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Abstract: This study aims at exploring earthworm protein hydrolysate and its peptide fractions
as a potential hypoglycemic agent by inhibiting α-amylase and α-glucosidase. Firstly, the best
hydrolysis conditions to gain the hydrolysates with the highest α-amylase inhibitory activity (α-AIA)
and α-glucosidase inhibitory activity (α-GIA) were figured out using a one-factor test. Next, the
stability of the hypoglycemic activity of the hydrolysates and their 5 peptide fractions recovered using
ultrafiltration membranes were assessed by employing the tests of in vitro digestion, thermal, and
pH treatment. The results showed that at the best hydrolysis conditions, the hydrolysates exhibited
α-AIA of 91.30 ± 2.51% and α-GIA of 44.69 ± 0.47%. Specifically, the <1 kDa peptide fraction from
the hydrolysate expressed a greater α-AIA than that of acarbose, with nearly the same α-GIA as
that of voglibose. The α-AIA and α-GIA of the hydrolysates and their fractions were enhanced
after the in vitro digestion treatment, whereas they remained over 40% after the pH treatment in
the range of 1 to 11 or heat treatment at 100 ◦C for 180 min. These data provide the preliminary
evidence to develop the earthworm protein hydrolysate and its peptide fractions in functional food
or nutraceutical products with hypoglycemic activity.

Keywords: α-amylase inhibitory activity; α-glucosidase inhibitory activity; earthworm protein;
antidiabetic activity; hypoglycemic activity; earthworm protein hydrolysate; peptide fraction

1. Introduction

Earthworms are macro-invertebrates (oligochaeta), shouldering the responsibility to
enhance soil fertility and productivity [1]. Perionyx excavatus is a popular species in Viet-
nam that has high protein content (55–70%, dry weight basis), thus it has been used as an
alternative protein ingredient to feed common carp (Cyprinus carpio L.) [2], as well as a
protein source for human in Asia, including India, Myanmar, China, Korea, and Vietnam
for thousands of years [3]. The earthworm protein and its coelomic fluid were proven
for their cytolytic, agglutinating, proteolytic, haemolytic, mitogenic, antipyretic, and tu-
morstatic activities [4]. Ding et al. [5] also documented that the earthworm was a potential
source of pharmaceutical compounds expressing anti-hypertensive, anticoagulant, and
anti-hyperlipidemic activities. Accordingly, it is interesting to utilize this high protein
source and discover hidden bioactivities of this species.

The International Diabetes Federation (IDF) reported that in 2019, there were
463 million adults aged 20–79 years who had diabetes, and the number was predicted
to reach over 700 million by 2045 [6]. Approximately 90% of diabetic patients had Type
2 diabetes, which is characterized by hyperglycemia (high blood glucose level) resulting
from insulin-related disorders [7]. To control postprandial hyperglycemia and manage
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diabetes mellitus, the delay of glucose release into the bloodstream by inhibition of starch-
digestive enzymes (including α-amylase and α-glucosidase) is one of the most effective
strategies [8,9]. Iminosugar-derivatives (such as miglitol) and sugar-derivatives (including
acarbose and voglibose) have been used as synthetic antidiabetic drugs [7,10]. However,
their side effects, such as gastrointestinal disorders, bloating, stomach pain, diarrhea, and
flatulence, need to be considered [11].

Earthworm-derived products, including dried earthworms, earthworm powder, and
extract, have been used as medicinal ingredients to treat allergies in China [12]. In addi-
tion, in various countries such as Taiwan, Japan, South Africa, Brazil, and the Philippines,
earthworms have been consumed in their meals [5]. Moreover, earthworm protein pow-
der (BOCOM XUETONG) and smoked earthworms have been marketed in the USA and
Venezuela [5]. In addition, commercial Lumbrokinase, a serine protease from earthworms,
is globally available for anti-allergy [13]. Moreover, earthworm meals were made and eval-
uated safely in terms of microbiology, heavy metals, pesticide, mycotoxins, and antibiotic
residues [14,15]. Recently, food wastes (fruit and vegetable residues and kitchen waste)
have been utilized to raise earthworms for sustainable protein source recovery and meet
global protein needs [16,17].

