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Abstract: A lignin-graft-(net-poly(acrylamide-co-N,N′methylenebisacrylamide)) copolymer was
synthesized by conventional free-radical crosslinking copolymerization using conventional and
microwave heating. Grafting of the polymer network onto lignin was confirmed by Fourier transform
infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), scanning electron
microscopy (SEM)/energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), and
elemental analysis. The performance of the modified materials for the removal of lead from water was
evaluated. The materials obtained by the two types of heating showed excellent removal efficiencies:
sample HLigAM4h, 96%; and sample HLigAMMW5, 86%. The maximum adsorption capacity of
HLigAM4h was 209.82 mg g−1. The obtained copolymer (sample HLigAM4h) was characterized by
X-ray photoelectron spectroscopy (XPS) and SEM/EDS after its evaluation as an adsorbent, which
confirm the adsorption of Pb2+. This is the first of a series of studies on the topic, of a preliminary
nature, with several other ones coming up in due time.

Keywords: polymer modification; polymer grafting; adsorbents; lead adsorption

1. Introduction

The use of natural biopolymers, such as lignocellulosic biomasses or its components,
in different important technological areas is a viable option to decrease waste generation
problems and reduce or replace the use of synthetic polymers. One of the main compo-
nents of lignocellulosic biomasses is lignin, which is the second most abundant source
of renewable materials in nature, after cellulose. Lignin has a heterogeneous structure
composed mainly of three phenylpropane units: guaiacyl (G unit), syringyl (S unit), and
p-hydroxyphenyl (H unit), where the difference is the degree of methoxyl substitution on
the phenolic ring [1,2]. Although vast amounts of lignocellulosic biomasses are used in low
added-values applications, such as composting, animal feeding, or burnt for energy produc-
ing purposes, their use for more appealing applications has grown in importance in the last
few years [3]. If more sophisticated biopolymers are required, some of these applications
require to chemically modify the starting biopolymers obtained from the lignocellulosic
biomasses. Numerous physical and chemical methods can be used to perform chemical
modifications to add industrial value to lignin, or develop new polymeric materials, due to
the large number of functional groups present in lignin and its physical properties [4,5].
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Functionalization and chemical modification of biopolymers, including lignin, are
very useful to improve the thermomechanical properties of these materials, which expand
their uses [6]. Lignin and its derivatives can be easily modified from the primary phenol
and hydroxyl groups, as well as the active hydrogen atom near the phenol group [7]. The
chemical modification reactions of lignin define its structure, molecular weight, and number
of functional groups. They also play a very important role on performance for different
applications [8]. Chemical modification reactions that favorably modify lignin include
methylation [9], amination [4], sulfonation [10], carboxylation [11], esterification [12],
crosslinking [13], and graft copolymerization [14]. In graft copolymerization, lignin is
covalently modified by polymer branches which improve the mechanical proprieties and
thermal resistance of the (modified copolymer) material [14]. There are two main routes
for the insertion of polymer chains onto lignin: (1) generation of new reactive sites within
the lignin framework; and (2) modification or functionalization of the hydroxyl groups of
lignin [15]. Reported applications of materials produced from grafting of vinyl polymers
onto lignin include their use as additives for drilling fluids [16], flocculants [17], dye
adsorbents [18], and adsorption of heavy metals [19], among others.

The flocculation efficiency of natural polymers in wastewater treatment processes is
only moderate. Graft polymerization of vinyl monomers onto biopolymers has proven to
be a remarkable method to enhance the flocculation performance of biopolymers [17,20].
Polyacrylamide (PAM) has been used as flocculant for the removal of different wastewater
pollutants. This is possible due to its long chain structure, which contains charged amide
groups that make it water soluble and impart hydrophilic properties. However, PAM is
not derived from renewable sources [21,22]. Although slowly, PAM may decompose up to
acrylamide monomer in a natural environment [23]. Furthermore, acrylamide residues re-
sult in biological neurotoxicity and potential risks of carcinogenesis [22]. Functionalization
or copolymerization of PAM with another polymer or biopolymer can be used to reduce
this problem.

Chen et al. [24] fabricated a chelating flocculant which consisted of a copolymer of
polyacrylamide grafted onto maleoyl chitosan-mercapto acetic acid (PAM-g-M(CS-MA)).
This flocculant had a removal efficiency of 93.90 and 92.47% for Cu and Cd, respectively.
Feng et al. [22] prepared a graft copolymer of acrylamide onto carboxymethyl cellulose and
used it for the removal of dyes from wastewater.

