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Abstract: In order to ascertain the spatial and temporal changes in the air quality in Temuco City,
Chile, we created and installed a network of inexpensive sensors to detect PM2.5 particulate matter.
The 21 measurement points deployed were based on a low-cost Sensiron SPS30 sensor, complemented
with temperature and humidity sensors, an Esp32 microcontroller card with LoRa and WiFi wireless
communication interface, and a solar charging unit. The units were calibrated using an airtight
combustion chamber with a Grimm 11-E as a reference unit. The calibration procedure fits the
parameters of a calibration model to map the raw low-cost particle-material measurements into
reliable calibrated values. The measurements showed that the concentrations of fine particulate
material recorded in Temuco present a high temporal and spatial variability. In critical contamination
episodes, pollution reaches values as high as 354 µg/m3, and at the same time, it reaches 50 µg/m3

in other parts of the city. The contamination episodes show a similar trend around the city, and the
peaks are in the time interval from 07:00 PM to 1:00 AM. In the winter, this time of day coincides with
when families are usually home and there are low temperatures outside.

Keywords: air pollution; low-cost sensor; particle-matter calibration; spatial–temporal distribution

1. Introduction

In southern Chile, burning wood is widely valued as a primary energy source in the
domestic sphere due to its low price compared to other heating alternatives [1]. However,
its massive use and inefficient combustion generate high emissions of air pollutants. The
city of Temuco, in recent years, has increased its levels of environmental pollution, with
the highest levels of PM2.5 and PM10 [2–4] exceeding in both cases 300 µg/m3. These
reports show that every winter, the city of Temuco experiences numerous critical episodes
due to poor air quality, with particulate matter that exceeds the national regulations and
international standards, impacting public health and the quality of life of its residents.
The leading cause of pollution by PM2.5 and PM10 in this city is the widespread use of
wood-fired heaters due to their low cost and high availability in the area [1].

The city of Temuco is medium-sized in terms of population (approximately 304,000 inhabitants),
with an urban area of 50 km2 and a riverbed topography with surrounding hills. This city has
two FEM (Federal Equivalent Methods) stations installed and operated by the Ministry of the
Environment [5]. These two FEM stations are located in residential sectors separated by 4.5 km from
each other. The air-quality measurements obtained through these FEM stations allow the adoption
of measures to restrict the use of wood heating [3].

Becnel et al. [6] and Johnston et al. [7] state that FEMs can deliver reliable and accurate
data to support decision-making; however, they are expensive to maintain. Due to the high
costs, the number of stations is usually sparse, lacking the spatial resolution necessary to
assess community exposure to PM2.5 particulate matter.
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According to Johnston et al. [7], the impact of air pollution levels on health is depen-
dent on pollutant concentrations and exposure levels. These factors vary at fine spatio-
temporal scales in urban environments, driving the need for more data by increasing the
number of sensor deployments and improving the sampling frequency. Alfano et al. [8]
present an extensive review of the low-cost particulate matter sensors (LCPMSs) currently
available on the market, their electronic characteristics, and their applications in the pub-
lished literature and from specific tests. These LCPMSs are proposed as a complement to
the measurements provided by the FEMs [9].

Among the LCPMSs described in the literature, there is a sensor node developed
by Johnston et al. [10] that uses four low-cost devices (Alphasense OPC-N2, Plantower
PMS5003 and PMS7003, Honeywell HPMA115S0). Johnston et al. [10] compared these
LCPMSs to certified government stations, resulting in an RMS error of 6.065 and a Pearson
coefficient of 0.878. Sayahi et al. [11] carried out a field evaluation of Plantower PMS1003
and PMS5003 sensors with reference equipment under different conditions, showing a good
correlation in the winter season (R2 > 0.858). Sayahi et al. [11] concluded that having various
calibration factors for the same sensor model requires a systematic laboratory tuning or an
on-site calibration strategy. Badura et al. [12] evaluated a network of 20 PMS5003 sensors,
and the average values of the coefficient of determination (R2) calculated between the
sensor nodes and the government FEM stations were around 0.89 (with a range of 0.82 to
0.91, depending on the sensing device and station). Becnel et al. [6] proposed a platform
with PMS3003 sensors made up of 50 nodes, which they deployed in an area of 100 km2,
obtaining a correlation of R2 = 0.88 between the sensor nodes and the FEM. Tagle et al. [13]
built a small network based on SDS011 particulate-matter sensors, which were compared
with reference FEM stations, obtaining a correlation coefficient (R2) between 0.47 and 0.86.