Regarding the nutritional value of earthworm protein hydrolysate, Alcalase hy-
drolysate was reported to be rich in essential amino acids (14.7 g/kg of hydrolysate) and
expressed high protein digestibility in vitro (73%) [18]. Moreover, high α-AIA and α-GIA
of earthworm extract have been found by Mir et al. [19]. Furthermore, Abdelaziz et al. [20]
discovered that the therapeutic potential of earthworm extract against diabetic complica-
tions mainly depends on its amino acid composition when performing an in vivo test on
diabetic rats. In addition, the peptide’s bioavailability was determined by its length, amino
acid composition, charge, and hydrophobicity, and the peptide length might be the most
important factor [21]. Patil et al. [22] found that for the small intestine, the absorbability of
short-chain peptides (<6 amino acids) was more than 90% [9], which was about 45 times
higher than that of acarbose [23]. Moreover, some animal-derived peptides were found to
be hypoglycemic agents [11,24,25], due to their high affinity, specificity, bioactivity, and
safety [26,27]. Our study is the very first to generate earthworm protein hydrolysate with
hypoglycemic activity.

It was reported that smaller peptides may be more active than bigger peptides [28].
In addition, Félix-Medina et al. [29] and Li et al. [30] found that a better hypoglycemic
activity of peptide fractions was observed as their molecular weights decreased. Moreover,
Wang et al. [31] discovered that most peptides possessing antihyperglycemic activity have
molecular weights below 1 kDa.

Félix-Medina et al. [29] published that α-AIA and α-GIA of the <3 kDa peptide fraction
from maize protein hydrolysate were over 50% and 35%, respectively, after being treated at
a temperature range from 30 to 90 ◦C or pH in the range of 2–8. In addition, the retention
rate of α-GIA of hypoglycemic peptides in Moringa oleifera seed protein hydrolysates
at pH = 2, 4, 6, and 8 was greater than 90%, however, it reduced to 60% at pH = 10 [31].
Meanwhile, their α-GIA could remain 100% at temperatures of 20, 40, and 60 ◦C, then
quickly decreased to 18.73% at 100 ◦C [31]. On the other hand, the α-GIA of YPVEPF
(a hypoglycemic peptide identified from whey hydrolysate) increased up to 4 times at
pH = 2, and it reduced by approximately 9 times at pH = 10 [30]. Besides, this peptide was
found to be stable at the temperature range of 20–80 ◦C, with its highest α-GIA retention
rate of 94% at 60 ◦C [30].

Therefore, this study focused on investigating the α-AIA and α-GIA of the protein
hydrolysate/peptide from earthworms. Firstly, the single factor test was employed to select
the hydrolysis condition (enzyme type, earthworm: phosphate buffer ratio (w/v), temper-
ature, pH, enzyme: substrate (E:S) ratio, and hydrolysis time) to obtain the hydrolysate
that expresses the highest α-AIA and α-GIA. Subsequently, the hydrolysates were further
fractionated using ultrafiltration membranes and 5 peptide fractions (>30 kDa, 10–30 kDa,
3–10 kDa, 1–3 kDa, and <1 kDa) were recovered and tested for their bioactivities. Then, the
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hydrolysates and 5 peptide fractions were assessed for their bioactivity stability using the
tests of in vitro digestion, thermal, and pH treatment.

2. Materials and Methods
2.1. Materials

Earthworms (Perionyx excavatus) were purchased from the Biotechnology Center in Ho
Chi Minh City, then they were crushed and stored in polyethylene bags at −20 ◦C before
testing. The chemical compositions of the earthworms were determined using the methods
of AOAC (1990) [32]. The earthworms contained 80.99 ± 0.53% moisture, 69.92 ± 0.23%
crude protein, 6.97 ± 0.10% crude lipid, 12.78 ± 0.18% carbohydrate, and 10.25 ± 0.10%
ash (on a dry weight basis).

In this study, α-glucosidase (from Saccharomyces cerevisiae, 10 units/mg protein),
p-Nitrophenyl α-D-glucopyranoside (pNPG), α-amylase (from the porcine pancreas,
5 units/mg solid), and acarbose were purchased from Sigma Chemical Co. (St. Louis, MO,
USA). Enzyme preparations, including Alcalase® 2.5 L (55 ◦C, pH = 8), Neutrase® 0.8 L
(50 ◦C, pH = 7), Protamex® (55 ◦C, pH = 6.5), and Flavourzyme® 500 MG (50 ◦C, pH = 7),
were bought from Novozymes Co. (Bagsvaerd, Denmark) and AB enzymes (Darmstadt,
Germany). All reagents were of analytical grade.

