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Abstract: To address the issues of strong subjectivity, low efficiency, and difficulty in on-site model
deployment encountered in existing CCTV defect detection of pipelines, this article proposes an
object detection model based on an improved YOLOv5s algorithm. Firstly, involution modules and
GSConv simplified models are introduced into the backbone network and feature fusion network,
respectively, to enhance the detection accuracy. Secondly, a CBAM attention mechanism is integrated
to improve the detection accuracy of overlapping targets in complex backgrounds. Finally, knowledge
distillation is performed on the improved model to further enhance its accuracy. Experimental
results demonstrate that the improved YOLOv5s achieved an mAP@0.5 of 80.5%, which is a 2.4%
increase over the baseline, and reduces the parameter and computation volume by 30.1% and 29.4%,
respectively, with a detection speed of 75 FPS. This method offers good detection accuracy and
robustness while ensuring real-time detection and can be employed in the on-site detection process
of sewer pipeline defects.

Keywords: detection of sewer defects; improved YOLOv5; involution; GSConv; attention mechanism;
knowledge distillation

1. Introduction

The sewer pipeline system is one of the important components of urban infrastructure
construction and an important guarantee for maintaining the cleanliness and hygiene of
cities [1]. With the increase in the service time of pipelines, some sections may develop
defects such as misalignment and rupture. In order to ensure the normal operation of
the pipeline network, the municipal government invests a lot of manpower and resources
every year to carry out daily inspections and maintenance work on it.

Currently, closed-circuit television (CCTV) inspection is the most extensively em-
ployed method for pipeline inspection globally [2]. The process of CCTV inspection
comprises two stages, namely, on-site video information collection and off-site evaluation.
On-site video is collected using either pipeline cameras or robots and is submitted to experts
for evaluation. Finally, manual inspection reports are provided by the experts [3]. However,
in the process of manual evaluation, there are many factors that can lead to inaccurate
results and low efficiency, such as different levels of technical expertise among personnel,
varying video quality, and excessive workload.

The development of deep learning technology has brought about many remarkable
object detection algorithms in the field, such as Fast R-CNN [4], SSD [5], YOLO [6–9],
etc. These algorithms have surpassed traditional computer vision detection techniques
in terms of detection accuracy and speed in various application scenarios. The YOLO
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models have demonstrated their excellent detection performance in a variety of fields.
Sergio and Abdussalam [10] conducted an investigation into the correlation between
image size, training time, and the performance of YOLO series models, resulting in the
successful detection of a vehicle dataset. Furthermore, Yang et al. [11] employed YOLOv5
for defect detection in steel pipe welds. In recent years, some scholars have applied
deep learning technology to the field of pipeline defect detection. Srinath et al. [12] used
YOLOv3 as the detection network to locate defects such as tree roots and sediment in
pipelines, and compared it with other detection models. Tan et al. [13] utilized Mosaic
data augmentation on top of YOLOv3, introduced generalized intersection over union
(GIOU), and employed adaptive anchor boxes. Chanmi et al. [14] utilized YOLOv5 as the
architecture and incorporated a small object detection layer while introducing attention
mechanisms to enhance the detection accuracy of small objects.

Despite the outstanding achievements of the aforementioned models, it is important to
note that they are predominantly proposed based on non-field evaluations, overlooking the
challenges linked to on-site video collection. Limitations in device computational power,
among other factors, can hinder the deployment of these models. Additionally, video
quality holds significant importance as a contributing factor to detection performance.
Moreover, persisting challenges such as weak lighting conditions and complex background
structures within the pipelines pose difficulties in identifying specific defects. Hence, fur-
ther research is warranted to tackle concerns such as model lightweighting and enhancing
detection accuracy.

The aim of the paper is to present a novel enhanced detection model, built upon
YOLOv5, aimed at mitigating the challenges prevalent in existing object detection models.
The proposed model specifically tackles issues such as suboptimal accuracy, high parameter
and computational complexity, excessive memory consumption due to large model weights,
and constraints associated with deploying on mobile devices.

