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Abstract: Separating heavy components from natural gas not only enhances safety, improves pipeline
transportation, ensures product quality, and addresses environmental considerations, but it also exerts
an influence on global energy trends. Therefore, separating heavy components is necessary and can
result in beneficial goods. This article presents a comprehensive study on the process simulation and
optimization of the recovery of natural gas condensate via the combined refrigeration of a mixture of
ethane and propane as a refrigerant. The optimization objectives include maximizing the recovery of
ethane and propane, minimizing energy consumption, and achieving desired product quality targets.
A sensitivity analysis was performed to assess the impact of key parameters on process performance.
Using Aspen HYSYS software, the influence of the cooler outlet stream temperature and expander
outlet stream pressure on the shaft power and profit of a dry gas compressor was analyzed based
on the operating conditions of the case plant, which has a processing capacity of 2988 kmol/h. The
profitability of the plant is at a maximum when the cooler’s outlet stream temperature is −61 ◦C and
the expander’s outlet stream pressure is 2500 kPa. After optimization, the refrigeration cycle system
can reduce the plant’s energy consumption by 1516.4 kW. An optimized process design can lead to
enhanced recovery efficiency, reduced energy consumption, and improved profitability in the natural
gas industry.

Keywords: combined refrigeration; process simulation; Aspen HYSYS; optimization

1. Introduction

The production of natural gas in China has experienced significant growth due to
the country’s focus on using cleaner energy sources and reducing reliance on coal. This
growth presents opportunities for the recovery of natural gas liquids from natural gas. The
presence of valuable components like ethane, propane, butane, and others in the natural
gas stream makes their recovery economically attractive. The production of natural gas
in China has been growing rapidly in recent years, driven by the country’s efforts to shift
towards cleaner energy sources and reduce reliance on coal. In 2022, natural gas production
in China increased by 6.4% to reach 217.8 billion cubic meters [1]. Natural gas is not only
composed of methane but also contains trace amounts of valuable components such as
ethane, propane, butane, isobutane, and natural gasoline, collectively known as natural gas
liquids (NGL). The recovery of NGL from natural gas has become economically profitable
due to the high value of these components in the energy market.

To optimize the natural gas condensate recovery process, there has been a grow-
ing focus on optimizing operational parameters to reduce energy consumption and en-
hance energy efficiency [2–4]. By effectively recovering and utilizing natural gas conden-
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sate, the utilization of energy resources can be maximized, leading to improved resource
utilization efficiency.

The process of recovering NGL involves cooling the gas stream step by step through
a series of heat exchangers to lower the temperature below the condensation points of the
different hydrocarbons present. Each hydrocarbon component has a specific condensation
temperature at which it transitions from a gaseous state to a liquid state. Various processing
strategies have been proposed for extracting NGL from unprocessed gas streams [5–7].
Well-designed and efficient NGL recovery units are crucial for ensuring optimal profitability
throughout the lifespan of the facility.

The production of liquefied natural gas (LNG) requires a substantial amount of en-
ergy [8]. Integrating the processes of NGL recovery and LNG production is an efficient
method that can reduce the overall refrigeration requirements. Many international natural
gas condensate recovery companies have adopted this technology due to its efficiency and
cost-effectiveness. This approach has been widely implemented in the industry and is
proven to be effective in recovering valuable condensate from natural gas streams.

Barakat-Rezaei et al. [9] present an economic and technical analysis of producing
valuable products from flare gas, namely liquefied natural gas and natural gas liquids.
This research highlights the potential for utilizing flare gas as a valuable resource and
demonstrates the economic and technical feasibility of producing LNG and NGL from this
gas source.

The research conducted by Salas et al. [10] focuses on determining the optimal opera-
tional conditions for NGL recovery unit. They employed a simulation-based multi-objective
optimization strategy, combining PRO/II and a Python environment. By utilizing an evolu-
tionary optimization algorithm, they simultaneously optimized multiple decision variables,
resulting in the construction of a 2-D/3-D Pareto front. This approach allows for a compre-
hensive analysis of the trade-offs between different objectives.