The adsorption of heavy metal ions, such as Cu2+, Pb2+, and Cr3+, generally depends
on the interaction between the metal ions and the reactive groups present in the adsor-
bent. These reactive groups include hydroxyl (-OH), amino (-NH2), carboxylic (-COOH),
and thiol (-SH). If the adsorbent structure contains a large amount of these groups, high
adsorption efficiencies can be achieved [25].

The adsorption capacity of unmodified lignin is usually limited by the low amount of
amino, sulfo, or hydroxyl groups. The introduction of these functional groups into lignin-
based adsorbents by grafting of polymers whose monomer units contain such functional
groups into lignin, is expected to improve the adsorption capacity of heavy metal ions [26].

The grafting of synthetic polymers onto lignin or lignin derivatives by free radical
polymerization to produce adsorbents has been evaluated. Some of the reported grafted
polymers include polyethyleneimine [27,28] and poly(acrylic acid), which result in good
adsorption efficiencies for different heavy metals ions, such as Ni(II), Cd(II), As(V), Hg(II),
Cu(II), Cr(VI), Co, and Pb(II). Ge et al. [29] prepared lignin microspheres with abundant
amine functional groups by grafting polyethylenimine (PEI) onto the biopolymer, reaching
an adsorption capacity of 33.9 mg g−1 for Pb 2+. Liu et al. [19] prepared a composite
hydrogel by grafting poly(acrylic acid) onto acid-pretreated alkali lignin; the material
had an adsorption capacity of 1.076 mmol g−1 for Pb2+. Jiao et al. [30] fabricated a sul-
fomethylated lignin-grafted-poly(acrylic acid) adsorbent by ultrasonic-assisted free-radical
polymerization. The material had an adsorption capacity of 344.85 mg of Pb 2+ per gram
of adsorbent.
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In this contribution, we report the synthesis of a grafted copolymer based on lignin
and PAM, using conventional and microwave heating. PAM was grafted onto lignin by
crosslinking free radical copolymerization using N,N’methylenebisacrylamide as crosslinker.
A crosslinked structure was chosen to prevent dissolution in water of the obtained material.
The grafted copolymer was characterized by FTIR, NMR, TGA, SEM/EDS, XPS, and
elemental analysis.

The grafted copolymer was evaluated in batch adsorption experiments for removal
of Pb2+ from aqueous solutions. The adsorption efficiencies of Pb2+ in unmodified lignin,
PAM, and in our crosslinked grafted material were compared, obtaining a significantly
better performance when our material is used.

2. Materials and Methods
2.1. Materials

All chemicals used were of analytical reagent grade: Kraft lignin (CAS: 8068-05-1),
N,N′-methylenebisacrylamide (99%), acrylamide (98%), and ammonium persulfate (APS,
98%), Lead (II) nitrate, all from Sigma-Aldrich (Toluca, México); sodium hydroxide (NaOH)
and sulfuric acid (H2SO4), both from J.T. Baker® (Xalostoc, México).

2.2. Graft Copolymerization
2.2.1. Conventional Heating

The modified lignin was produced by combined grafting and crosslinking, following
a free radical copolymerization chemical route [19]. First, lignin (1.0 g) was dissolved in
85 mL of NaOH (1.25 M). Ammonium persulfate (0.1 g) and N, N′-methylenebisacrylamide
(0.2 g) were added as initiator and crosslinker, respectively. The solution was heated at
60 ◦C and stirred for 30 min. Then, acrylamide (2.0 g) was added and allowed to react for
2, 4, and 24 h. The reaction was terminated by reducing the temperature to 20 ◦C. After
finishing the reaction, 200 mL of water was added and acidified with H2SO4 until pH
1.5 was obtained. The precipitated material was separated by centrifugation (5000 rpm),
washed with water, and dried at 60 ◦C, for 24 h [17,19,31]. The synthetized materials, which
correspond to a 2, 4, and 24 h reaction time, were named HLigAM2h, HLigAM4h, and
HLigAM24h, respectively. The homopolymer (PAM) was synthesized under the same
conditions, without lignin.

Grafting yield (Y, mass %) and grafting ratio (GR, mol %) were calculated using
Equations (1) and (2), respectively [17,32,33].