In this study, the YOLOv5s model is selected as the foundational detection network.
To facilitate efficient deployment, the main network incorporates the Involution [15] op-
erator, while the feature fusion network adopts the GSConv [16] technique to construct a
lightweight network structure. Furthermore, to mitigate the effects of challenging factors
such as weak lighting and complex backgrounds in pipeline environments on detection
accuracy, the CBAM [17] attention mechanism is introduced in the feature fusion network to
effectively integrate semantic features across different network layers, thereby augmenting
the detection accuracy. Lastly, knowledge distillation [18] is employed, utilizing YOLOv5m
as the teacher network, to distill the improved model and further enhance its accuracy and
generalization capabilities.

The contributions of this paper can be summarized as follows:

(1) In light of the limitations associated with current pipeline defect detection methods,
an enhanced YOLOv5 model is presented in this study. This model strikes a fine
balance between lightweight architecture and detection accuracy, thereby facilitating
its effective deployment for on-site sewer pipeline defect detection tasks.

(2) Based on the model’s detection accuracy, a comparative analysis is conducted to eval-
uate the effects of three distinct attention mechanisms, namely SE [19], CA [20], and
CBAM, on the precision of the improved model. Heatmaps are employed to visually
illustrate the regions of interest captured by each attention mechanism. Furthermore,
ablation experiments are carried out to examine the impact of different enhancement
modules on the detection performance of the network.

(3) The experimental findings unequivocally establish the superior detection accuracy of
the enhanced YOLOv5 model in comparison to its original counterpart. Moreover,
the improved model showcases reduced parameter and computational complexity,
thereby satisfying the real-time detection prerequisites essential for on-site scenarios.
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2. Network Architecture
2.1. YOLOv5

YOLOv5 is a widely used one-stage object detection model in engineering projects,
with five models of YOLO5n, YOLO5s, YOLO5m, YOLO5l, and YOLO5x based on the
depth and width of the network. The complexity and detection accuracy of a model are
influenced by different network widths and depths. In the context of sewer pipeline defect
detection, where both accuracy and model complexity are crucial, YOLOv5s was selected
as the fundamental network architecture for a series of improvements in this study. The
architecture of the YOLOv5s network is illustrated in Figure 1.
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Figure 1. YOLOv5s network structure diagram.

The YOLOv5 network architecture can be divided into four parts: input, backbone,
neck, and head. The input part applies data augmentation, adaptive anchor box calculation,
and adaptive image scaling to the input images. The backbone of YOLOv5 is a feature
extraction network consisting of convolution (Conv) modules, cross stage partial network
with 3 convolutions (C3) modules, and spatial pyramid pooling fusion (SPPF) modules.
The Conv modules extract features and organize the feature maps, while the C3 modules
mainly increase the depth of the network and enhance its feature extraction capabilities.
“Spatial Pyramid Pooling Fast (SPPF)” is an improvement based on “SPP” with faster speed.
The goal of SPPF is to concatenate the feature representations at different scales of the same
feature map. In the YOLOv5 network architecture, “Neck” is a feature fusion network
composed of feature pyramid network (FPN) and path aggregation network (PAN). The
shallow visual features are combined with the deep semantic features to obtain a more
comprehensive feature representation. The “Head” section is composed of three detection
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layers of different sizes, which output the final detection results by computing the loss
function and performing non-maximum suppression.

2.2. Improved YOLOv5

This paper presents a modified model structure based on YOLOv5s, which is illus-
trated in Figure 2 (the improved modules are highlighted in green and red in the figure).
To reduce the model size, involution and GSConv were introduced into Backbone and
Neck, respectively. The detection accuracy of the model is enhanced by incorporating the
CBAM attention module into Neck and performing knowledge distillation on the improved
YOLOv5s. The aforementioned improvement measures can achieve a balance between
detection accuracy and speed by reducing the number of parameters and computational
complexity while ensuring detection accuracy. This facilitates deployment on terminals.
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3. Methods
3.1. Involution

Convolution exhibits two fundamental properties: spatial invariance and channel
specificity, which enable it to fully exploit the translational equivariance of visual features
and the modeling information between channels. Nonetheless, these properties can also re-
strict the modeling capability of convolution kernels in various spatial positions and result
in a substantial computational and parameter cost due to the non-sharing of parameters
between channels. Thus, the involution operator is proposed as having opposite character-
istics to the convolution operator, specifically spatial specificity and channel invariance. By
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sharing parameters between channels, the involution operator can reduce the number of
parameters and computational complexity.