Ferrer-Cid et al. [14] state that PM2.5 particulate matter sensors, among others, are
generally not calibrated by the manufacturer. If they have been, they lack calibration under
the environmental conditions in which they will provide measurement data. To calibrate
LCPMSs in the laboratory, Papapostolou et al. [15] and Sayahi et al. [16] developed calibra-
tion chambers that allow stable and reproducible gas and aerosol concentrations at low,
medium, and high levels. Malings et al. [17] then uses an instrument laboratory standard,
which has a combustion chamber to generate characteristic curves that allow adjustment
of a specific calibration polynomial for each LCPMS. Magi et al. [18] proposed improving
the correction with compensation of the measurements for humidity and temperature
variations. Zaidan et al. [19] developed calibration systems to enhance the accuracy of
LCPMSs, incorporating calibration models based on machine learning and virtual sensors.
The methodology requires the construction of a database using continuous measurements
of low-cost sensors and reference instruments. Then, it is analyzed to obtain information
on atmospheric characteristics and air pollutants, which allows an understanding of the
performance of the sensors in terms of consistency (relative to other sensors) and accuracy
by comparison with the reference instruments. According to Ferrer-Cid et al. [14], incorpo-
rating low-cost sensors is a viable alternative to complement the measurements made at
the FEM stations.

According to Datta et al. [20], using multiple LCPMSs allows obtaining information on
intra-urban space–time variation, which allows extraction of sectorized information on PM2.5
pollution. In this sense, Schneider et al. [21] and Liu et al. [22] accounted for the non-uniformity
of pollution through updated high-resolution maps of particulate pollution in the environment
using 24 LCPMSs in the city of Oslo, Norway. A space-time analysis of PM2.5 particulate
matter using multiple sensors in Dezhou City, China, Cao et al. [23] identified four stages of
daily PM2.5 variation: accumulation, continuous pollution, dispersion, and cleaning, which is
consistent with the pollution episodes generated by the use of heating.

Using mobile units makes achieving a flexible system to acquire information in a
broad spatial spectrum possible. Still, comparing measurements taken in different parts
of the city makes it difficult, since these are captured at deferred times. On the other
hand, using measurements through LCPMSs is one of many mechanisms to achieve higher-
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resolution pollution maps. Blanco et al. [24] and Quinteros et al. [25] carried out spatial
characterization of particulate matter during winter nights in Temuco City using vehicles
with GPS tracking that carried PM2.5 recording units. The investigation indicated that
pollutants are distributed unevenly in Temuco City, revealing that in some neighborhoods,
PM2.5 concentrations are almost twice as high as those measured at the government station.

The objective of the present study is to deploy and calibrate a low-cost sensor network
platform in the city of Temuco, Chile. This sensor network allows for an analysis of
the density of contaminants in the phases of accumulation, continuous contamination,
dispersion, and cleaning during contamination episodes. The novelty of this paper and
its main contribution is that we deployed a calibrated LCPM sensor network over a city
with high-contamination episodes, allowing us to analyze the behavior of the pollutants
over the entire high-contamination episode. This network will allow us to measure the
pollutants in the city, evidencing the differences in particle-matter concentration within
high-contamination episodes simultaneously in different sectors.

The paper is structured as follows: First, Section 1 furnishes an overview of the current
research status on obtaining information on intra-urban space–time variation, which allows
extraction of sectorized information on PM2.5 pollution, and depicts the objective of
deploying and calibrating a low-cost sensor network platform in the city of Temuco, Chile.
Then, in Section 2, we show the methods, and Section 3 focuses on depicting a novel
calibration method for low-cost particle-matter sensors based on a nonlinear calibration
model. Subsequently, in Section 4, we address the case study, presenting the deployment of
the LCPM sensor network in Temuco City. As the main result, we show the spatio-temporal
analysis of PM2.5 on three consecutive days, in which we can observe the accumulation
of pollution and the washout due to rain. Lastly, in Section 5, the results and conclusions
show the experience deploying this sensor network and calibration method, including
limitations and future research directions.