Y(mass %) =
W2

W0 −W1
100 (1)

GR (mol %) =
V1MWAM

100MWN −V1MWAM
100 (2)

where W0 and W1 are masses (g) of lignin and AM, respectively, and W2 is mass of
copolymer (g). V1 in Equation (2) is nitrogen gain obtained from elemental analysis
measurements by subtracting nitrogen content present in unmodified lignin (N, %). MWAM
and MWN are acrylamide and nitrogen molecular weights (g mol−1), respectively.

2.2.2. Microwave Heating

The same amounts of lignin, ammonium persulfate, N,N-methylene bisacrylamide
and a solution of NaOH (0.5 M) as a solvent were added into a flask. After stirring for 5 min,
acrylamide was added; stirring continued for 5 more min. Lignin modification was carried
out in a glass container placed in a microwave oven (StartSYNTH, Milestone, Shelton,
Connecticut, USA) at a power of 100 W, for 5 min. Reactions at other times were also
carried out, but 5 min provided the best results. Once the reaction time was reached, the
reaction was stopped, and the same separation procedure was followed. The synthetized
material was named HLigAMMW5.
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2.2.3. Characterization

Kraft Lignin, PAM and the modified materials were characterized by Fourier transform
infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), scanning
electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray photoelectron spec-
troscopy (XPS), and elemental analysis, to confirm that grafting took place, and to evaluate
changes in the structure of lignin. FTIR spectra were recorded in a range of wave numbers
from 4000 to 650 cm−1, using an M series, Midac Corporation spectrometer (Westfield, MA,
USA). Potassium bromide (KBr) pellets containing the samples were prepared by mixing and
pressing 2 mg of dried sample with 200 mg of KBr. 1H NMR spectra were recorded using
400 MHz, Varian, MR, USA, and 600 MHz, JEOL, ECZ600R spectrometers, and 13C NMR
spectra were recorded also using a 400 MHz, Varian, MR, Santa Clara, CA, USA, spectrometer,
operating at 151 MHz. The samples were dissolved in deuterated dimethyl sulfoxide (DMSO-
d6) and analyzed. SEM images and energy dispersive spectroscopy (EDS) were obtained
using a JSM-5900-LV, JEOL microscope, Peabody, MA, USA. TGA analyses were performed
under nitrogen atmosphere by increasing temperature from 30 to 900 ◦C at a heating rate of
5 ◦C min−1, using a TGA550, Discovery Series, equipment, USA. XPS was used to calculate
elemental compositions and analyze chemical states; a VERSAPROBE II, Physical Electronics,
Chanhassen, MI, USA, spectrometer was used. A Flash 200, FPD 800, Thermo Scientific
elemental analyzer, Waltham, MA, USA, was also used for elemental analysis of samples.

2.2.4. Adsorption of Pb2+

Adsorption of Pb2+ batch experiments were performed at 25 ◦C, pH of 5.5, stirring of
240 rpm, as well as variable Pb2+ initial concentration and contact time. Several reports
confirm that the optimal pH for Pb2+ removal lies between 5 and 6 [26,34–36]. Adsorption
capacity at low pHs is limited due to the protonation of -NH, -OH and -COOH, which
are potential adsorption sites in lignin [31,36]. On the other hand, a high pH results in
the precipitation of Pb(OH)2 and Pb(OH)4

2−, which may adversely affect the adsorption
process and reduce the adsorption capacity [26,36,37]. Samples of the modified lignin
copolymer (0.1 g) were soaked in a lead nitrate solution (100 mL) using a flask, for 2 h.
Samples of 5 mL supernatant solution were separated and then filtered through 110 mm
filter paper Whatman® every 20 min. The concentrations of Pb2+ after adsorption were
measured by using an atomic absorption spectrophotometer (PinAAcle 900 Serie AA, Perkin
Elmer Spectrometers). The adsorption capacity (q, mg g−1) and the removal efficiency
(R, %) of Pb2+ ions were calculated according to the following expressions:

q
(

mg
g

)
=

(C0 − Ce) V
m

(3)

R(%) =
(C0 − Ce)

C0
× 100 (4)

where C0 and Ce (mg L−1) represent the initial and equilibrium concentrations of Pb2+ ions,
respectively; V (L) is the volume of the solution and m (g) is the amount of lignin-modified
copolymer (adsorbent).

