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Abstract: Due to the complicated interference sources and low signal-to-noise ratio of seismic records,
conventional seismic inversion methods are difficult to accurately identify shale gas reservoirs
with a thickness of less than 10 m. This presents great challenges to shale gas exploration and
development in China. Seismic phase-controlled nonlinear stochastic inversion (SPCNSI) is related to
the heterogeneity of underground media. With the constraints of the stratigraphic sequence or seismic
facies models, the minimum value between the seismic model and seismic record can be solved
through iterative processes. Based on the solved acoustic velocity in formation, the constraints for
SPCNSI can be formed with the matching relationship between target layers and different sequences
in three-dimensional space. The prediction resolution of an unconventional reservoir can be effectively
improved by combining logging, geological and seismic information. The method is suitable for
predicting thin shale gas reservoirs in complex geological structures. In this study, SPCNSI was
developed to predict the thin-layer marine shale gas reservoir in the southeast of Chongqing; the
horizontal and vertical distribution characteristics were proven in the Longmaxi Formation and the
Wufeng Formation; thin layers with a thickness of less than 7 m were also discovered. According to
the results, three sets of potential development areas were determined by the inversion method, and
the accuracy and reliability of the method were verified by logging and productivity testing.

Keywords: nonlinear stochastic inversion; reservoir prediction; seismic facies; shale gas; thin layer

1. Introduction

Shale gas is a kind of clean energy. The recoverable resources of shale gas in China
amount to 21.8 × 1012 m3, ranking first in the world. For increasing the supply of
clean energy and reducing carbon emissions, annual natural gas production will exceed
2300 × 108 m3 by the end of 2025, according to the plan of “China’s 14th Five Year Plan
for Modern Energy System”. With the orderly promotion of shale gas exploration and
development, the Fuling shale gas field, the main battlefield of shale gas development in
China, has cumulatively produced more than 532 × 108 m3 as of December 2022, which
has effectively decreased China’s dependence on external sources of natural gas.

Seismic exploration is one of the key technologies for shale gas development. The
seismic inversion of shale gas reservoirs is mainly divided into three ways: acoustic
impedance inversion based on seismic data, model-based logging attribute inversion, and
geostatistics-based stochastic simulation and stochastic inversion [1,2]. Acoustic impedance
and velocity inversion is one of the most effective ways for identifying underground
lithologies, and has become an important technology for reservoir inversion and the
prediction of shale gas. In practical applications, acoustic impedance inversion based on
seismic data mainly include recursive inversion [3–5], constrained sparse pulse inversion [6],
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reservoir characteristic attribute inversion [7–9] and frequency division inversion [10]. The
commonly used constrained sparse pulse inversion is less affected by the initial model,
and can accurately reflect the lateral changes of the reservoir; however, the resolution
is low. Geostatistical inversion introduces the idea of stochastic simulation to seismic
inversion, and uses stochastic simulation to derive the attribute data of bodies for reservoir
prediction [11,12]. A wavelet-based multiple-point geostatistical simulation (WAVESIM)
algorithm was proposed to reduce the uncertainty in predicting the spatial arrangements
of litho-facies away from wells or control points, which integrates the physical properties
of litho-facies, and geophysical data within a multiple-point geostatistical framework [13].

Random simulations based on geological statistics can better reflect the heterogeneity
of a reservoir, and are less affected by the initial model of the seismic wave velocity.
Zhang et al. [14] comprehensively utilized seismic, geological, logging data and geological
knowledge to perform wave impedance random inversion and lithology simulations on
the spatial distribution of reservoirs, and predicted the distribution patterns. Li et al. [15]
proposed a block constrained generalized wave impedance inversion method based on
the analytical solution of the acoustic equation, which extracts stable velocity and density
parameters by partially stacking profiles to invert the generalized acoustic impedance that
varies with the incident angle. Block constraints are introduced within the framework
of Bayesian theory to obtain stable and well-defined inversion results. Based on seismic
sedimentology, the method of grouping the optimal azimuth and offset stacking window to
partially stack OVT gathers effectively identifies channel sand bodies and makes reservoir
predictions that cannot be predicted using partial full stacks [16].