The involution operator partitions the number of feature channels into G groups,
where each group shares one kernel and different kernels are used for different spatial
coordinates. The size of the involution kernel can be represented as H ×W × K× K× G,
and the output feature map of the involution operator can be denoted by Equation (1):

Yi,j,k = ∑
(u,v)∈∆K

ηi,j,u+bK/2c,v+bK/2c,dkG/CeXi+u,j+v,k, (1)

In this equation, X represents the input feature map, Y represents the output feature
map, η ∈ R is the kernel vector of the involution operator, R represents the entire pixel
coordinate space, dkG/Ce denotes the number of shared groups within a channel, and ∆K
represents the set of offset values for the neighborhood of the central pixel convolution.
Unlike convolution, the involution kernel is dynamically generated based on the input
features. Specifically, the input feature map X is mapped to form a dynamic convolution
kernel, which can be expressed in a general form using Equation (2):

ηi,j = φ(Xi,j) = W1σ(W0Xi,j),
W0 ∈ R

C
r ×C, W1 ∈ R(K×K×G)× C

r ,
(2)

Xi,j represents the input feature map at pixel point i, j, φ denotes the kernel generation
function of the involution operator, W0 and W1 represent two linear transformations,
and the inter-channel dimension is controlled by the downsampling ratio r for efficient
processing. σ denotes the nonlinear activation function processed on the above linear
transformations after batch normalization. The principle and operation of involution are
shown in Figure 3. Each group of pixel coordinates is mapped by the φ function to obtain a
1× 1× K2 feature map, which is then restructured by the reshape function into the shape
of the involution operator’s kernel. Finally, a multiplication and addition operation is
performed with the feature vector of the neighborhood of this coordinate point to obtain
the output feature map.
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Compared to traditional convolution, the involution operator enhances spatial model-
ing information while weakening channel modeling information. If all ordinary convolu-
tion operators are replaced with the involution operator, it will cause a significant drop in
accuracy. Considering that downsampling with a stride of 2 in traditional convolution will
cause the phenomenon of spatial information loss, this paper replaces the downsampling
convolution block in the backbone network with the involution block to balance the model
size and accuracy.
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3.2. GSConv

When designing lightweight networks, depth-wise separable convolution (DSConv) is
often utilized as a replacement for standard convolution (SConv) to reduce computational
costs. However, DSConv separates the channel information of the input feature map, which
leads to lower feature extraction and fusion capabilities when compared to SConv. This
article presents the introduction of GSConv to the feature fusion network, as illustrated in
Figure 4. By concatenating and shuffling the feature tensors output by SConv and DSConv,
the model’s nonlinear expression capability is enhanced. This leads to a balance between
the lightweight structure of the network and detection accuracy.
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3.3. CBAM

Incorporating attention mechanisms in the construction of neural networks can effec-
tively suppress irrelevant information and enhance network efficiency. One of the widely
used attention modules is the CBAM, which is simple yet effective, as illustrated in Figure 5.
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Figure 5. CBAM module structure.

CBAM consists of two independent sub-modules: the channel attention module (CAM)
and the spatial attention module (SAM). To begin, the channel attention mechanism is
applied to the input feature map, which generates two two-dimensional feature maps via
parallel max-pooling and average-pooling operations. These feature maps are then fed into
a multi-layer perceptron (MLP) with shared weights. The resulting features are summed
and passed through a sigmoid activation function. Finally, the output of the activation
function is multiplied with the input feature map, resulting in an intermediate feature
map. The intermediate feature map undergoes parallel max-pooling and average-pooling
operations in the spatial attention module, producing two two-dimensional feature maps
that are concatenated. After passing through a 7 × 7 convolutional layer and a sigmoid
activation function, the final output feature map is obtained by multiplying it with the
intermediate feature map.
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3.4. Knowledge Distillation