2. Methods

Figure 1 depicts the method used, which involves two stages: calibration of the sensors
in the laboratory with a reference instrument and deployment of the sensor nodes in the
city. The following sections will describe each of the stages.

Figure 1. Methodology used in this work. In stage 1 the calibration setup was made and the
calibration models were fitted. In stage 2, the sensor network was deployed and operated.

In the first stage, as the first step, the method uses a combustion chamber for plant
material to compare the measurements of sensor nodes based on the Sensirion SPS30 device
with a GRIMM 11-E reference instrument. Then, we apply calibration models to match the
responses of the Sensiron SPS30 and those obtained with the GRIMM 11-E.

2.1. Particulate Matter IoT Devices

Each IoT device for measuring particulate matter has the structure indicated in Figure 2
and consists of the following components: LCPMS, temperature/humidity sensor, WiFi
communication module, LoRa communication module, power for a 3.6 V Lithium battery,
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7 W solar panel, and charge controller, all managed by an ESP32 microcontroller card. It
has a storage unit type micro SD. All this is installed in a case with the IP67 standard.

Figure 2. Sensor node of particulate matter. (a) Diagram. (b) Device, 1: Temperature Sensor / Relative
Humidity, 2: Particulate Matter Sensor, 3: To the solar panel, 4: To the battery, 5: Microcontroller,
Radio WiFi/Radio LoRa, 6: Load controller /Voltage regulator, 7: MicroSD Card , 8: Circuit board 9:
Battery Holder for Li-Ion Battery

As the LCPMS, we used the Sensiron SPS30, a device for online measurements of
particulate material PM1, PM2.5, PM4, and PM10 based on light scattering. This device
presents an excellent performance Bulot et al. [26] and has a more compact package than
the alternatives. The net measurement is converted into units of mass concentration
(0–1000 µg/m3) [27]. The device supports operating temperatures between −10 and 60 ◦C
and humidity up to 95% RH, which is compatible with the range of temperatures measured
in the City of Temuco (−5 to 38 ◦C) [28], and during periods of cold weather and without
precipitation, the humidity reaches 95%. When precipitation occurs, the device turns off
because there are no restrictions on using wood-fired heaters since the particulate material
settles with the rain. According to the manufacturer, PM2.5 has a mass concentration
accuracy of ±10 µg/m3 for a range of 0 to 100 µg/m3. On the other hand, for ranges
between 100 and 1000 µg/m3, the accuracy is ±10% of the measured value. Furthermore,
according to the manufacturer, the SPS030 has an estimated lifespan of 10 years and includes
a self-cleaning mechanism.

Additionally, we programmed the sensor node with a data-acquisition application,
including programmable sampling time, local storage in the micro SD memory, tools to
update the software remotely, and an MQTT protocol to upload the collected data online
to a mySQL database. We used the ThingsBoard open-source IoT platform for real-time
data monitoring.

2.2. Reference Instrument

We used the GRIMM 11-E equipment to acquire the reference material particulate mea-
surements. This instrument complies with the EN12341 [29] and EN14907 [30] standards for
PM10 and PM2.5 measurement, respectively. It has a counting range of 1–2,000,000 particles/L
and has a measurement range from 0.1 µg/m3 to 6 mg/m3 with reproducibility of ± 3% over
the entire measurement range.

3. Sensor-Node Calibration

With the purpose of calibrating the LCPMSs, we designed and implemented a con-
trolled laboratory experiment. In this experiment, an airtight chamber with forced airflow
was prepared to generate the combustion of a specific vegetable mass inside. Two LCPMSs
and a reference instrument (GRIMM 11E) were installed to register PM2.5 measurements,
as shown in Figure 3a.