3. Results and Discussion
3.1. Lignin Modifications

Lignin-graft-(net-poly(acrylamide-co-N,N′methylenebisacrylamide)) copolymers with
different compositions were synthesized by crosslinking free radical copolymerization.
As explained earlier, a polymer network structure of the grafted copolymer was sought
to prevent dissolution in water of the modified material. The proposed reaction route
is shown in Figure 1. Thermal (conventional) heating has been used in several reports
where the reaction time is typically 24 h [14,16,38]. The use of microwave heating has been
reported in the synthesis of some copolymers, decreasing the reaction time, and obtaining
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higher conversions [39,40]. In this contribution, both routes were used. Thermal heating
was carried out at three different reaction times (2, 4, and 24 h). Microwave heating was
conducted at 1, 3, 5, and 7 min; but the best results were obtained at 5 min of reaction.
The yields obtained in samples HLigAM4h and HLigAMMW5 were 26.19 and 25.63%,
respectively. Likewise, the corresponding grafting ratios obtained for those samples were
4.56 and 4.01%, respectively.
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Figure 1. Chemical route for the grafting of crosslinked PAM onto lignin.

3.2. Characterization of Starting and Modifed Lignin Copolymers

The FTIR spectra for PAM (A), Lignin (B), HligAM4h (C), HLigAM24h (D), and
HLigAMMW5 (E) are shown in Figure 2. The bands around 1600, 1515, and 1420 cm−1 for
lignin were assigned to the skeletal vibration of aromatic rings [41,42] and the absorption
bands at 1261, 1241, and 1125 cm−1 were attributed to the guaiacyl, gyringyl, and ether
bonds of lignin [30]. These absorption bands are clearly seen in the spectra for HLigAM4h,
HLigAM24h, and HLigAMMW5, which indicates that the aromatic structure of lignin was
not destroyed or changed during de copolymerization [36]. In the case of PAM, the bands
at 2960, 1720, and 1660 cm−1 were attributed to N–H, C=O and C=C stretching vibrations,
respectively [43]. Notably, in the spectra corresponding to HLigAM4h, HligAM4h and
HLigAMMW5 a new adsorption peak around 1720 cm−1 was observed, which was at-
tributed to the carbonyl bond from an amide bond, was observed. This confirms that PAM
was successfully grafted onto lignin [8,16,43].
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Figure 3 shows TGA (Figure 3A) and DTGA (Figure 3B) results for lignin, PAM,
HLigAM4h, and HLigAMMW5. Weight losses in the range 40 to 150 ◦C correspond to
water, solvent, and other small molecules. As observed, lignin decomposes over a wide
temperature range, from 150 to 500 ◦C, due to its heterogeneity and the absence of a defined
structure [17]. In this temperature range, the carbon–carbon bonds between lignin units and
the side chain of aromatic rings are broken [44,45]. At 500 ◦C, lignin has lost 56.72% of its
mass, while copolymers HLigAM4h and HLigAMMW5 have lost 35.69 and 35.76% of their
masses, respectively. This result indicates that the modified lignin copolymers have better
thermal stabilities than lignin and PAM. The maximum mass loss temperature is 554 ◦C for
lignin, 824 ◦C for HLigAM4h and 831 ◦C for HLigAMMW5. It is also observed in Figure 3
that lignin losses mass much more pronouncedly than modified lignin copolymers. This
result suggests that unmodified lignin may be severely affected by the harsh conditions of
the grafting process.
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Figure 4 shows 400 MHz 1H-NMR spectra for lignin and HLigAM4h; Figure 5 shows
600 MHz 1H-NMR spectra for lignin and HligAM24h; and Figure 6 shows 600 MHz
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1H-NMR spectra for lignin and HLigAMMW5. Chemical shifts of the aromatic rings (p-
coumaryl, coniferyl, and sinapyl), vinylic protons [2], and methoxy group (OCH3) [46] were
identified in the lignin spectra. In the spectra for the modified copolymers, chemical shifts
from 7.03 to 7.21 ppm are attributed to the presence of PAM. Shifts between 4.0 and 4.6 are
attributed to different PAM branches grafted onto lignin. The shifts related to the CH2
group of PAM linked to the phenolic O atom of lignin [8,18], or to the CH2 group linked
to O in the crosslinker, are also observed. Shifts at 4.6 ppm can be attributed to protons
associated with grafted PAM, but bonded to other phenolic structures, different from that
proposed in Figure 1. The new signals between 2.7 and 2.2 ppm can be attributed to the CH
and CH2 groups of PAM. Sample HLigAMMW5 exhibits new shifts between 6.2 to 6.0 ppm,
compared to bare lignin. These shifts are associated with hydroxyl groups, mainly in sugar
units (HO-) [47]. Since Kraft lignin has no shifts in this region, they should have appeared
after the grafting process, possibly by formation of a carboxylate group from hydrolysis of
the amide group. These shifts might be attributable to the crosslinking process through
the phenolic group of the crosslinking agent with the immediate breaking of the bond,
where pendant HO- groups remain. Aromatic rings change with this bonding and breaking
process, acquiring a quinoid conformation. Protons associated with these structures may
show shifts from 6.2 to 5.7 ppm, according to the neighbor functional groups.
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The 13C-NMR spectra for Lignin, HLigAM24h, and HLigAMMW5 are shown in
Figure 7. The signal at 40 ppm corresponds to DMSO-d6. Methoxy groups are observed at
55 ppm. The carbon in the aromatic skeleton of lignin is observed from 110 to 170 ppm.
The signals at 112 and 115 ppm are related to C2 and C5 of the guaiacyl unit; the signal at
130 ppm corresponds to C1, in the guaiacyl ring [2]. The new signals at 35, 38, 49, 57, and
66 ppm in the spectrum for HLigAM24h can be attributed to carbons from the CH and CH2
groups of PAM [26]. The increase in the signals at 166, 171, and 172 ppm may be attributed
to the carboxyl group [36].