2.2. Methods
2.2.1. Preparation of Earthworm Protein Hydrolysates

Earthworm hydrolysates were prepared based on the method described in Vo et al. [33]
with slight modifications. The ground earthworm was mixed with 0.02 M phosphate buffer
with an appropriate ratio so that the pH reached the required value for hydrolysis, and the
mixture was heated at 90 ◦C for 10 min to deactivate endogenous enzymes. Then, the pH
was readjusted using 1 M HCl or 1 M NaOH solution, and the temperature was controlled
to the hydrolysis temperature before adding enzyme preparation with the appropriate E:S
ratio. At a set time, the enzyme was deactivated by heating the hydrolysate for 10 min at
90 ◦C. The supernatant was then collected by centrifuging at 5000 rpm for 15 min, and the
obtained supernatant was lyophilized and stored at −20 ◦C. The soluble protein content of
the hydrolysate was determined by the Lowry method [34].

2.2.2. Effect of Hydrolysis Condition on α-AIA and α-GIA of the Earthworm
Protein Hydrolysate

The effect of hydrolysis parameters, including enzyme type, earthworm: phosphate
buffer ratio (w/v), temperature (◦C), pH, E:S ratio (U/g protein), and hydrolysis time (h),
on α-AIA and α-GIA of the earthworm protein hydrolysates was investigated using the
single factor test method. More specifically, one factor varied at different levels while the
others remained constant, as presented in Table 1.

Table 1. Hydrolysis condition of each investigation.

Tested Parameter X1 * X2 * X3 * X4 * X5 * X6 *

Investigation 1 4 proteases ** 1:6 Optimal ** Optimal ** 500 4
Investigation 2 X *** Tested range Optimal ** Optimal ** 500 4
Investigation 3 X *** X *** Tested range Optimal ** 500 4
Investigation 4 X *** X *** X *** Tested range 500 4
Investigation 5 X *** X *** X *** X *** Tested range 4
Investigation 6 X *** X *** X *** X *** X *** Tested range

* X1: enzyme type; X2: earthworm:phosphate buffer ratio (w/v); X3: temperature (◦C); X4: pH; X5: E:S ratio
(U/g protein); and X6: hydrolysis time (h). ** Value is shown in Table 2. *** The chosen level of the hydrolysis
parameter after each investigation.
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Table 2. Optimal pH and temperature of each enzyme preparation.

Enzyme Preparation Optimal pH Optimal Temperature

Alcalase® 2.5 L 8.0 55 ◦C
Neutrase® 0.8 L 7.0 50 ◦C

Protamex® 6.5 55 ◦C
Flavourzyme® 500 MG 7.0 50 ◦C

2.2.3. Determination of α-AIA and α-GIA of the Earthworm Protein Hydrolysates and
Their 5 Peptide Fractions

The method described in Liu et al. [35] was employed with minor modifications
to determine α-AIA of the protein hydrolysates. In brief, 0.20 mL of the sample (2 mg
protein/mL) was incubated with 0.04 mL of α-amylase (5 U/mL) and 0.36 mL of sodium
phosphate buffer (0.02 M, pH = 6.9) containing 6 mM NaCl at 37 ◦C for 20 min. Then,
0.30 mL of starch solution (1%, substrate) in sodium phosphate buffer (0.02 M, pH = 6.9
with 6 mM NaCl) was added, and the mixture was further incubated at 37 ◦C for 20 min.
Subsequently, it was mixed with 0.20 mL of dinitrosalicylic acid reagent before being kept
in a boiling water pot for 5 min and cooled down to room temperature. The cooled mixture
was then diluted with 10 mL of distilled water, and its absorbance was measured at 540 nm
using a spectrophotometer (Shimadzu, Japan).

To test α-GIA, 0.1 mL of the sample (2 mg protein/mL) was incubated with 0.1 mL
α-glucosidase (1 U/mL) in 0.01 M phosphate buffer (pH = 7.0) and 2.2 mL of 0.01 M
phosphate buffer (pH = 7.0) at 37 ◦C for 5 min. Then, 0.1 mL of pNPG (3 mM, substrate) in
0.01 M phosphate buffer (pH = 7.0) was added to the mixture and was further incubated at
37 ◦C for 30 min. The reaction was stopped by adding 1.50 mL of 0.1 M Na2 CO3 solution
before recording the absorbance at 405 nm by employing the spectrophotometer [36].

