the actuator to the active suspension system
x1, x2, x3, x4 auxiliary variables used in model reduction
Ysp(t), Y(t) set-point and system output variable, respectively, m
Ym ouput variable from the measurement element
Zs the sprung mass position, m
Zus the unsprung mass position, m
Zo the road surface (anomaly), m

References
1. Petri, A.-M.; Petreus, , D.M. Adaptive Cruise Control in Electric Vehicles with Field-Oriented Control. Appl. Sci. 2022, 12, 7094.

[CrossRef]
2. Brugnolli, M.M.; Angelico, B.A.; Lagana, A.A.M. Predictive Adaptive Cruise Control Using a Customized ECU. IEEE Access 2019,

7, 55305–55317. [CrossRef]
3. Chen, C.; Guo, J.; Guo, C.; Chen, C.; Zhang, Y.; Wang, J. Adaptive Cruise Control for Cut-In Scenarios Based on Model Predictive

Control Algorithm. Appl. Sci. 2021, 11, 5293. [CrossRef]
4. Yang, W.; Chen, Y.; Su, Y. A Double-Layer Model Predictive Control Approach for Collision-Free Lane Tracking of On-Road

Autonomous Vehicles. Actuators 2023, 12, 169. [CrossRef]
5. Tang, B.; Hu, Z.; Jiang, H.; Yin, Y.; Yang, Z. Dynamic Lane Tracking Control of the Commercial Vehicle Based on RMPC Algorithm

Considering the State of Preceding Vehicle. Machines 2022, 10, 534. [CrossRef]
6. Shafiei, B. A Review on PID Control System Simulation of the Active Suspension System of a Quarter Car Model While Hitting

Road Bumps. J. Inst. Eng. Ser. C 2022, 103, 1001–1011. [CrossRef]
7. Daniyan, I.A.; Mpofu, K.; Osadare, D.F. Design and simulation of a controller for an active suspension system of a rail car. Cogent.

Eng. 2018, 5, 1–15. [CrossRef]
8. Gowda, D.V.; Chakrasali, S. Comparative Analysis of Passive and Semi-Active Suspension System for Quarter Car Model Using

PID Controller. 2014. Available online: https://www.researchgate.net/publication/276276510 (accessed on 1 September 2023).
9. Ding, X.; Li, R.; Cheng, Y.; Liu, Q.; Liu, J. Design of and Research into a Multiple-Fuzzy PID Suspension Control System Based on

Road Recognition. Processes 2021, 9, 2190. [CrossRef]
10. Han, S.-Y.; Dong, J.-F.; Zhou, J.; Chen, Y.-H. Adaptive Fuzzy PID Control Strategy for Vehicle Active Suspension Based on Road

Evaluation. Electronics 2022, 11, 921. [CrossRef]
11. Al-Zughaibi, A.I. Controller Design for Active Suspension System of 1/4 Car with Unknown Mass and Time-Delay. Available

online: https://www.researchgate.net/publication/280934598 (accessed on 1 September 2023).
12. Papaioannou, G.; Ning, D.; Jerrelind, J.; Drugge, L. A K-Seat-Based PID Controller for Active Seat Suspension to Enhance Motion

Comfort. SAE Int. J. Connect. Autom. Veh. 2022, 5, 189–199. [CrossRef]
13. Zhu, J.; Zhao, D.; Liu, S.; Zhang, Z.; Liu, G.; Chang, J. Integrated Control of Spray System and Active Suspension Systems Based

on Model-Assisted Active Disturbance Rejection Control Algorithm. Mathematics 2022, 10, 3391. [CrossRef]
14. Dahunsi, O.A.; Dahunsi, O.A.; Pedro, J.O. Neural Network-Based Identification and Approximate Predictive Control of a

Servo-Hydraulic Vehicle Suspension System Ergonomic Evaluation of Dynamic and Post Effects of Vibration on Earthmoving
EQUIPMENT Operators View Project Neural Network-Based Identification and Approximate Predictive Control of a Servo-
Hydraulic Vehicle Suspension System. 2010. Available online: https://www.researchgate.net/publication/49586591 (accessed on
1 September 2023).