SEM images and EDS analyses for lignin, HLigAM4h, and HLigAM4h with adsorbed
lead (HLigAM4h-Pb) are shown in Figure 8. As observed, the surface of lignin was irregular
and relatively fragmented. After grafting/crosslinking modification, the surface was more
regular, with larger particles. An increase in oxygen and sodium is observed in the EDS
spectrum. It is reported in different publications that the hydroxyl groups of lignin react
with NaOH under alkaline conditions, generating a strong nucleophile, which serves as a
catalyst for carboxylation reactions [36,48,49]. The increase in the percentage of Na in the
modified materials suggests that this bond is present.

The results of elemental analysis for lignin, HLigAM4h, and HLigAMMW5 are shown in
Table 1. As observed, the content of nitrogen and oxygen increased, which may be attributed
to the amide groups (-CONH2) of PAM, which was grafted onto the lignin backbone.
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Table 1. Results of elemental analysis for lignin, HLigAM4h, and HLigAMMW5.

Material H (%) O (%) H (%) N (%)

Lignin 62.06 ± 0.105 27.10 ± 0.138 5.45 ± 0.018 1.71 ± 0.067
HLigAM4h 43.90 ± 0.169 35.19 ± 0.025 4.33 ± 0.075 2.57 ± 0.134

HLigAMMW5 53.12 ± 4.108 30.43 ± 0.172 4.99 ± 0.237 2.47 ± 0.061

3.3. Pb2+ Adsorption Experiments
3.3.1. Effect of Material and Likely Removal Mechanism

Pb2+ adsorption experiments were performed to evaluate the effect of lignin mod-
ification on Pb2+ removal efficiency from a water solution (80 mg/L of Pb2+). Results
are shown in Figure 9. Unmodified lignin had a removal efficiency of 43% while the re-
moval efficiency of PAM was 73%, but unlike lignin, PAM dissolves in water. Copolymer
HLigAM4h reached a 92% removal efficiency, almost 50% higher than unmodified lignin,
with the additional advantage that it does not dissolve in water and its separation is easier.
Adsorption capacities at 120 min of contact are 28.02, 55.40, and 74.33 mg g−1 for unmodi-
fied lignin, PAM, and HLigAM4h, respectively. Figure 8c shows images corresponding to
HLigA4h-Pb. It is observed that lead particles adhered to the copolymer surface. Sodium
content in HLigAM4h-Pb decreased almost entirely, which suggests that sodium may favor
the removal of Pb2+, as an ion exchange device [50,51]. Figure 10a shows XPS spectra
before and after adsorption of Pb2+. Characteristic peaks corresponding to carbon and
oxygen are observed. Pb4f and Pb4d peaks can be observed after adsorption of Pb2+, which
indicates that Pb2+ has been adsorbed on the surfaces of the adsorbent in different binding
forms [52]. XPS spectra for O 1s is shown in Figure 10c,d. The three peaks at 531.78, 530.61,
and 529.59 eV that result from the deconvolution of O1s, for sample HLigAM4h, can be
assigned to O-H, C=O, and C-O, respectively. The O-H and C=O peaks had a chemical
shift at 533.01 and 531.37 eV after the adsorption experiment, which suggests that they
are involved in the adsorption of Pb2+ [53]. A new peak at 527.27 eV was observed and
assigned to the oxygen atom in Pb-O. The Pb4f XPS spectrum of Figure 10b can be divided
into Pb4f5/2 (143.55 eV) and Pb47/2 (138.67 eV); these two peaks may be related to Pb-O
and Pb-O-C, respectively [52,54].
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3.3.2. Effect of Lignin Modification Time