The three sensors were configured to be synchronized with the start of the PM2.5 mea-
surements. The sampling time for data acquisition was set at 6 s, where the recorded
data were stored in the internal memory of the LCPMS and the reference instrument. In
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addition, the devices were always on during the experiment. Finally, the total length of the
experiment was set at 8 h.

The data registered by the three sensors were preprocessed using a technique derived
from Coleman and Meggers [31]. In our case, we considered a time window of 30 s (i.e., five
measurements), where the median value for each time window was extracted, thus reducing
the sampling time (to 30 s) and the quantity of measured data (930 data points). Figure 3b
shows the variation in time of the PM2.5 concentration after preprocessing. The measured
concentration exceeds the specified upper limit for each instrument to finally reach a
minimum value at the end of the experiment. The yellow curve in Figure 3b represents the
PM2.5 measurements acquired by the reference instrument used to calibrate both LCPMSs
considered in this work (LCPMS 1, blue curve; LCPMS 2, red curve).

(a) (b)

Figure 3. (a) Calibration experiment scheme. (b) Acquired signals from the reference instrument
(yellow line) and the LCPMSs (blue and red lines).

The next step in the calibration procedure involves finding a calibration model yc(x, θ)
capable of mapping the raw LCPMS measurements onto reliable calibrated values. In
this work, we defined a cost function that should be minimized using the data extracted
from the laboratory experiment and a proposed calibration model to find the optimum
set of parameters of yc(x, θ). The cost function is detailed in Equation (1), where yc is the
calibration model and x1, x2, and y are the data related to LCPMS 1, LCPMS 2, and GRIMM
11E, respectively.

θ = arg min
θ

(
N

∑
i=1

[yc(x1(i), θ)− y(i)]2 +
N

∑
i=1

[yc(x2(i), θ)− y(i)]2
)

(1)

3.1. Polynomial Calibration Model

In references [32,33], polynomial functions are one of the commonly proposed calibra-
tion models; due to this, we consider as yc(x, θ) a polynomial model of order p, indicated
in Equation (2).

yc(x, θ) =
p

∑
i=1

θi · xi−1 (2)

By using the MATLAB optimization toolbox, the cost function in Equation (1) was
minimized considering different values for p to the proposed model in Equation (2). It
is important to mention that, before the optimization, a second preprocessing step was
applied to the experimental data for outlier removal. As a result, the optimum order of
the polynomial was p = 9, and the optimum parameters are detailed in Table 1. Moreover,
Figure 4 shows three graphs that complement the results achieved by the proposed cal-
ibration process. At first, Figure 4a displays the optimum calibration model for LCPMS
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1/LCPMS 2. Then, Figure 4b presents the error histogram between LCPMS 1/LCPMS 2
and the calibrated model, where the standard deviation of the calibration error is equal
to 7.5904. Finally, Figure 4c compares the experimental data registered from the reference
instrument (GRIMM-11E) and the calibrated LCPMS 1/LCPMS 2.

Table 1. Optimum parameter set θ with 95% confidence bounds for the polynomial calibration model.

Coefficient (θ) Value 95% Confidence Bounds

θ1 111.9 (110.6, 113.1)

θ2 411.6 (408.1, 415)

θ3 −487 (−504.2, −469.9)

θ4 418.8 (392.3, 445.3)

θ5 −199.8 (−217.3, −182.4)

θ6 54.99 (49.03, 60.95)

θ7 −9 (−10.15, −7.854)

θ8 0.8655 (0.7405, 0.9905)

θ9 −0.04517 (−0.0524, −0.03794)

θ10 0.000987 (0.0008149, 0.001159)

a b

c

Figure 4. (a) Ninth-order polynomial calibration model for LCPMS 1 and LCPMS 2. (b) Calibration
error histogram. (c) Comparison among GRIMM-11E and the calibrated LCPMS.

3.2. Nonlinear Function Calibration Model

To avoid overfitted and over-parameterized calibration models, we propose a non-
linear function composed of two exponential components and one square root term. This
nonlinear model is detailed in Equation (3):

yc(x, θ) = a0 · eb0·x + a1 · eb1·x + c0 ·
√

x , (3)
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where the parameter vector θ is represented by θ =
[
a0 b0 a1 b1 c0

]
.