https://doi.org/10.3390/app12147094
https://doi.org/10.1109/ACCESS.2019.2907011
https://doi.org/10.3390/app11115293
https://doi.org/10.3390/act12040169
https://doi.org/10.3390/machines10070534
https://doi.org/10.1007/s40032-022-00821-z
https://doi.org/10.1080/23311916.2018.1545409
https://www.researchgate.net/publication/276276510
https://doi.org/10.3390/pr9122190
https://doi.org/10.3390/electronics11060921
https://www.researchgate.net/publication/280934598
https://doi.org/10.4271/12-05-02-0016
https://doi.org/10.3390/math10183391
https://www.researchgate.net/publication/49586591


Processes 2023, 11, 2715 17 of 17

15. Kim, J.; Lee, T.; Kim, C.J.; Yi, K. Model predictive control of a semi-active suspension with a shift delay compensation using
preview road information. Control Eng. Pract. 2023, 137, 105584. [CrossRef]

16. Zhang, N.; Yang, S.; Wu, G.; Ding, H.; Zhang, Z.; Guo, K. Fast Distributed Model Predictive Control Method for Active Suspension
Systems. Sensors 2023, 23, 3357. [CrossRef]

17. Payakkawan, P.; Klomkarn, K.; Sooraksa, P. Dual-line PID controller based on PSO for speed control of DC motors. In Proceedings
of the 2009 9th International Symposium on Communications and Information Technology, ISCIT 2009, Incheon, Republic of
Korea, 28–30 September 2009; pp. 134–139. [CrossRef]

18. Mat, M.H.; Darns, I.Z.M. Self-tuning PID controller for active suspension system with hydraulic actuator. In Proceedings of
the IEEE Symposium on Computers and Informatics, ISCI 2013, Langkawi, Malaysia, 7–9 April 2013; IEEE Computer Society:
Piscataway, NJ, USA, 2013; pp. 86–91. [CrossRef]

19. Zeng, Q.; Zhao, J. Event-triggered controller design for active suspension systems: An adaptive backstepping method with
error-dependent gain. Control Eng. Pract. 2023, 136, 105547. [CrossRef]

20. Jeong, Y.; Sohn, Y.; Chang, S.; Yim, S. Design of Static Output Feedback Controllers for an Active Suspension System. IEEE Access
2022, 10, 26948–26964. [CrossRef]

21. Liu, J.; Liu, J.; Li, Y.; Wang, G.; Yang, F. Study on Multi-Mode Switching Control Strategy of Active Suspension Based on Road
Estimation. Sensors 2023, 23, 3310. [CrossRef]

22. Kozek, M.; Smoter, A.; Lalik, K. Neural-Assisted Synthesis of a Linear Quadratic Controller for Applications in Active Suspension
Systems of Wheeled Vehicles. Energies 2023, 16, 1677. [CrossRef]

23. Alvarez-Sánchez, E. A Quarter-Car Suspension System: Car Body Mass Estimator and Sliding Mode Control. Procedia Technol.
2013, 7, 208–214. [CrossRef]

24. Nguyen, T.A. Research on the Sliding Mode—PID control algorithm tuned by fuzzy method for vehicle active suspension. Forces
Mech. 2023, 11, 100206. [CrossRef]

25. Fu, Z.-J.; Dong, X.-Y. H∞ optimal control of vehicle active suspension systems in two time scales. Automatika 2021, 62, 284–292.
[CrossRef]

26. Chen, L.; Xu, X.; Liang, C.; Jiang, X.-W.; Wang, F. Semi-active control of a new quasi-zero stiffness air suspension for commercial
vehicles based on H2H∞ state feedback. J. Vib. Control. 2023, 29, 1910–1926. [CrossRef]

27. Ahmad, I.; Ge, X.; Han, Q.-L. Communication-Constrained Active Suspension Control for Networked In-Wheel Motor-Driven
Electric Vehicles with Dynamic Dampers. IEEE Trans. Intell. Veh. 2022, 7, 590–602. [CrossRef]

28. Merah, A.; Hartani, K.; Yazid, N.E.H.; Chikouche, T.M. New Integrated Full Vehicle Suspension System for Improvements in
Vehicle Ride Comfort and Road Holding. SAE Int. J. Veh. Dyn. Stab. NVH 2022, 6, 267–281. [CrossRef]