Pb2+ removal experiments from water using lignin-modified copolymers obtained
at 2, 4, and 24 h, with initial Pb2+ concentrations of 80 and 220 mg L−1, are shown in
Figure 11. Removal efficiencies higher than 85% are obtained after 20 min for materials
HLigAM2h and HLigAM4h. Maximum removal efficiencies are reached at about 60 min.
These efficiencies are 85, 91 and 77% for HLigAM2h, HLigAM4h, and HLigAM24h at
80 mg L−1, respectively; and 87, 96, and 94% for HLigAM2h, HligAM4h, and HligAM24h
at 220 mg L−1, respectively. Removal efficiencies and adsorption capacities are improved
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by increasing the initial concentration of Pb2+. These improvements may be explained
by better interaction and increased mass transfer between Pb ions and the surface of the
materials [26,27]. The three lignin-modified copolymers have high removal efficiencies;
however, the best performance is obtained with HLigAM4h. The maximum adsorption
capacity for HLigAM4h was obtained using an initial concentration of 220 mg L−1, which
corresponds to 209.82 mg g−1. This adsorption capacity is higher than the capacities
reported for bioadsorbents synthesized by different polymerization techniques, such as
the case of lignin microspheres prepared by inverse suspension copolymerization with
polyethylenimine, where an adsorption capacity of 33.9 mg g−1 was reported [29]. In
the case of graft copolymerization of cellulose acetate with acrylic acid and acrylamide,
the adsorption capacity was 66.67 mg g−1 [55]. Finally, in the case of poly(acrylic acid)
grafted onto an acid-pretreated alkali lignin-hydrogel prepared by crosslinking free radical
copolymerization, the adsorption capacity was 1.076 mmol g−1 [19].
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3.3.3. Effect of Heating Source

It has been reported that the use of microwave irradiation as a heating source in
polymerization studies decreases considerably the time required to complete the poly-
merization [40]. That is why we also conducted lignin modification using microwave
irradiation as heating source. Figure 12 shows a comparison of Pb2+ adsorption efficiencies
using modified materials obtained with thermal (H-LigAM4h) and microwave promoted
heating (HLigAM-MW5). Removals efficiencies of 81% and 86% were archived at 20 and
60 min when the initial concentration of Pb2+ was 80 mg L−1, using HLigAM-MW5. Similar
results were obtained with HLigAM4h. In the case of Pb2+ = [220 mg L−1], efficiencies of
72 and 80% were obtained at 20 and 60 min, respectively. It is observed that in the case
of modified lignin copolymers obtained by using microwave irradiation their adsorption
capacity decreases as the initial concentration of Pb2+ increases. In contrast, the opposite
effect is observed in modified copolymers synthesized by thermal heating, where the reac-
tion time is longer. This dissimilar behavior may be caused by a lower grating degree or by
smaller grafted branches.
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4. Conclusions

Modified lignin copolymers obtained by grafting of crosslinked PAM onto Kraft
lignin using conventional and microwave heating were successfully synthesized. The
obtained materials were evaluated as adsorbent materials for the removal of Pb2+ from
a solution of lead in water. Copolymerization time does not seem to be a determining
factor in the adsorption of Pb2+ since high removal efficiencies were observed at the lowest
evaluated time of 2 h. A removal efficiency of 94% at 20 min of the adsorption experiment
was obtained when using HLigAM4h at an initial Pb2+ concentration of 220 mg L−1. A
maximum removal efficiency of 96% and a maximum adsorption capacity of 209.82 mg g−1

were obtained. The separation of copolymers after the adsorption experiment was simple
due to the fact that the material did not dissolve and almost all the material sedimented
when the agitation was turned off, which is a plus in the potential use of these materials for
lead removal purposes. The modified lignin copolymer synthesized by microwave heating
showed good Pb2+ removal performance, with a removal efficiency of 86%.
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