Many studies have reported the application of nonlinear inversion methods in solv-
ing wave equations. The geological structure-guided hybrid Markov Chain Monte Carlo
(MCMC) and Bayesian linearized inversion (BLI) methodologies for seismic inversion are
implemented to address the problem of 2D discontinuous seismic profiles, because the
spatial coupling of model parameters is not considered [17]. Yang [18,19] proposed the
nonlinear chaotic inversion for seismic traces by the phasing and quantitative description
of state changes of successive linearization iterations. Combined with nonlinear optimiza-
tion [20] and a random model, Huang et al. [21] proposed nonlinear random inversion
controlled by the seismic phase, which had high vertical resolution and relatively accurate
prediction results with the advantages of both broadband constrained inversion [22] and
model inversion [23]. The method was also used to track biological reefs and shoals by
establishing a recognition model with the seismic facies and seismic profiles [24]. Integrat-
ing sedimentary and seismic attributes, in addition to well logging, Zhao [25] established
an initial model based on facies controlled stochastic optimization seismic inversion to
achieve optimal matching between a forward model and observation results. The distribu-
tion characteristics of shale reservoirs, typically the Longmaxi Formation in China, was
predicted by the seismic facies-controlled nonlinear random inversion with the post-stack
seismic data [26].

In addition, phase-controlled inversion with seismic waveform is used to characterize
the distribution characteristics of thin reservoirs in the Yin’e Basin, integrating clustering
recognition and frequency domain curve reconstruction [27]. Zhang et al. [28] applied
seismic phase-controlled nonlinear stochastic inversion to carry out carbonate reservoir
prediction in the Amu Darya Basin by picking up the velocity, amplitude and frequency of
3D seismic waves with geological and logging information. Combining Bayesian classifica-
tion with pre-stack simultaneous inversion, facies-based Bayesian simultaneous inversion
was developed to divide different facies based on multi-elastic parameters, and increase
the stability of the density inversion in the north section of the No.5 fault zone in Shunbei
area, Tarim Basin, China [29]. Gao et al. [30] used the method for reservoir prediction
of subsalt microbial carbonate reservoirs to improve the accuracy of seismic prediction.
Wang et al. [31] studied the sand body boundary and quantitative reservoir prediction using
waveform clustering seismic phase analysis, and described the depositional characteristics
and thickness of the reservoir in the planar and vertical directions.
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In this research, the problems of a low signal-to-noise ratio of seismic records and
predicting thin shale gas reservoirs with a thickness less than 10 m in southeast Chongqing
were addressed. A seismic phase-controlled nonlinear stochastic inversion was applied
to the Southeast Qianjiang (S-Q) area in Chongqing, China. The horizontal and vertical
distribution characteristics were proven in the Longmaxi Formation and the Wufeng
Formation; thin layers with a thickness of less than 7 m were also discovered.

2. Overview of the Study Area
2.1. Geological Structure and Stratigraphic Distribution

The study area (S-Q) is located in the southeast of Chongqing in China (Figure 1). The
area is a typical karst landscape with large topographic undulations and a steep formation
dip angle, as shown in Figure 2. The topographic map in the S-Q area was derived using
the Google Earth Engine (GEE). The highest elevation reaches 1900 m, the lowest elevation
is 270 m. The structure belongs to the Qiyao Mountain convex fold belt and Qianjiang
depression fold belt, located in the southeast of the Chongqing–Xiangxi isolated channel
type alluvial fold belt. The anticlinorium and syncline are in parallel with each other,
and the direction of the fold axis roughly extends in a northeast to southwest direction;
the formation dip angle is about 35 degrees to 75 degrees, with a steep dip and basic
symmetry on both flanks. The internal faults in the anticlinorium and syncline are relatively
developed, and the dip angle in the core faults is steep (about 57 degrees to 75 degrees)
with the characteristics of a high stratigraphic uplift, strong tectonic compression, and high
and steep structural development.
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Figure 1. Location and geological structure of S-Q well area. The S-Q area is located in the southeast
of Chongqing in China, as shown in the red box.

The Yanshan Movement was the main period of tectonic formation in this area, devel-
oping reverse faults along the structure, with faults exhibiting a back-thrust pattern. The
sedimentary environment has deep water bodies, mainly developed as shelf deposits and
shore deposits, which are favorable to the development of dark mud shale of the Upper
Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation [32]. It is the main
reservoir with high shale gas production in China. The exposed stratigraphy is from the
Triassic to Aurignacian; Silurian siltstone and siltstone shale are in a large area; the Lower
Permian limestone is exposed in some areas. From new to old, the stratum exposes the
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lower Permian limestone, Silurian Luojiaoping formation siltstone and shale, Longmaxi
Formation siltstone and silty shale.
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Figure 2. Topographic map in S-Q area was derived using the Google Earth Engine (GEE). The area
is a typical karst landscape with large topographic undulations and steep formation dip angle.