In a related study, Baharm et al. [11] investigate the design and optimization of an
integrated process for the recovery of natural gas liquids, natural gas liquefaction, and
nitrogen removal units. Their work involves simulation modeling and analysis to obtain
and optimize the procedures involved in LNG (liquefied natural gas) production.

Simulation modeling and analysis have proven to be valuable tools in achieving
a detailed understanding of LNG processes and optimizing their performance. Commercial
process simulators, such as Aspen HYSYS, have been widely adopted in various industries
for optimization purposes [12]. These simulators provide a platform to simulate and
optimize complex processes, enabling researchers and engineers to improve the efficiency,
cost-effectiveness, and overall performance of LNG production and related operations.

The use of multiple cooling technologies is an effective approach to separate and
recover natural gas, and, in particular, improve the recovery of natural gas condensate.
One such method is combined refrigeration, which combines expansion refrigeration and
refrigerant cycle refrigeration techniques. In this combined refrigeration system, the raw
material gas is cooled via step-by-step freezing and condensate separation. This approach
reduces the required overall cooling capacity and allows for a greater depth of freezing.
As a result, there is a significant improvement in the recovery of natural gas condensate.
While condensate separation and recovery are essential for maximizing the amount of
valuable condensate obtained, it is important to consider the impact on the quality of the
dry gas component, which mainly consists of methane and ethane. Methane and ethane are
valuable chemical compounds in their own right, so it is crucial to strike a balance between
condensate recovery and the preservation of high-quality dry gas.

Ghorbani et al. [11] investigated cascade refrigeration systems in an integrated cryo-
genic natural gas process, encompassing NGL, liquefied natural gas, and nitrogen rejection
units. Shamsi et al. [13] conducted a comparative energy and exergy analysis of the
Joule–Thomson and mechanical refrigeration processes to tune the natural gas dew point.
Khajehpour et al. [14] performed exergy analysis and optimization of a recovery unit for
natural gas liquids.
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This article focuses on the process simulation and optimization of recovering natural
gas condensate using a refrigerant mixture of ethane and propane. By studying and
optimizing the process parameters, such as temperature, pressure, and composition, the
goal is to achieve the optimal recovery of natural gas condensate while maintaining the
quality of the dry gas components.

2. Process Description

The flowsheet presented in Figure 1 outlines the process for recovering natural gas
condensate, encompassing cooling, compressing, and separating operations. In the base
case, the natural gas undergoes cooling using an LNG-100 heat exchanger and E-100 cooler,
resulting in a temperature reduction to −61 ◦C. To facilitate this cooling process, a mixed
refrigerant comprising 90 mol% ethane and 10 mol% propane is utilized. Consequently, the
heavy components within the pre-cooled natural gas are condensed and cooled until they
transition into the liquid phase.
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The cooled natural gas is then directed to the V-100 separator, where it is divided into
two streams: gas stream S4 and liquid stream S3. Stream S3, after undergoing decompres-
sion through valve VLV-100, is introduced into the first plate of the NGL recovery tower
for subsequent distillation.

On the other hand, gas phase stream S4 experiences expansion via the expander K-100
to reduce its pressure. The resulting expanded gas phase, denoted as stream S5, proceeds
to the gas–liquid separator V-101. Moreover, gas phase streams S7 and S9, derived from
separator V-101 and the NGL recovery tower, are employed in precooling the feedstock
natural gas by passing through the LNG-100 heat exchanger. Subsequently, these streams
are compressed by the K-101 compressor. Finally, the compressed gas attains a pressure of
7000 kPa in the K-102 compressor before being exported.

In the described process flow, the liquid stream S3, located at the bottom of the V-100
separator, undergoes a pressure reduction by passing through the throttle valve VLV-100.
As a result, stream S8 is obtained from the first tray of the NGL recovery rectification tower,
as depicted in Figure 2.

The frigid liquid stream S6, which is generated through gas expansion, and the gas
phase stream present at the top of the tower are directed to the condenser for gas–liquid
separation. In this step, the liquid phase serves as the top reflux, while the gas phase
functions as the gas product stream S9, located at the top of the tower. It should be noted
that the overhead condenser functions solely as an adiabatic flash tank, with zero specified
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heat burden. Additionally, stream S10 is specified as having a Reid vapor pressure (RVP) of
1379 kPa.
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Furthermore, at the base of the NGL recovery tower, the natural gas condensate
product, denoted as S10, is obtained through fractional distillation. This process enables
the separation of various components within the condensate based on their boiling points,
resulting in the desired product composition.