After applying the second preprocessing step for outlier removal and using the MAT-
LAB optimization toolbox, the cost function in Equation (1) was minimized considering
the nonlinear model (Equation (3)). The resultant optimum set of parameters θ is detailed
in Table 2.

Table 2. Optimum parameter set θ with 95% confidence bounds for the nonlinear calibration model.

Coefficient (θ) Value 95% Confidence Bounds

a0 193.8 (192.7, 194.8)

b0 5.989 × 10−5 (5.901 × 10−5, 6.076 × 10−5)

a1 −198.8 (−199.8, −197.7)

b1 −0.001553 (−0.001559, −0.001546)

c0 5.969 (5.939, 5.999)

In the same manner, as shown above, Figure 5 helps to understand better the scope of
the results achieved by the proposed calibration process. Figure 5a displays the optimum
calibration model for the LCPMS 1/LCPMS 2. Then, Figure 5b presents the error histogram
between LCPMS 1/LCPMS 2 and the calibrated nonlinear model, where the standard
deviation of the calibration error equals 6.4562. Finally, Figure 5c compares the experimental
data registered from the reference instrument (GRIMM-11E) and the calibrated LCPMS
1/LCPMS 2.

c

a b

Figure 5. (a) Nonlinear calibration model for LCPMS 1 and LCPMS 2. (b) Calibration error histogram.
(c) Comparison among GRIMM-11E and the calibrated LCPMSs.

Given the calibration results (Figures 4 and 5), both proposed models achieved an
adequate mapping from the raw data to the calibrated data. However, the nonlinear
calibration model was the one that obtained the best results as to the standard deviation
of the calibration error and lower number of parameters. This last is crucial to obtain
generalized models instead of overfitted models.
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4. Case Study: IoT Network for Particle-Size Monitoring in Temuco City
4.1. Comparison of the LCPM with Other Solutions

For a comparative analysis of the LCPM device with respect to other sensor devices,
we analyzed characteristics such as the type of use (indoor, outdoor), price, range, precision,
and communication. The outdoor property is relevant because the sensor network is
intended to acquire the PM10 particle-matter behavior outdoors. The communication is a
requirement to real-time collect the data acquired in a central database. The cost per unit
is relevant to deploy a significant number of units to give an insight into the pollution
behavior in the city through time. Table 3 compares these sensors’ characteristics, and as
shown, the LCPM fulfills the requirements issued for the sensor network deployment. In
the case of GRIMM 11-E, the precision was not available in the datasheet, but the vendor
stated a reproducibility of ±3% over the total measuring range. We calibrated the LCPM
devices in the laboratory, coded and installed the data-collection system with the respective
dashboards, and finally proceeded with the next step: deploying the sensor network in
the city.

Table 3. Comparison of particle-matter sensors.

Sensor Type

Features Low-Cost Node Sensors
Proposed

Low-Cost Node Sensors
Commercially Available GRIMM 11-E or Similar

Cost per unit USD$ 120 200–500 [34,35] 10,000–20,000 [35]

PM2.5 yes yes yes

PM10 yes yes yes

Range 0–1000 µg/m3 0–1000 µg/m3 0.1–6000 µg/m3

Precision <100 µg/m3: ± 10 µg/m3 <100 µg/m3: ± 10 µg/m3 N.A.

Particle Range Size 0.3 to 2.5 µm N.A. 0.25–31µm

Wireless Connectivity LoRa, WiFi Global cellular 2G/3G/4G Bluetooth

Use Type Outdoor Outdoor Laboratory

Additional
Measurement Temperature, Humidity Temperature, Humidity N.A.

4.2. Node-Deployment Criteria

We deployed a network of 21 IoT devices with calibrated LCPMSs for measuring
particulate matter in Temuco City, as shown in Figure 6.