The α-AIA and α-GIA of the protein hydrolysate were calculated as follows:

α− AIA or α− GIA(%) =
(A1 − A2)− (A3 − A4)

A1 − A2
× 100 (1)

where A1 is the absorbance of the control (the mixture containing enzyme, substrate,
and no hydrolysate or peptide fraction); A2 is the absorbance of the control blank (the
mixture containing substrate, no enzyme, and no hydrolysate or peptide fraction); A3
is the absorbance of the tested sample (the mixture containing enzyme, substrate, and
hydrolysate or peptide fraction); A4 is the absorbance of the sample blank (the mixture
containing hydrolysate or peptide fraction, substrate, and no enzyme).

Logarithmic regression analysis was employed to determine the half inhibitory con-
centration (IC50, the concentration of the inhibitor to inhibit 50% of enzyme activity) for
α-AIA and α-GIA of the earthworm protein hydrolysates and their 5 peptide fractions.

Acarbose was used as the positive control with a concentration range of
50–250 (µg/mL) for the α-AIA test and 200–1000 (µg/mL) for the α-GIA test.

The effects of hydrolysis conditions on the α-AIA and α-GIA of the earthworm protein
hydrolysate were investigated. The effects of 6 factors, including hydrolysis enzyme type,
earthworm: phosphate buffer ratio, temperature, pH, enzyme: substrate (E:S) ratio, and
hydrolysis time, were assessed to obtain the best condition that generates hydrolysate
with the highest activity. After that, each collected hydrolysate was fractionated to gain its
peptide fractions.

2.2.4. Fractionation of Earthworms Protein Hydrolysate

By using the ultrafiltration centrifugal devices of 30 kDa, 10 kDa, 3 kDa, and 1 kDa
(Macrosep, Pall Laboratory, New Port Richey, FL, USA), the earthworm protein hydrolysate
was further fractionated. Five peptide fractions (<1 kDa, 1–3 kDa, 3–10 kDa, 10–30 kDa, and
>30 kDa) of each hydrolysate were obtained and their α-AIA and α-GIA were evaluated.



Processes 2023, 11, 2490 5 of 17

2.2.5. In Vitro Digestion

The in vitro digestion test of the earthworm protein hydrolysates and their peptide
fractions was conducted following the method described in Kang et al. [37]. The sample,
with a protein concentration of 5% (w/v), was adjusted to pH = 2 using 6 M HCl solution,
and its temperature was increased to 37 ◦C. Pepsin was then added with an E:S ratio of
4% (w/w), and the mixture was further incubated at 37 ◦C for 1 h and shaken at 230 rpm.
Subsequently, its pH was changed to 7.5 by utilizing 6 M NaOH solution before adding
pancreatin with an E:S ratio of 4% (w/w). The mixture was continuously incubated at 37 ◦C
and shaken at 230 rpm for 2 h. The enzymes were inactivated by heating the mixture at
90 ◦C for 10 min. After that, the sample was collected to determine its α-AIA and α-GIA.

2.2.6. Thermal and pH Stability

The method described in Sripokar et al. [38] was used to evaluate the thermal and pH
stability of the protein hydrolysates and their peptide fractions.

To assess the thermal stability, 5 mL of the sample (40 mg protein/mL) was heated at
100 ◦C for 15, 30, 45, 60, 90, 120, 150, and 180 min. After that, the solution was cooled down
to room temperature in iced water and diluted to the final volume of 10 mL with deionized
water, and its α-AIA and α-GIA were measured.

In order to examine the pH stability, the pH of 5 mL of the sample (40 mg protein/mL)
was adjusted to 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, and 11.0 using 6 M HCl or 6 M
NaOH solution and placed at room temperature for 30 min. The sample was then altered
to pH = 7.0 by employing 1 M phosphate buffer and diluted to the final volume of 20 mL
with deionized water, before performing the α-AIA and α-GIA assays.

Both the thermal stability and pH stability of the sample were expressed as the relative
activity (%), which was defined as the percentage of bioactivity of the treated sample
compared to that of the control (untreated sample).

2.2.7. Statistical Analysis

All experiments were performed in triplicate. The data presented as mean ± standard
deviation were processed using the software Excel. The statistically significant differences
were determined using the software SPSS (IBM SPSS Statistics 20).

3. Results and Discussion
3.1. Investigation Results of α-AIA and α-GIA of the Earthworm Hydrolysate under the Influence
of Hydrolysis Condition
3.1.1. Effect of Hydrolysis Enzyme

Peptides’ bioactivity is significantly associated with their amino acid composition
and sequence determined by the specificity of the enzymes employed in the hydrolysis
process [39].