The refrigeration circuit, as depicted in Figure 3, plays a crucial role in providing the
necessary cooling capacity for Cooler E100. In this case, the chosen refrigeration medium
is an ethane–propane mixture. The refrigeration circuit comprises three key components:
a condenser, an evaporator, and a compressor.
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The compressor within the refrigeration circuit functions by compressing and cooling
a combination of ethane and propane, resulting in the formation of a high-pressure and
cold liquid. This cold liquid subsequently enters the evaporator through an expansion
valve. Within the evaporator, heat is absorbed from the input stream S2, causing the partial



Processes 2023, 11, 2495 5 of 11

vaporization of ethane and propane. This process facilitates the absorption of heat, leading
to the cooling of the input stream.

To establish a continuous cycle, the vaporized mixture of ethane and propane under-
goes compression and cooling once again, restarting the refrigeration process. This cyclic
operation ensures the consistent provision of cooling capacity for the Cooler E100 and
maintains the efficiency of the refrigeration circuit.

Table 1 illustrates specifications of feed streams, refrigerant and natural gas units.
Based on the provided composition of the refrigeration system in the integrated LNG-NGL
structure, here is the composition of each component in the different stages (feed gas, Side1,
S10, S16).

Table 1. Mole fraction of feedstock and products in the integrated LNG-NGL refrigeration system.

Components Feed Gas Side1 S10 S16

Nitrogen 0.0149 0 0 0.0153
Methane 0.9122 0 0.0001 0.9341
Ethane 0.0496 0.9 0.1886 0.0463

Propane 0.0148 0.1 0.5383 0.0022
Butanes 0.0046 0 0.1921 0.0001
Pentanes 0.0016 0 0.0681 0
Hexanes 0.0003 0 0.0128 0

Carbon Dioxide 0.0020 0 0 0.002

3. Multi-Objective Optimization Framework

In the multi-objective optimization problem formulated in Equation (1), two objective
functions are considered. The first objective function, denoted as f 1(x), is aimed at maxi-
mization, while the second objective function, denoted as f 2(x), is aimed at minimization.
The problem seeks to find the optimal solution x that simultaneously maximizes f 1(x) and
minimizes f 2(x), taking into account any constraints or limitations imposed by the problem.
The formulation of the problem involves finding a trade-off between these two conflicting
objectives, as improving one objective may lead to a degradation of the other. The goal is
to identify a set of solutions that represents a good compromise or balance between the
two objectives, known as the Pareto front or Pareto set.

maxx f1(x)
minx f2(x)

s.t. h(x) = 0
g(x) ≤ 0

xLB ≤ x ≤ xUB

(1)

where Q represents the mass flowrate of natural gas condensate (kg/h);

CNGL represents the natural gas product price (0.2 USD/kg);
ei represents the compression power of the compressor i (kW)
Ce represents industrial electricity cost (0.05 USD /kWh)
Pi represents the pressure of stream i (kPa)
Ti represents the pressure of stream i (◦C)

This study analyzes the influence of cooler E-100 outlet stream S2 temperature and
expander K-100 outlet stream S5 pressure on the shaft power of compressors k-102 and
k-103 as well as profit. The objective function Obj represents the net profit for NGL. f1
and f2 represent the values of NGL and cost of power, respectively. Electricity cost (Ce)
and natural gas condensate price (CNGL) are 0.05 USD/kWh and 0.2 USD/kg, respectively.
These constraints include the operation constraints of temperature and pressure, and cooler
E-100 outlet stream S2 temperature and expander K-100 outlet stream S5 pressure are
constrained by the lower and upper bounds, x LB and x UB.
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In this study, the influence of cooler E-100 outlet stream S2 temperature and expander
K-100 outlet stream S5 pressure on the shaft power of compressor K-102 and K-103, as well
as on the profit, is analyzed. The objective function, denoted as “Obj”, represents the net
profit for NGL. There are two objective functions considered in the analysis:

Objective function f 1 represents the value of NGL.
Objective function f 2 represents the cost of power.
The net profit for NGL is determined based on the electricity cost (Ce) and the natural

gas condensate price (CNGL). The electricity cost is USD 0.05/kWh, and the natural gas
condensate price is USD 0.2/kg.