The main concept of knowledge distillation is to transfer knowledge from a large and
accurate network (teacher network) to a lightweight network (student network). This paper
conducts offline distillation of the improved model using the response-based distillation
strategy proposed in Rakesh et al. [21]. The distillation process is shown in Figure 6.
The output of the teacher network is heated to obtain soft labels, and one branch of the
student network is also heated during output to obtain soft predictions. The distillation
loss is calculated by computing the loss function between the soft predictions and the soft
labels generated by the teacher network. The other branch calculates the student loss by
computing the loss function between the unheated output and the true label.
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The loss function of the YOLO algorithm is represented by Equation (3):

LYOLO = fobj(o
gt
i , ôi) + fcl(pgt

i , p̂i) + fbb(b
gt
i , b̂i), (3)

In Equation (3) of the YOLO algorithm, fobj, fcl , fbb represent the losses of objectness,
class probability, and bounding box coordinates, respectively. ôi, p̂i, and b̂i represent the
target objectness, class probability, and coordinate information of the predicted bounding
box by the student network, while ogt

i , pgt
i , bgt

i represent the target objectness, class proba-
bility, and coordinate information of the ground truth bounding box. Moreover, building
upon this foundation, the concept of distillation loss is introduced, accompanied by its
corresponding loss function presented in Equation (4):

LDistillation = fobj(oT
i , ôi) + ôi

T• fcl(pT
i , p̂i) + ôi

T• fbb(bT
i , b̂i), (4)

The variables oT
i , pT

i , bT
i denote the objectness, class probability, and coordinate in-

formation of the bounding box predicted by the teacher network. The output oT
i after

applying the sigmoid function is denoted as ôi
T , which is used as the coefficient for both the

classification and localization losses to prevent the student network from learning incorrect
background box information. The total loss function comprises both distillation loss and
student loss, and the parameter λD is introduced to balance the object detection loss and
distillation loss of the student network. Thus, the total loss function can be expressed as
Equation (5):

L f inal = LYOLO + λD•LDistillation. (5)

The network structure of the teacher model is usually more complex than that of
the student model. However, the difference between the teacher model and the student
model should not be too large, otherwise the student model will have difficulty fitting the
predictions of the teacher model, resulting in poor knowledge distillation. Therefore, in
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this paper, the YOLOv5m network with the same structure as the improved YOLOv5s is
used as the teacher network to perform knowledge distillation on the improved YOLOv5s
to improve the performance of the model.

4. Experimental Results and Analysis
4.1. Dataset and Preprocessing

This paper utilizes a dataset from SewerML [22], which was originally designed for
multi-label image classification. Therefore, only six commonly occurring defects, namely
break (PL), displaced joint (CK), roots (SG), intruding sealing material (TL), branch pipe
(AJ), and obstacle (ZW), are selected for analysis in this study. In this study, a total of
2122 defect images were utilized, and 3490 annotation boxes were manually labeled using
the labeling tool.

The dataset was divided into training, testing, and validation sets in a ratio of 7:2:1.
To enhance the sample size and improve the generalization ability and robustness of the
model, online data augmentation techniques, such as HSV enhancement, random rotation,
random scaling, random translation, and Mosaic4, were applied to the training set. Partial
defect images are shown in Figure 7.
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4.2. Experimental Environment and Hyperparameter Settings

The experiments were carried out using a Windows 11 operating system, an NVIDIA
GeForce RTX 3050 graphics card, an Intel Core i5-11260H2 CPU, and 16 GB of memory.
The model was constructed, trained, and validated using the PyCharm 2018 editor and the
PyTorch 1.12.1 deep learning framework, respectively, to achieve the research objectives.

During training, the epoch was set to 300, and the initial learning rate was set to 0.01.
The learning rate decay employed the cosine annealing method, with a final decay of 0.0001.
The optimizer used was SGD, with a momentum of 0.937. The batch size was set to 16, and
the input image size was set to 480 × 480. For the knowledge distillation experiment, the
value of λD was set to 0.5.

4.3. Evaluation Index

To compare the accuracy of models with different structures for detecting defects
in sewer pipelines, mean average precision mAP@0.5 and mAP@0.5 : 0.95 were used as
evaluation metrics. The formulas for the evaluation metrics are as shown in Equations
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(6)–(9): TP represents the number of true positive samples detected, FP represents the
number of false positive samples detected, and FN represents the number of undetected
positive samples. AP is the average precision for a given category, N is the total number of
categories, and P and R represent precision and recall, respectively.