Regarding α-AIA, Protamex was the most suitable protease among the four enzyme
preparations to acquire the earthworm protein hydrolysate, with the highest α-AIA of
73.91 ± 1.45% (Figure 1a). The enzyme was known to be a mixture of endoproteases and
exopeptidases [40,41], which offered a broad specificity for aliphatic amino acids [42]. In
addition, it produced peptides with a high frequency of Leu, Glu, Lys, Met, Val, and Arg at
the C-terminal and Lys, Gly, Ala, Ile, His, Asp, and Phe at the N-terminal [43,44], fitting
to the characteristics of α-amylase inhibitory peptides in the literature. For instance, the
results of Baba et al. [7] showed that most α-amylase inhibitory peptides contained Leu
and Met at their N- and C-ends. In addition, Balderas-León et al. [45] have emphasized
the roles of hydrophobic (Ala, Leu, Val, and Gly) and hydrophilic amino acids (Met and
His) in the α-AIA of the containing peptides [19]. Furthermore, the α-AIA of peptides
was enhanced with the presence of Gly, although the exact mechanism was unknown [46].
Moreover, α-amylase has aromatic residues lying within the substrate-binding pocket
and the aromatic-aromatic interactions seem to be predominantly involved in the α-AIA
of peptides containing Phe [46]. In addition, Arg, Glu, and Asp were interpreted to
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own the highest α-amylase inhibitory effects with their binding energies of −5.2, −5.0,
and −4.8 kcal/mol, respectively [11]. Additionally, the molecular docking results in
Siahbalaei et al. [11] revealed that Glu and Ala could be bound to the allosteric binding site
of α-amylase at its Arg398, Arg421, Asp402, Arg252, Glu23, Glu863, and Arg437, changing
its conformation and thus diminishing its catalysis function. Protamex was used to obtain
the Paeonia ostii cake protein hydrolysate with the highest α-AIA as well [46].
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Figure 1. Effect of hydrolysis enzyme type (a), earthworm: phosphate buffer ratio (b), temperature
(c), pH (d), enzyme: substrate (E:S) ratio (e), and hydrolysis time (f) on the α-amylase inhibitory
activity (α-AIA) of the earthworm protein hydrolysate. The bars with different letters indicate the
significant differences (p < 0.05).

As for α-GIA, the hydrolysate of earthworm protein by Alcalase exhibited the highest
activity of 37.66 ± 0.62% (Figure 2a). Alcalase (an endopeptidase) has a preferential
cleavage of peptide bonds when the polypeptide chain contains amino acids Glu, Met,
Leu, Tyr, Lys, Thr, Ile, Phe, Arg, and Gln [39,43]. In addition, it usually releases the
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peptides with N-terminals of Gly, Lys, Arg, Asp, Ala, Trp, and Ile [43]. These properties of
the Alcalase-generated peptides were mostly similar to those of α-glucosidase inhibitory
peptides published previously. Three α-glucosidase inhibitory peptides identified in the
study of Feng et al. [47] had their N-terminals of Gly and C-terminals of Lys and Arg. Lys
and Arg occupying the N-terminal of the peptide also appeared to greatly influence the
α-glucosidase inhibition [8]. Similarly, Met located at any terminal ends was found to play
a key role in peptides with α-GIA [7,8]. On the other hand, the contribution of hydrophobic
amino acids, such as Phe, Leu, Ile, and Ala to α-GIA of the containing peptides, could
not be belittled [6,48]. Additionally, Asp and Gln were demonstrated to attach to the α-
glucosidase’s allosteric binding site through molecular docking analysis [10]. Alcalase was
also the best choice to obtain the α-glucosidase inhibitory hydrolysates from various protein
sources [25,47,49,50]. Therefore, Protamex and Alcalase were correspondingly chosen for
further investigations on the α-AIA and α-GIA of the earthworm protein hydrolysates.
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(p < 0.05).
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3.1.2. Effect of Earthworm: Phosphate Buffer Ratio

A large amount of buffer can reduce the probability of collisions between the substrate
and enzyme molecules, obstructing the production of bioactive peptides from the intact
protein and lowering the bioactivity of the protein hydrolysate [51,52]. In contrast, high
viscosity is a major challenge for enzymatic hydrolysis at a small amount of buffer. It limits
the diffusion rate of protein molecules, and thereby, protein aggregation easily happens,
which inhibits the accessibility of the enzyme [51]. On the other hand, a sufficient amount
of buffer not only provides high protein contents in the hydrolysate but also quickly scatters
the products of hydrolysis, preventing the feedback effect and enhancing the bioactivity of
the protein hydrolysate [52]. In this study, Figures 1b and 2b indicate that α-AIA and α-GIA
of the hydrolysates reached their peaks at the earthworm: phosphate buffer ratios of 1:8
(w/v) and 1:6 (w/v), respectively, which were the selected levels for further investigations.