The analysis also includes constraints related to the operation of the system. These
constraints involve temperature and pressure considerations. The cooler E-100 outlet
stream S2 temperature and expander K-100 outlet stream S5 pressure are subject to lower
and upper bounds, denoted as xLB and xUB, respectively.

Obj = f1 − f2 (2)

maxx f1 = Q × CNGL (3)

minx f2= ∑n
i ei × Ce (4)

s.t. PS9= PS5 − 35 (5)

PS8= PS5 (6)

PS10= PS5 (7)

TS11= TS12 (8)

Qk−101= Qk−100 (9)

∆Tmin = 10 (for LNG − 100) (10)

∆Tmin = 5 (for E − 100) (11)

2000 ≤ PS5 ≤ 4000 (12)

−65 ≤ TS2 ≤ −45 (13)

In the proposed formulation, the research focuses on a natural gas condensate recovery
project in China, using the feed gas conditions and compositions outlined in Tables 2 and 3.
The objective is to develop an ethane recovery process that achieves a high recovery rate of
ethane while minimizing energy consumption, considering the specific feed conditions.

Table 2. Feed gas operating conditions.

Variables Values

Pressure 5000 kPa
Temperature 30 ◦C

Flowrate 2988 kgmol/h
EOS Peng–Robinson

Tables 4 and 5 provide specific values for the various design specifications of the
equipment involved in the natural gas condensate recovery process. Additionally, the
decision variables define the lower bound (xLB) and upper bound (xUB) values for the E100
outlet temperature and K100 outlet pressure, respectively. These decision variables can
be adjusted within the defined ranges during the optimization process to determine the
optimal values for the system.
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Table 3. Natural gas composition.

Components Mole Fractions

Nitrogen 0.0149
Methane 0.9122
Ethane 0.0496

Propane 0.0148
Butanes 0.0046
Pentanes 0.0016
Hexanes 0.0003

Carbon Dioxide 0.0020

Table 4. Design specification for equipment.

Equipment/Streams Items Values

LNG-100
Pressure Drop (kPa) 20

Minimum Approach Temperature (◦C) 10
E-100 Pressure Drop (kPa) 20
K-100 S5 Pressure (kPa) 2800

NGL Recovery

Condenser Type Full reflux
No. of Stages 5

Q-102 Ovhd Duty (kJ/h) 0
S10 Btms RVP (kPa) 1379

E-101
Pressure Drop (kPa) 20

S15 Temperature (◦C) 30
E-100 S2 Temperature (◦C) −61
K-102 S16 Pressure (kPa) 7000

Compressor S3 Phase Fraction 1

Evaporator S3 Temperature (◦C) −62
Pressure Drop (kPa) 20

Compressor Adiabatic Efficiency 75%

Condenser
S1 Temperature (◦C) 0

S1 Phase Fraction 0
J-T valve Valve Opening [%] 50

Table 5. Decision variables.

Decision Variables x LB x UB Units

E100 outlet temperature −65 −45 ◦C
K100 outlet pressure 2000 4000 kPa

To achieve this, we modified the cooler E-100 outlet stream S2 temperature and
the expander K-100 outlet stream S5 pressure. The S2 temperature is influenced by the
refrigerant system of ethane and propane, while the S5 pressure determines the amount of
power that can be generated and utilized by compressor K-101.