P =
TP

TP + FP
, (6)

R =
TP

TP + FN
, (7)

AP =
∫ 1

0
P(R)dR, (8)

mAP =
1
N

N

∑
i=1

APi. (9)

To reflect the speed and complexity of model detection, the evaluation metrics included
frames per second (FPS) and the number of parameters (Params), floating-point operations
per second (FLOPs), and the size of model weight files (Weights).

4.4. Different Attention Mechanism Comparative Experiments

The CBAM attention mechanism was introduced in the feature fusion network of this
paper. In order to verify its effectiveness and investigate the impact of different attention
mechanisms on the improved model, SE and CA attention mechanisms were introduced at
the same position for comparative experiments, as shown in Table 1 for the results.

Table 1. Comparative experimental results of attention mechanisms.

Model mAP@0.5/% mAP@0.5:0.95/% Parameters GFLOPs

Involution + GSConv 78.1 45.2 4,875,367 11.3
Involution + GSConv + SE 78.2 45.3 4,918,375 11.3
Involution + GSConv + CA 78.3 45.9 4,911,047 11.3

Involution + GSConv + CBAM 79.3 46.3 4,918,669 11.3

To further analyze the impact of different attention mechanisms on the improved
network’s prediction results, GradCAM++ [23] was employed to visualize the feature maps
of the last layer of the neck network and generate heat maps, as presented in Figure 8.
The heat map indicates that the attention of the three different attention mechanisms has
been enhanced to varying degrees compared to the original model, with darker colors
representing higher attention in the corresponding areas. Notably, among the three types
of defects, namely break, displaced joint, and intruding sealing material, the CBAM mecha-
nism shows higher coverage of the target region. Thus, based on the experimental findings
and heat map analysis, this paper selects the CBAM attention mechanism, which exhibits
more pronounced improvement in the model’s performance.

4.5. Ablation Experiments

To further analyze the influence of various improvement modules on network de-
tection performance, ablation experiments were conducted on the test set, and various
performance indicators are presented in Table 2. The symbol “

√
” denotes the inclusion of

the corresponding improvement module.
Based on the observation of Table 2, it is apparent that the integration of the involution

module into the original network leads to a substantial decrease in both the number of pa-
rameters and the computational complexity. GSConv adds shuffling operation on the basis
of DSConv to enhance the network’s nonlinear expression ability, enabling the network to
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achieve higher accuracy while slightly reducing the number of parameters and computa-
tional complexity. While the introduction of CBAM reduces detection speed, it compensates
for the accuracy loss incurred by the lightweight process. Table 3 presents the selection
of YOLOv5m as the teacher network, with mAP@0.5 and mAP@0.5:0.95 reaching 79.3%
and 46.3%, respectively, prior to knowledge distillation. Post distillation, the final model
demonstrated a 2.4% and 2.6% improvement in mAP@0.5 and mAP@0.5:0.95, respectively,
when compared to the baseline model. The number of parameters and computational cost
decreased by 30.1% and 29.4%, respectively, and the detection speed reached 75 FPS. The
above data demonstrates the effectiveness of the proposed improvement method, which
achieves lightweight network and improved prediction accuracy while ensuring real-time
on-site detection.
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Table 2. Results of the ablation experiment.

Method Involution GSConv CBAM KD mAP@0.5/% mAP@0.5:0.95/% Parameters GFLOPs FPS

YOLOv5s 78.1 46.1 7,035,811 16 98
A

√
77.6 45 5,316,327 11.8 95

B
√

78.9 46.7 6,594,851 15.4 93
C

√
79.2 46.6 7,079,113 16.1 85

D
√ √

78.1 45.2 4,875,367 11.3 90
E

√ √ √
79.3 46.3 4,918,669 11.3 75

F
√ √ √ √

80.5 48.7 4,918,669 11.3 75

Table 3. Results of knowledge distillation experiments.