3.1.3. Effect of Hydrolysis Temperature

As illustrated in Figures 1c and 2c, the highest α-AIA of 80.30 ± 2.62% and α-GIA of
41.13 ± 0.50% were observed at 55 ◦C and 60 ◦C, respectively. At low temperatures, the
protein and enzyme molecules own low kinetic energy, lessening the formation rate of the
enzyme-substrate complex, and thus, a low content of bioactive peptides is generated in
the hydrolysate [33,51]. However, irreversible denaturation of active catalyst molecules
would occur at high temperatures, diminishing the generation of peptides with α-AIA and
α-GIA [53]. Hence, 55 ◦C and 60 ◦C were set for further studies.

3.1.4. Effect of pH

The charge distribution and conformation of both substrate and enzyme molecules are
remarkably affected by the environmental pH, influencing enzyme-substrate assemblies
and the bioactivity of the protein hydrolysate [52,54]. In addition, pH could either enable
or disable the solubility of protein molecules by changing their ionization ability and
ameliorating or attenuating the hydrolysis process, altering the α-AIA and α-GIA of
the hydrolysate [55]. Furthermore, under unfavorable pH, the specific spatial structures
of the enzyme would be disrupted, and thus, the enzyme function will be negatively
influenced [51,56]. In this study, the suitable pH for the earthworm protein hydrolysis to
gain the hydrolysates with the highest α-AIA and α-GIA were 7.0 and 7.5, respectively.

3.1.5. Effect of E:S Ratio

Both α-AIA and α-GIA of the earthworm protein hydrolysates were in direct pro-
portion to the E:S ratio within the range of 300–600 U/g protein, and then, their rela-
tion became an inverse proportion in an E:S ratio range from 600 to 800 U/g protein
(Figures 1e and 2e). It is a common observation that could be found in many studies
on the relationship between the E:S ratio and bioactivity of the obtained protein hy-
drolysates [33,54,55]. A popular explanation for this case is that with the increase in
enzyme amount, protein hydrolysis proceeds more swiftly to create bioactive peptides,
although they could be further degraded if a very high enzyme dosage was used [51].
Therefore, 600 U/g protein was applied in the following experiments.

3.1.6. Effect of Hydrolysis Time

Figures 1f and 2f indicate that α-AIA and α-GIA of the earthworm protein hydrolysates
increased up to a threshold of hydrolysis time of 4 h and declined afterward. This could be
due to the fact that in the first period of hydrolysis, the enzyme disrupts the quaternary,
tertiary, and secondary structure of the intact earthworm proteins to release peptides with
high α-AIA and α-GIA into the hydrolysate [9,55]. An extensive hydrolysis time, however,
may trigger the degradation of these bioactive peptides, decreasing the bioactivities [53].
A similar pattern of α-AIA and α-GIA in relation to the hydrolysis time was reported by
Mojica and Mejía [49] and Kang et al. [37]. Therefore, the hydrolysis time of 4 h was chosen
for further analysis.
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3.2. α-AIA and α-GIA of Peptide Fractions

As seen in Figure 3, the lower the molecular weight of the peptide fraction was, the
greater its α-AIA and α-GIA were. The finding in this study was in agreement with those
of several studies [47,57,58]. Probably, the low-molecular-weight peptides can straightfor-
wardly attach to the active site of the α-amylase or α-glucosidase, changing the enzyme’s
configurations and blocking their substrate-binding sites [57,58]. In addition, Zhu et al. [9]
reported that small peptides are more flexible than large peptides, and they can bind to
the enzyme-substrate complex, causing an uncompetitive inhibition phenomenon and
reducing the enzyme’s activity. The high flexibility of small peptides also promotes the
hydrophobic, hydrogen bonding, and electrostatic interactions with starches (substrate
of α-amylase), hindering the formation of enzyme-substrate complex [9]. In contrast, the
sterical effect is the main problem that disrupts the attachment of large peptides to the
enzymes’ catalytic sites, lessening their α-AIA and α-GIA [47,59]. In our study, the <1 kDa
peptide fraction expressed the highest α-AIA and α-GIA (Figure 3). Nevertheless, the
highest α-AIA was found at the >10 kDa fraction from the lima bean hydrolysate [57]
and at the 3–5 kDa fraction from the yellow field pea hydrolysate [60]. Meanwhile, the
5–10 kDa fraction of the lima bean hydrolysate and the 1–3 kDa fraction of the yellow
field pea hydrolysate displayed the greatest α-GIA [57,60]. The difference in the peptide
composition in various protein sources and used hydrolysis enzyme preparations may
cause the dissimilarity in the findings of these different publications [57,60].