Three improved ethane recovery processes are proposed and investigated:
1. Ethane–propane refrigeration cycle system is utilized for pre-cooling the feed gas.
2. Expansion refrigeration is employed as a cooling source at the top of the NGL

recovery tower.
3. The expander (K-100) is integrated with the first-stage compressor (K-101) of the

product, with the output power from the expander driving the compressor.
These modifications aim to optimize the ethane recovery process by adjusting the

cooler outlet temperature and the expander outlet pressure, taking into account the refrig-
eration system, power generation, and compressor operation. The objective is to achieve
a high recovery rate of ethane while minimizing energy consumption in the overall process.
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4. Results and Discussion

Using the case analysis function in Aspen HYSYS software, a detailed analysis of the
condensate recovery process in this case can be conducted. In this analysis, the pressure of
stream S5 and the temperature of stream S2 are treated as independent variables, meaning
they can be adjusted and varied to observe their impact on the process.

The dependent variables in this case analysis are the total cost of power, the value of
the NGL product, and overall profit. These variables are influenced by the independent
variables, i.e., the pressure of stream S5 and the temperature of stream S2. By manipulating
these independent variables within specified ranges, software can calculate and evaluate
the corresponding values of the dependent variables for each scenario.

The case analysis function allows us to explore different operating conditions, opti-
mizing the process and identifying the most favorable settings for the pressure of stream
S5 and the temperature of stream S2. By analyzing the variations in dependent variables,
such as cost, product value, and profit, it becomes possible to make informed decisions and
adjustments to improve the overall performance of the condensate recovery process.

Based on the data provided in Table 6, we present a summary of the cases analyzed
for the condensate recovery process, including the S5 pressure, S2 temperature, and the
resulting profit. It seems there might be an error in Case25 where the profit is listed as
−32,800, which seems unusual.

Table 6. Results of case analysis.

State S5-Pressure (kPa) S2-Temperature (◦C) Profit (USD/h)

Case1 2000 −65 475.3
Case2 2000 −61 485.9
Case3 2000 −57 487
Case4 2000 −53 481.2
Case5 2000 −49 469.4
Case6 2000 −45 446.4
Case7 2500 −65 489.5
Case8 2500 −61 494.7
Case9 2500 −57 489.5

Case10 2500 −53 476.3
Case11 2500 −49 456.1
Case12 2500 −45 429.9
Case13 3000 −65 491.8
Case14 3000 −61 489.8
Case15 3000 −57 476.8
Case16 3000 −53 455.1
Case17 3000 −49 425.8
Case18 3000 −45 390.4
Case19 3500 −65 480
Case20 3500 −61 470.2
Case21 3500 −57 448.8
Case22 3500 −53 418.1
Case23 3500 −49 379.9
Case24 3500 −45 335.8
Case25 4000 −65 −32,800
Case26 4000 −61 433.3
Case27 4000 −57 403.9
Case28 4000 −53 365.2
Case29 4000 −49 319.1

Based on the case analysis results, it is observed in Figure 4 that the highest profit is
achieved when the pressure of stream S5 is 2500 kPa and the temperature of stream S2 is
−61 ◦C, with a profit of USD 494.7/h.
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However, in Case 25, where the pressure of stream S5 is 4000 kPa and the temperature
of stream S2 is −65 ◦C, an unusually low profit of USD −32,800/h was obtained. This
result may indicate an anomaly in the data.

The optimizer of Aspen HYSYS software was utilized to optimize the condensate
recovery process in this case. The decision variables considered in the optimization process
were the same as the independent variables in the previous case analysis, namely the
pressure of stream S5 and the temperature of stream S2.

By using the optimizer, the goal was to find the optimal values for these decision
variables that maximize the profit of the condensate recovery process. The optimization
process takes into account various constraints and objectives defined for the system. By
comparing the optimization results with the case analysis, it is observed that when the
pressure of stream S5 is 2550 kPa and the temperature of stream S2 is −61.33◦C, the highest
profit achieved is USD 494.9/h. This profit value is slightly higher than the result obtained
from the case analysis.

The optimization method aims to find the optimal solution by considering the inter-
dependencies and interactions between variables, constraints, and objectives. It employs
mathematical algorithms and search techniques to iteratively explore the design space and
identify the best configuration for the given objectives. Overall, the optimization results pro-
vide a refined and more precise solution that maximizes the profit of the condensate recov-
ery process, taking into account the specified decision variables, constraints, and objectives.