For the location of the nodes, the following aspects were considered: that the place
is far from a source of smoke emission, that there is access to the installation site, the
availability of connectivity, the availability of energy, and the uniform distribution of
the equipment. This last element is not necessarily actual since the x-distant point to an
already installed node was not necessarily available to install the next node. In the case of
residential nodes, we considered the participation of citizens, who agreed to provide space
for the installation in the backyard of their homes and connectivity for the required nodes.
In the case of the nodes installed in public distributions, the authority provided access to
data and energy connectivity. We installed the nodes at outdoor sites more than 30 m from
smoke emission sources (stove or boiler chimneys) and around 2 m in height. The selected
2 m is because the average size of people is between 1.5 m and 1.8 m. In addition, this
height allows us to install the solar panel on a nearby roof.
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Citizen Participation Public Office

Figure 6. Temuco map, 14 July 2020 at 21:00 h (adapted from OpenStreetMap [36]).

Table 4. Node information.

Node Name Abbreviation Type

Altamira At Citizen Participation

Altos de Mirasur Mi Citizen Participation

Andes An Citizen Participation

Aseo y Ornato Ao Public Office

Bodega Droguería Bd Public Office

CECOSF Arquenco Ca Public Office

CECOSF Las Quilas Cq Public Office

Cementerio Ce Public Office

Ciencias Físicas UFRO Cu Public Office

El Carmen Ec Public Office

El Trencito Et Public Office

Entrelagos En Citizen Participation

Escuela Llaima El Public Office

Galo Sepúlveda Gs Public Office

German Becker Gb Public Office

La Lechería Le Citizen Participation

Las Mariposas Ma Citizen Participation

Liceo Bicentenario Lb Public Office

Olimpia Ol Citizen Participation

Pueblo Nuevo Pn Public Office

Smart Araucanía Sa Public Office
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The calibrated LCPMSs were configured to capture information every 10 min. To
compare the PM25 measurements in different sectors every hour, we computed the average
hourly values in every station. To identify the areas in which the nodes have been installed,
identifiers similar to those proposed in [37–39] were used. Since there is no single urban
zoning identification, we associated the deployment of the nodes with two different types
of locations, citizen participation and public office. Citizen participation refers to citizens
who put the location to install sensor nodes at our disposition. In this case, the nodes
were deployed in the backyards of residential homes powered by internal batteries and
a small solar panel. These residential nodes are connected to the home’s WiFi to deliver
the sensed data. Public office refers to public schools, family health centers, and municipal
warehouses. The nodes were plugged into the local electricity network and connected to
the data centers via Ethernet wires. Figure 6 shows the deployment of the nodes by type in
the city of Temuco, and Table 4 shows the characteristics of the nodes installed.

4.3. Results of Three Consecutive Days

The concentrations of fine particulate material recorded in Temuco show an evident
temporal variability, with the maximum attention in the time slot from 7:00 p.m. to 1:00 a.m.
This time of day coincides with when families are usually at home and temperatures
outside are low. Regarding home emissions associated with firewood, various studies
have shown a high dependence between the temperature, a high energy demand for
heating in homes with poor thermal insulation, and the emission rate of pollutants [3].
This relationship is observed in the differences in levels of particulate matter found in
our sensors. Some residential neighborhoods with the highest population density and
poorest housing quality show a higher emission of air pollutants associated with firewood,
especially during peak hours. On the other hand, the sensors indicate that the highest
concentrations, with emergency levels for PM2.5, occur in areas around the geographic
center of the city, as can be seen in Figures 6 and 7. From the center and moving towards
the periphery, the average levels of particulate matter decrease.

This situation can be due to the geographical distribution of the city, which is in a
valley encased by two hills and a river. When the wind blows, it tends to displace pollutants
in the direction of the river.