In terms of the inhibition potential of the earthworm protein hydrolysates/peptide
fractions, the α-AIA of the <1 kDa fraction was 335.42, 3.06, and 5.47 times greater than
those of the >10 kDa peptide fraction from the lima bean hydrolysate [57], Scutellaria
baicalensis shoots extract [61], and Persicaria hydropiper L. leaves essential oils [62], respec-
tively. Meanwhile, its α-GIA was 390.18 and 1.82 folds higher than those of the 5–10 kDa
peptide fraction from the lima bean hydrolysate [57] and Scutellaria baicalensis shoots ex-
tract [61], respectively. In addition, the <1 kDa peptide fraction in our study showed higher
α-AIA (its IC50 being 4.05 times lower) and lower α-GIA (its IC50 being 1.86 folds higher)
than that of Acarbose, a common antidiabetic drug (Figure 3). However, its α-GIA was
approximately the same as that of voglibose, a reversible α-glucosidase inhibitor (IC50 of
310 µg/mL) [63].

For the action mechanism of the protein hydrolysates/peptide fractions, peptides were
known to inhibit these enzymes by binding to either enzyme’s catalytic sites to block the
access of substrate molecules or to other sites on the enzymes to alter their conformation [27].
The interactions between the peptides and enzymes could comprise aromatic-aromatic
interactions, hydrogen bonds, electrostatic, and Van der Waals interactions [46]. Similarly,
acarbose (a common antidiabetic drug) inhibits α-amylase or α-glucosidase by competing
with the substrates for the enzymes’ active sites [64]. In the same way, phytochemicals in
plant-based extracts or essential oils attach to α-amylase or α-glucosidase through aromatic-
aromatic interactions, hydrogen bonds, and Van der Waals interactions that are similar to
those between peptides and the enzymes, except for the electrostatic interactions [65,66].

The specificity of the protein hydrolysates/peptide fractions for α-amylase and α-
glucosidase was mainly affected by their conformations [67]. Their high specificity and
affinity to the enzymes were also reported in Ibrahim et al. [68] and Chelliah et al. [26].
In a similar way, Acarbose (a pseudo-tetrasaccharide consisting of maltose bridged to
acarvosine) displays an excellent specificity for these starch-digestive enzymes [23] by
mimicking the substrate structure [68].

Therefore, the <1 kDa peptide fraction from the earthworm protein hydrolysate could
be considered a potential antidiabetic agent.
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3.3. Investigation Results of In Vitro Digestion Stability of α-AIA and α-GIA of the Hydrolysates
and Their Peptide Fractions

For exploitation as an α-amylase or α-glucosidase inhibitor, the bioactive peptides
must reach their targets (α-amylase and α-glucosidase), which mostly act in the small
intestine [8,69]. This could be achieved if the peptides tolerate harsh acidic conditions
and with digestive enzymes in the gastrointestinal tract. The bioactivity of the protein
hydrolysates/peptides after in vitro digestion seems to be a good indicator of their bioavail-
ability in the human body [70]. In this study, after the in vitro digestion test, the α-AIA of
the earthworm hydrolysate and its 5 peptide fractions enhanced from 1.15 to 1.56 folds,
whereas the α-GIA of the tested samples increased from 1.15 to 1.29 times. It could be
explained by several hypotheses. Firstly, the active sequence of the peptides would not be
degraded by digestive enzymes [71]. Secondly, some peptides could resist gastrointesti-
nal peptidases, especially for short-chained peptides and Pro-containing peptides [71,72].
Thirdly, Qiao et al. [46] and Zhu et al. [9] proposed that the hydrolysed proteins from pepsin-
pancreatin could enhance the amount of V-type resistant starch, restraining the activity
of α-amylase. In addition, the newer short peptides generated by pepsin and pancreatin
were reported to express higher α-AIA and α-GIA than the initial peptides [72,73]. Similar
observations could be found in the studies of Mojica and Mejía [49], Ninomiya et al. [74],
and Wang et al. [75]. The result indicated that the earthworm protein hydrolysates and
their 5 derived-peptide fractions could be potent α-amylase or α-glucosidase inhibitors.