Operating Condition after Optimization

Table 7 provides the mole fraction of each component (such as nitrogen, CO2, methane,
ethane, propane, i-butane, n-butane, i-pentane, n-pentane, and n-hexane) in the various
streams involved in the natural gas condensate recovery process. The streams include feed
gas, S3, S4, S6, S7, S9, S10, S13, and S16.
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Table 7. Mole fraction of streams in recovery of natural gas condensate.

Stream Feed Gas S3 S4 S6 S7 S9 S10 S13 S16

Nitrogen 0.0149 0.0038 0.0158 0.0025 0.0169 0.0038 0 0.0153 0.0153
CO2 0.0020 0.0035 0.0019 0.0051 0.0016 0.0051 0 0.0020 0.0020

Methane 0.9122 0.6567 0.9325 0.6579 0.9557 0.7828 0.0002 0.9340 0.9340
Ethane 0.0496 0.1604 0.0408 0.2340 0.0245 0.1982 0.1890 0.0463 0.0463

Propane 0.0148 0.1050 0.0076 0.0832 0.0013 0.0096 0.5371 0.0023 0.0023
i-Butane 0.0026 0.0255 0.0008 0.0096 0 0.0003 0.1081 0.0001 0.0001
n-Butane 0.0020 0.0214 0.0005 0.0057 0 0.0001 0.0844 0 0
i-Pentane 0.0010 0.0122 0.0001 0.0014 0 0 0.0427 0 0
n-Pentane 0.0006 0.0075 0 0.0006 0 0 0.0256 0 0
n-Hexane 0.0003 0.0040 0 0.0001 0 0 0.0128 0 0

Table 8 provides the operating conditions of each stream in the natural gas condensate
recovery system. The parameters include temperature (T) in degrees Celsius, pressure (P)
in kilopascals (kPa), and flowrate in kilomoles per hour (kgmol/h). The streams listed are
feed gas, S7, S9, S1, S11, S12, S2, S3, S8, S4, S5, S6, S9, S10, S12, S13, S14, S15, and S16.

Table 8. Operating conditions of the system in the recovery of natural gas condensate.

Stream T (◦C) P (kPa) Flowrate (kgmol/h)

Feed Gas 30 5000 2988
S7 −87.31 2550 2553
S9 −48.28 2515 365.5
S1 −50.57 4980 2988

S11 20.00 2530 2553
S12 20.00 2495 365.5
S2 −61 4960 2988
S3 −61 4960 220.1
S8 −80.67 2550 220.1
S4 −61 4960 2768
S5 −87.31 2550 2768
S6 −87.31 2550 215.2
S9 −48.28 2515 365.5

S10 64.19 2550 69.83
S12 20.00 2495 365.5
S13 19.80 2495 2918
S14 34.09 2919.01 2918
S15 30 2899.01 2918
S16 115.95 7000 2918

5. Conclusions

The study focuses on the recovery of natural gas condensate through the simulation
and optimization of a refrigeration process using a mixture of ethane and propane as
a refrigerant. The key component of this system is the expander (K-100), which is coupled
with the first-stage compressor (K-101) of the product. The output power generated by the
expander is harnessed to drive the compressor, creating an energy-efficient process. The
objectives of the optimization include maximizing the recovery of ethane and propane,
minimizing energy consumption, and achieving desired product quality targets. Through
a sensitivity analysis and utilizing Aspen HYSYS software, this study examines the impact
of key parameters on process performance, specifically the cooler outlet stream temperature
and expander outlet stream pressure. Based on the operating conditions of the case plant
with a processing capacity of 2988 kmol/h, it was found that the plant’s profitability is
maximized when the cooler’s outlet stream temperature is −61 ◦C and the expander’s
outlet stream pressure is 2500 kPa. Furthermore, after optimization, the refrigeration cycle
system can reduce its energy consumption by 1516.4 kW. This optimized process design has
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the potential to enhance recovery efficiency, decrease energy consumption, and improve
profitability in the natural gas industry.

Overall, this comprehensive study on the simulation and optimization of natural gas
condensate recovery demonstrates the potential benefits of separating heavy components
from natural gas. The findings provide valuable insights for the industry, paving the way
for more efficient and economically viable processes in the extraction and transportation of
natural gas.
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