The thickness of the Lower Silurian Longmaxi Formation ranges from 65–110 m in the
area. The upper part is dark gray, gray-black calcareous, with sandy shale and gray sandy
shale, and the lower part is dark sandy shale, with carbonaceous shale and carbonaceous
mudstone, which form the main reservoir of shale gas. The overlying stratum is the Lower
Silurian Xin Tan Formation; the lithology is a set of greenish-gray, yellowish-gray and
blackish-gray mudstones with carbonaceous shales, and the bottom is a contact between
the gray fine siltstone and calcareous shale of the Longmaxi Formation. The underlain
stratum is the Wufeng Formation, with a set of grayish-black carbonaceous and siliceous
shales, which are thinly laminated and topped by the Garidonian weathering surface.
The thickness of high-quality shale of the Wufeng Group is less than 10 m; it is the main
gas-producing layer of shale gas in the area.

2.2. Characteristics of the Sedimentary Phase

Integrating the data collected from test cores, well drilling and logging in the area,
the sedimentary phases are carbonate shoals, terraces, occluded basins (lagoons), shallow
marine shelves and foreshore slopes from the bottom to the top of the stratum, as shown
in Figure 3. The phase shows the water body-changed process from the Ordovician to
the Silurian. The water body took place by turning from shallow to deep. The typical
characteristics of the sedimentary phases of each stratum are briefly described as follows:

• Sedimentation of Shallow shoal carbonate terrace (Baota Formation–Linxiang Formation)

The bottom of the Baota Group is a thin interbedded mudstone and tuff, and the
upward transition is a laminated tuff containing a large amount of biogenic shells or
bioclasts, with good rounding, reflecting a shallow terrace edge environment with strong
hydrodynamic force. The middle and upper parts of the Baota Formation are dominated by
verrucose tuffs and tortoise tuffs, which are products of shallow water and an arid climate,
with stable low-angle horizontal laminations reflecting low water energy and a depositional
environment of carbonate terraces.
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Figure 3. Analysis of sedimentary phase and stratigraphic sequence with S-Q-2 well logging. MD,
measure depth; FMI, formation micro-scanner image; GR, natural gamma-ray logging; DLL, dual
lateral logging; DT, acoustic difference time logging.

The Ordovician is mainly composed of nodular limestone and turtle crack limestone
in the study area. The bottom of the Baota Formation is a thin interlayer of mudstone and
limestone, transitioning upwards into layered limestone, containing a large amount of
biological crusts or debris; it is well-rounded, and reflects the shallow environment of the
platform edge with strong hydrodynamic forces. The upper and middle parts of the Baota
Formation are mainly composed of nodular limestone and turtle crack limestone, which
are products of shallow water and an arid climate. The stable low-angle horizontal bedding
reflects low water energy, and the sedimentary environment is a carbonate platform.

• Sedimentation of closed sea basins and lagoons (Wufeng Formation–Longmaxi Formation)

The upper Ordovician Wufeng Formation and lower Silurian Longmaxi Formation
have well-developed foliation, containing slightly gray matter, and is relatively dense. The
top of the Wufeng Formation and Longmaxi Formation generally contains carbon, which
is mainly composed of carbon shale. Most layers of the Longmaxi Formation contain less
sand, and the lithology is siliceous shale. Common graptolite fossils and pyrite patches or
strips with horizontal bedding development reflect the retention reduction environment,
with weak hydrodynamic strength and slow sedimentation speed, forming a lagoon or
closed basin environment.

• Sedimentation of shallow shelf-frontal slope (Xintan Formation)

The bottom of the Xintan Formation is mainly composed of calcareous shale deposits;
horizontal bedding and cross bedding at a certain angle are developed. No reduction miner-
als such as pyrite are found, reflecting shallow water carbonate a sedimentary environment
of shallow water, medium hydrodynamic force and normal redox environment-shallow
sea shelf deposits. The upper and middle parts of the Xintan Formation are thick shale
deposits, with frequent interaction between sliding deformation structures caused by grav-
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ity flow and the horizontal bedding of still water deposits, reflecting the carbonate slope
environment, i.e., the slope zone between shallow and deep sea.