3.4. Investigation Results of Thermal and pH Stability of α-AIA and α-GIA of the Hydrolysates
and Their Peptide Fractions

The stability of the hydrolysate and peptide fractions towards thermal and pH treat-
ments (two popular food treatments) should be taken into account as a prerequisite for
incorporating them into food or nutraceutical products [76].

As seen in Figure 4, the stability of α-AIA and α-GIA of the hydrolysate and 5 peptide
fractions reached the peaks at pH = 7 and 8. It is acknowledged that most proteins are
stable at around neutral pH because of the low net electrostatic repulsive energy, which
minimizes the swelling and unfolding of protein molecules, and thereby, remaining their
bioactivity [77]. Nevertheless, the α-AIA and α-GIA stability of these samples gradually
decreased as the pH shifted to very low or very high values (Figure 4). This could be due
to the changes in the charges of peptides, particularly at the N- and C-terminus at high
acidic and alkaline conditions [78], altering the electrostatic interactions and hydrogen
bonds and transforming their secondary structures and solubility, resulting in the loss
of bioactivity [79,80]. The change in the stability of these samples could be due to the
impact of pH on one particular or more amino acids. For instance, Gln and Arg were
vulnerable under acid treatment while alkaline conditions could destroy Cys, Ser, and
Thr [71]. In addition, deamination and racemization reactions under alkaline conditions
could take charge of the decrease in the α-AIA and α-GIA stability of the samples at high
pH values [72,81].

On the other hand, temperature is considered the most common factor impacting
protein stability. High temperatures not only break down the noncovalent interactions
(hydrophobic interactions, electrostatic interactions, and hydrogen bonds) but also en-
hance the conformational entropy of the protein molecules, causing protein destabilization
and losing their bioactivity [77]. In this study, in the first 15 min of heat treatment, the
α-AIA and α-GIA of all samples remained unchanged (Figure 5). This could be due to the
presence of high contents of peptides containing specific amino acids that enhanced their
thermal stability. For example, Ile assists in greatly bundling up the interior core of the
protein, reducing its void spaces. Consequently, the mobility of the polypeptide chain at
high temperatures decreased, minimizing its conformational entropy and contributing to
stabilizing protein/peptide at high temperatures [77]. Val, Leu, and Phe were also found to
have the same role as Ile in protein stability [82]. However, the bioactivity stability of these
samples progressively diminished as heating time was continuously prolonged to 180 min
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(Figure 5). The observation was similar to the previous publication of Wali et al. [81] that
with different heating times, the bioactivity of peptides declined after the threshold value.
The reason behind this could be attributed to protein denaturation, aggregation, and amino
acid degradation. High temperatures break down the intermolecular and intramolecular
interactions, exposing hydrophobic domains and causing protein aggregation [79]. It also
resulted from the random reformation of intramolecular disulphide bonds [74]. Simul-
taneously, the deamination of Asn and Gln, as well as oxidation of Cys, Met, and Trp at
high temperatures, lowered the α-AIA and α-GIA stability of the protein hydrolysate and
peptide fractions [77].
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Regarding the peptide molecular weight, an inverse proportion between the peptide
molecular weight and thermal stability was observed (Figure 5). This agreed with the
findings of Klomklao and Benjakul [79] that peptides with smaller sizes are more stable to
aggregation at high temperatures than the larger peptides. López-Sánchez et al. [71] also
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stated that large peptides easily form clusters which may prevent them from binding to the
active site of the enzymes, reducing their α-AIA and α-GIA.

In general, the earthworm protein hydrolysates and their 5 peptide fractions remained
over 40% of α-AIA and α-GIA after wide-range pH treatment or heat treatment at 100 ◦C
for 180 min. It comes to a suggestion that these samples can be applied to a broad range of
food or nutraceutical products.

4. Conclusions

This study has discovered a new bioactivity (antidiabetic activity) of the protein hy-
drolysates/peptide fractions derived from the earthworm. Especially, the <1 kDa peptide
fraction of the hydrolysate showed a higher α-AIA than that of Acarbose, with approx-
imately the same α-GIA as that of voglibose. Thus, the protein hydrolysates/peptide
fractions could act as potential α-amylase or α-glucosidase inhibitors, being fortified to a
broad range of functional foods or nutraceutical products, supporting diabetes treatment
and reducing the utilization of synthetic drugs and their side effects. However, further
characterization of the peptides, identification of their active components and potential
mechanisms of the action of the peptides within a living organism, in vivo tests, allergy
assays, or clinical trials, should be done to strengthen their application probability in reality.
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