Model λD mAP@0.5/% mAP@0.5:0.95/%

Involution + GSConv + CBAM 79.3 46.3
YOLOv5m(Teacher) 80.8 51.2

Involution + GSConv + CBAM + KD 0.5 80.5 48.7

4.6. Comparison Experiment

To objectively demonstrate the effectiveness of the improved YOLOv5 model proposed
in this paper for detecting defects in sewer pipes, some mainstream object detection models,
including SSD, Faster R-CNN, and the YOLO series, were trained and tested on the same
dataset. Moreover, the enhancement strategy proposed by Chanmi et al. [14] (YOLOv5LC,
micro-scale detection layer + CBAM) for the detection of sewer pipeline defects using the
YOLOv5s model has been successfully reproduced in this study. Subsequently, a compar-
ative analysis was conducted between the improved model and theirs. The evaluation
metrics used were mean average precision (mAP), frames per second (FPS), and model
weight size. The experimental results are presented in Table 4.
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Table 4. Comparison experimental results of mainstream algorithms.

Model mAP@0.5/% mAP@0.5:0.95/% Weight Size/MB FPS

SSD 76.2 41.7 93.1 26
Faster-RCNN 78.5 44 108 8

YOLOv3 78.4 45.7 117 41
YOLOv4 80.9 52 100 44
YOLOv5s 78.1 46.1 13.7 98

YOLOv5(MobileNetV3) 76.4 45.3 9.96 72
YOLOv5(ShuffleNetV2) 71.2 37.7 6.36 103

YOLOv7tiny 77.1 44.5 11.7 95
YOLOv7 82.3 53.5 71.3 46

YOLOv5sLC [14] 79.4 48.3 14.5 64
Improved model 80.5 48.7 9.7 75

According to Table 4, the improved algorithm achieved a detection speed of 75 FPS
and has good real-time performance. The precision metric mAP@0.5 reached 80.5%, which
is 2.0% and 4.3% higher than the classic object detection algorithms Faster R-CNN and
SSD, respectively. It is also significantly better than the same type of algorithms YOLOv3,
and YOLOv5s. Compared to other improved lightweight algorithms such as YOLOv5
(backbone based on ShuffleNetV2 [24] and MobileNetV3 [25]) and the newer YOLOv7tiny,
the improved model achieves the highest detection accuracy while satisfying the real-time
detection requirements. Compared to YOLOv5sLC, the proposed approach demonstrates
superior suitability for sewer pipeline defect detection tasks in terms of accuracy, speed,
and lightweight design. Although its accuracy is slightly lower than large models such as
YOLOv4 and YOLOv7, due to its smaller model size and faster detection speed, it is more
suitable for field deployment in sewer pipe defect detection.

4.7. Detection Results

In order to further validate the efficacy of the final improved model, a comprehen-
sive comparison was conducted between the improved model and YOLOv5s on the test
dataset, aiming to assess their performance and effectiveness. Table 5 demonstrates that
the improved model demonstrates diverse degrees of performance enhancement across
different defect detection scenarios. Figure 9 presents the PR curve plots for the original
and the improved models. As shown in the figure, it is evident that the PR curve of the
improved model achieves a larger area under the curve, indicating its superior performance
compared to the original model.

Table 5. Comparison of precision, recall, mAP between the original and improved models.

Method Indicator PL CK SG TL AJ ZW ALL

YOLOv5s

P/% 74.3 70.1 79.6 83.1 86.3 82.7 79.4
R/% 64.6 64.5 79.7 74.8 82.1 70 72.6

mAP@0.5/% 70.4 68.5 81.5 83.2 85.4 79.8 78.1
mAP@0.5:0.95/% 31.7 44.9 39.9 47.6 60.4 52.2 46.1

Improved model

P/% 78.2 70 83 84.7 88.5 84.8 81.5
R/% 64.6 71.5 83.2 78.3 80.6 77.3 75.9

mAP@0.5/% 71.9 73.5 82.8 84.3 89.1 81.7 80.5
mAP@0.5:0.95/% 31.6 51.1 44 51.1 62.6 52 48.7
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In the task of detecting sewer pipeline defects, missed detections often occur due to
factors such as low lighting conditions and occlusions. Analysis of Table 5 and Figure 9
reveals a notable enhancement in the recall rate of the improved model compared to
YOLOv5s. A higher recall rate indicates a reduced number of missed defects by the model,
which holds significant importance for sewer defect detection tasks. Figure 10 presents
the visual results of the original and improved models, providing visual evidence of
the enhanced performance of the improved model in detecting sewer pipeline defects. In
Figure 10, a comparison between (a) and (g), as well as (e) and (k), reveals that the improved
model, compared to the original model, successfully detects break (PL) under low-light
conditions. Comparing (d) and (j), the improved model demonstrates excellent detection
capabilities for smaller roots (SG) defects as well.