2.3. Petrophysical Characteristics of the Reservoir

The petrophysical characteristics of the shale gas reservoir in the S-Q area, as the con-
strained condition for SPCNSI, were counted with logging data. This process is conducive
to making the inversion results of seismic records closer to the true situation of the strata.
The statistical results for the Longmaxi and Wufeng formations of the S-Q-2 well are shown
in Figure 4, which include gas-bearing and non-gas reservoirs. The statistical parameters
are Vp (longitudinal wave velocity), Vs (transverse wave velocity), DEN (rock density) and
GR (natural gamma) at a vertical depth of 727–801.8 m.
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It includes carbonaceous shale and sandy shale, which can be divided into three
sections according to their gas-bearing properties. Among them, the vertical depths of
727 m to 778 m (thickness of 51 m) and 778 m to 792 m (thickness of 14 m) are low
gas content, while the depth of 792 m to 802 m (thickness of 10 m) are enriched gas-
bearing layers. Various parameters are influenced by the condition of the gas content.
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Gas-bearing reservoirs have the characteristics of high gamma, low density, and low
acoustic wave velocity.

The P-wave velocity of the gas-bearing reservoir is from 3700 m/s to 4100 m/s, and
the S-wave velocity is 2300 m/s to 2500 m/s. The rock density is between 1.94–2.03 g/cm3.
On the contrary, the velocity of P-waves and S-waves on non-gas bearing reservoirs are
both high, ranging from 4300–4900 m/s and 2500–2800 m/s, respectively. The rock density
is between 2.04–2.15 g/cm3, and the natural gamma is greater than 160 API.

In summary, the gas saturation, petrophysical characteristics and marine sedimentary
environment in the study area show that the shale reservoir has good economic value.
However, the reservoir in the area is developed in thin interbedded layers, and the reser-
voir thickness changes greatly. As a result, exploration of the reservoir’s distribution
characteristics requires an accurate seismic inversion method.

3. Methodology

A seismic phase is the reflection of the sedimentary phase in the seismic data, and any
kind of seismic phase has specific seismic reflection characteristics that correspond to the
appropriate sedimentary phase. Based on the geometry, interrelationship and internal struc-
ture of the seismic phase, the position in the regional structure and the phase interpreted
by the well data, the corresponding sedimentary phase can be initially determined. The
seismic phase-controlled nonlinear stochastic inversion performs a nonlinear optimization
of the seismic records. Combining the individual problem into a joint inversion, the degrees
of freedom of the inversion can be reduced under the control of the seismic phase model.
The wave impedance inversion is transformed into an inversion of the formation velocity,
and the minimum value of the least square solution between the seismic model and actual
seismic records is obtained. The special process can be expressed as follows:

f (V) =
n−1

∑
i=0

(
S∆

i − Di

)2
→ min (1)

where V is the acoustic velocity in the formation, S∆
i is the synthesized seismic record using

the velocity model of the formation medium, Di is the actual seismic record and i is the
sampling point number of the seismic record.

According to the theory of the generalized linear inversion [33], Equation (1) can
be expanded at the initial model response Si with Taylor’s formula. To improve the
inversion accuracy of the thin-layer seismic record, only the quadratic terms are retained;
the Formula (1) is simplified as follows:

S∆
i − Di = Si − Di +

n−1

∑
k=0

∆Vk
∂Si
∂Vk

+
1
2

∆V2
k

(
n−1

∑
k=0

∂2Si
∂Vk∂Vj

)
(2)

where Si is the synthetic seismic record corresponding to the initial velocity model, and
∆V is the parameter perturbation in the model. Making the first-order derivative of the
perturbation term ∆V to zero, the Formula (2) may be written as follows:

n−1

∑
i=0

∂(S∆
i − Di)

2

∂∆Vj
= 2

n−1

∑
i=0

(S∆
i − Di)

∂S∆
i

∂∆Vj
= 0 (3)

Removing some high-order minima, Formula (3) is simplified as follows:

n−1

∑
i=0

{
(Si − Di)

∂Si
∂Vj

+
∂Si
∂Vj

n−1

∑
k=0

∆Vk
∂Si
∂Vk

+ (Si − Di)
n−1

∑
k=0

∆Vk
∂2Si

∂Vj∂Vk

}
= 0 (4)