Figures 7–9 show the results of monitoring on three consecutive days (14 June, 15 June,
and 16 June). These figures show that days 14 and 15 were cold, with a minimum tempera-
ture below 5 ◦C and low humidity. However, on the 17th, it rained, the temperature rose,
and pollution diminished throughout the city. We want to note that the 15th day was the
most critical since the contamination had accumulated for two consecutive days, reaching
critical thresholds in many stations at peak times (21:00–03:00). In some stations, these
peaks were more extreme, reaching values as high as 350 µg/m3, which greatly exceeded
all permitted pollution standards for many consecutive hours. This situation could be
explained due to many wood stoves heating homes when temperatures are freezing and
people are home. However, given the geographical characteristics of the city, where a
natural wind corridor along the river exists, there is an excellent cleaning capacity. The
figures show that at some off-peak hours, the city shows medium to low pollution rates
in all the stations. From Figures 7–9 we see that only some stations show extreme PM10
values, and the places that reach the highest pollution values are near the city’s center,
which is geographically located where the wind corridor enclosed by two hills narrows
(see Figure 6). An analysis with more data is required to determine how the topography
in different climatic conditions affects the distribution of particulate-matter pollution of
PM2.5 and PM10 over the city.
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Figure 7. Nodes and particulate matter on 14 July 2020. Red line: Temperature, Blue line: Relative humidity.
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Figure 8. Nodes and particulate matter on 15 July 2020. Red line: Temperature, Blue line: Relative humidity.
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Figure 9. Nodes and particulate matter on 16 July 2020. Red line: Temperature, Blue line: Relative humidity.

5. Discussion and Conclusions

The objective of this study was to deploy and calibrate a low-cost particulate-matter
sensor (LCPMS) network platform in Temuco City, Chile. This sensor network allows
for analysis of the density of contaminants in the phases of accumulation, continuous
contamination, dispersion, and cleaning during contamination episodes. The main con-
tribution of this paper is to review the dynamic behavior of the pollutants in the whole
city over the entire event of a high-contamination episode. This spatio-temporal analysis
provides an insight into how the contaminants move in Temuco City over time during
episodes of high contamination and cleansing due to rain. In Latin America and, in general,
in low- and middle-income countries, low-cost sensors can revolutionize traditional monitoring
systems since they provide air-quality information in real time, with excellent spatial precision
and, when calibrated, with a remarkable level of validity and reliability. Their low-cost nature,
especially when compared to official monitoring stations, gives this technology the potential
to democratize air pollution information, making it accessible to a broad audience. The de-
velopment of low-cost sensor-based monitoring systems constitutes an opportunity to give
voice to, amplify, and represent local needs, especially those of socially vulnerable groups. To
achieve this, it will be necessary that, in addition to technological progress such as those shown
in this study, researchers and environmental authorities coordinate their work with volunteers,
representatives of non-governmental organizations, and community groups.

Properly selecting the calibration methods for low-cost pollution sensors is relevant to
acquire reliable data worth making a spatio-temporal analysis during contamination episodes.

Regarding the calibration methods shown in this work, we proposed a nonlinear
calibration model, which was compared with a polynomial calibration model seen in
the state of the art [40–43]. The proposed nonlinear model obtained a lower standard
deviation of the calibration error (6.4562) than the polynomial model (7.5904). Further-
more, the nonlinear model includes five parameters instead of the nine parameters of
the polynomial model. This smaller number of parameters may make the model easier
to calibrate and less susceptible to overfitting, which is consistent with the goals stated
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by Warder and Piggott [44]. The LCPM sensors deployed have been working outdoors,
enduring rough operating conditions such as rainy days and temperatures lower than
minus 5 ◦C. The calibration can be affected by the intrusion of little spiders and dust to
form tartar stuck inside the measuring chamber. We advise recalibrating the LCPM sensors
at least once a year. The amount of LCPM sensors deployed depends on topography factors,
population density, and the network coverage to deploy a sensor network that provides
enough spatio-temporal information to understand the characteristics of the contamination
episodes in the target location. This study showed that relevant data to understand the
movement of spatio-temporal behavior of the contaminants could be acquired using cali-
brated LCPM sensor networks. The future challenge is to keep running this LCPM sensor
network, increasing the number of nodes and replicating this setup in other cities with
their features, such as population density, network coverage, and topography. It is relevant
to study strategies to keep involving the city’s inhabitants in the issue of deploying the
sensor network with physical spaces for LCPM sensor installation and using their home’s
internet connectivity.
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