In conclusion, the model proposed in this study demonstrates substantial advance-
ments over YOLOv5s, facilitating enhanced detection of diverse defect types and precise
localization within sewer pipelines.

It is important to acknowledge that while the improved model demonstrates the
capability to identify the majority of diverse sewer pipeline defects, there might be specific
scenarios where certain limitations or oversights in the improved model’s performance
could arise. In Figure 10j, the model failed to detect the roots (SG) extending from the
lateral branch. This can be attributed to the similarity in height between the roots and
the background sediment, which leads to less distinct features and subsequently results
in missed detections. In Figure 10k, a break (PL) at a specific location was not detected,
possibly due to the small size of the fracture, leading to a missed detection (missed defects
are indicated by green arrows in Figure 10).

Typically, in pipeline engineering regulations, fractures are classified into four distinct
levels. Hence, in this study, both cracks and substantial wall damages are categorized
as break (PL) defects. Moreover, existing object detection methods lack the capability to
evaluate the severity level of individual defects, thereby requiring the incorporation of
segmentation techniques. This presents a promising avenue for future research in the
domain of sewer pipeline inspection tasks.
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5. Conclusions

This paper presents an improved algorithm for sewer pipeline defect detection based
on YOLOv5s, effectively tackling the subjectivity, low efficiency, and on-site model deploy-
ment challenges associated with existing CCTV-based defect detection methods. The model
presented in this paper possesses the following advantages:

(1) The proposed model exhibits a reduced number of parameters and computational
complexity. In this study, a lightweight network architecture is constructed by incorpo-
rating involution and GSconv, thereby mitigating the dependence on computational
power of the device. Compared to the YOLOv5s model, the proposed model ex-
hibits a reduction of 30.1% in the number of parameters and a 29.4% decrease in
computational complexity.

(2) The model proposed in this study exhibits a high level of detection performance. The
incorporation of the CBAM attention mechanism enhances the detection capability
of the model, particularly in complex backgrounds. Furthermore, the utilization of
knowledge distillation is employed to enhance the model’s generalization perfor-
mance. Ultimately, the improved model successfully attained an mAP@0.5 score of
80.5% and an mAP@0.5:0.95 score of 48.7% on the test dataset. Moreover, the detection
speed demonstrated remarkable performance, achieving a rate of 75 frames per second
(FPS), effectively meeting the stringent real-time demands for on-site detection.

Through comparative experiments, the proposed model demonstrated superior per-
formance compared to well-known models such as SSD and Faster R-CNN. Furthermore,
it surpassed its counterparts in the YOLOv3 and YOLOv5s series. When compared to other
lightweight enhancement algorithms, such as YOLOv5s (ShuffleNetV2 and MobileNetV3)
and YOLOv7tiny, the proposed model achieves the highest level of detection accuracy while
satisfying the real-time detection demands. Although the proposed model’s mAP is slightly
lower compared to YOLOv4 and YOLOv7, it offers notable advantages in terms of model
size and detection speed. Moreover, in comparison to the YOLOv5sLC model, a target
detection model for the same task, the proposed model exhibits even greater advantages
on the dataset employed in this study.

Based on the aforementioned data, the model proposed in this study fulfills the
real-time requirements for on-site sewer pipeline defect detection. It demonstrates low com-
putational overhead and achieves enhanced accuracy compared to mainstream algorithms
at the current stage. Thus, it is well-suited for deployment on mobile devices. While current
object detection models demonstrate the ability to accurately detect defects, they encounter
difficulties in assessing the precise severity level of individual defects. In future studies,
semantic segmentation will be carried out on the detected defect images, followed by the
evaluation of their respective severity levels, considering their geometric characteristics.
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