29. Azmi, R.; Mirzaei, M.; Habibzadeh-Sharif, A. A novel optimal control strategy for regenerative active suspension system to
enhance energy harvesting. Energy Convers. Manag. 2023, 291, 117277. [CrossRef]

30. Liu, Y.J.; Zeng, Q.; Liu, L.; Tong, S. An Adaptive Neural Network Controller for Active Suspension Systems with Hydraulic
Actuator. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 5351–5360. [CrossRef]

31. Qu, Z.; Liu, J.; Li, Y.; Yang, F.; Liu, J. Study on Multi-Mode Switching Control of Intelligent Suspension under Full Road Section.
Processes 2023, 11, 1776. [CrossRef]

32. He, X.L.; Chen, J.; Tang, D.Y.; Peng, S.; Tang, B.B. Using an Inerter-Based Suspension to Reduce Carbody Flexible Vibration and
Improve Riding-Comfort. SAE Int. J. Veh. Dyn. Stab. NVH 2023, 7, 137–151. [CrossRef]

33. Ikeda, K.; Kuroda, J.; Uchino, D.; Ogawa, K.; Endo, A.; Kato, T.; Kato, H.; Narita, T. A Study of a Ride Comfort Control System for
Ultra-Compact Vehicles Using Biometric Information. Appl. Sci. 2022, 12, 7425. [CrossRef]

34. Kaldas, M.M.; Soliman, A.M.A.; Abdallah, S.A.; Mohammad, S.S.; Amien, F.F. Road Preview Control for Active Suspension
System. SAE Int. J. Veh. Dyn. Stab. NVH 2022, 6, 371–383. [CrossRef]

35. Abbas, G.; Asad, M.U.; Gu, J.; Alelyani, S.; Balas, V.E.; Hussain, M.R.; Farooq, U.; Awan, A.B.; Raza, A.; Chang, C. Multivariable
unconstrained pattern search method for optimizing digital pid controllers applied to isolated forward converter. Energies 2021,
14, 77. [CrossRef]

36. The MathWorks Inc. Optimization Toolbox, version 9.4 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022.
37. Bequette, B. Process Control: Modeling, Design, and Simulation; Prentice Hall Press: Upper Saddle River, NJ, USA, 2002.
38. Nise, N.S. Control Systems Engineering, 8th ed.; Wiley: Hoboken, NJ, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.conengprac.2023.105584
https://doi.org/10.3390/s23063357
https://doi.org/10.1109/ISCIT.2009.5341272
https://doi.org/10.1109/ISCI.2013.6612381
https://doi.org/10.1016/j.conengprac.2023.105547
https://doi.org/10.1109/ACCESS.2022.3157326
https://doi.org/10.3390/s23063310
https://doi.org/10.3390/en16041677
https://doi.org/10.1016/j.protcy.2013.04.026
https://doi.org/10.1016/j.finmec.2023.100206
https://doi.org/10.1080/00051144.2021.1935610
https://doi.org/10.1177/10775463211073193
https://doi.org/10.1109/TIV.2022.3160165
https://doi.org/10.4271/10-06-03-0018
https://doi.org/10.1016/j.enconman.2023.117277
https://doi.org/10.1109/TSMC.2018.2875187
https://doi.org/10.3390/pr11061776
https://doi.org/10.4271/10-07-02-0009
https://doi.org/10.3390/app12157425
https://doi.org/10.4271/10-06-04-0025
https://doi.org/10.3390/en14010077

	Introduction 
	Mathematical Model of the Active Suspension System 
	2nd and 1st (Reduced) Order Differential Equations 
	State-Space form Equations 
	Mathematical Model in the Form of Transfer Functions 
	Open Loop Simulations 

	Feedback Control System Design 
	PID Controller 
	Optimal Tuning Via Genetic Algorithms 
	IMC Controller 
	Controller Performance Criteria 

	Evaluation and Comparison of Feedback Controllers 
	Simulation Scenario 1: Set-Point Tracking under No Disturbances 
	Simulation Scenario 2: Set-Point Tracking and Disturbance Rejection 
	Simulation Scenarios 1 and 2: Comparison of IMC and Optimal PID Controllers 
	Performance Criteria and Critical Analysis 

	Conclusions 
	References