Equation (4) can be replaced with a simple form as follows:
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A∆V + B∆V + C = 0 (5)

A =
n−1
∑

i=0

{
∂Si
∂Vj

n−1
∑

k=0

∂Si
∂Vk

}
B =

n−1
∑

i=0

{
(Si − Di)

n−1
∑

k=0

∂2Si
∂Vj∂Vk

}
C =

n−1
∑

i=0

{
(Si − Di)

∂Si
∂Vj

} (6)

The actual acoustic velocity V in the formation is obtained by iterating Equation (6)
with the model parameter perturbation ∆V by Equation (7).

Vm+1 = Vm + ∆Vm (7)

where m is the number of iterations.
The implementation of nonlinear stochastic inversion can be divided into two parts:

stochastic simulation and nonlinear inversion. The transformation characteristics of reser-
voir parameters in space are represented with three features: the range, still, and the nugget
constant. Synthetic seismic records are synthetized through Gaussian simulation and mor-
phological modeling under the constraint of the sedimentary facies. SPCNSI is performed
on each seismic channel, and this process is shown in Figure 5. The acoustic velocity and
the rock density from logging data were used to establish an initial wave impedance model
for the formation. The constraints for SPCNSI were from the relationship between the
distribution of sedimentary facies in the target layer and post-stack seismic records. Within
the time window range of different sedimentary facies, the initial wave impedance model
obtained from logging data was extrapolated along the phase change direction. It was
the control condition of the inversion of the next seismic record. After multiple iterations
to minimize the perturbation term between the synthetic and actual seismic records, the
acoustic velocity in the formation could be obtained [34].
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Based on the solved acoustic velocity with iteration processing, the sequence bound-
aries of the strata were interpreted on the seismic profile compared with the sequences
divided by drilling, logging and other data. The constraints for seismic phase-controlled
inversion can be formed with the matching relationship between target layers and different
sequences in three-dimensional space.
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In this research, the seismic acquisition instrument adopted Sercel’s 428 digital seis-
mometer, with a seismic channel gain of 18 dB and a sampling rate of 1 ms; the recording
length was 5 s. The main acquisition parameters are shown in Table 1.

Table 1. The 3D seismic exploration acquisition parameters for S-Q area.

Parameters Number Parameters Number

Lines 158 Number of the shot point 13,822
Length of the shot line 2277 × 103 m Number of seismic trace 2576

Number of collection points 52,058 Samples interval 50 m
Full coverage area 242 × 106 m2 Horizontal coverage times 6 × 6

4. Results
4.1. 3D Seismic Exploration for Shale Gas Reservoirs

The seismic records were severely affected by the poor conditions for seismic excitation
and reception, due to the large number of exposed limestones and elevation differences in
the surface terrain of the area. The implementation of techniques such as selecting physical
points, optimizing observation systems and optimizing excitation and reception parameters
ensured the quality of the 3D seismic acquisition data.

From the survey line profile, it can be seen that the underground structure of the
study area is relatively flat, with obvious reflection characteristics of the Silurian Long-
maxi Formation and the Upper Ordovician Wufeng Formation, and obvious wave group
relationships. The internal reflection structure of both formations is parallel, with good
continuity of the same phase records, indicating that the formations were in a stable and
low-energy environment during their sedimentary period, as shown in Figure 6. After
the well-to-seismic calibration, it is believed that the continuously weak parallel seismic
reflection corresponds to the sedimentation of a lagoon (closed basin). In comparing the
synthetic records and seismic records next to the well, the high-quality shale is located
between the trough and peak (the top boundary is trough reflection, and the bottom is
strong reflection). The main characteristics of each layer are as follows:

(1) Lower Silurian Xiaoheba Formation (S1xh): thickness approximately 200 m; light
yellow-grey and chartreuse silty hydromica shale and hydromica shale interbedded
with different thicknesses, and local lenticular limestone and bands are occasionally
found; the bottom is light gray medium-thick to thick-layered siltstone, and part of it
is calcareous siltstone or calcareous fine-grained sandstone.

(2) Lower Silurian Xintan Formation section 2 (S1x2): approximately 250 m thick; the
grayish green and chartreuse silty hydromica shale is mainly mixed with hydromica
shale, and the top and bottom are light gray medium-thick to thick bedded argilla-
ceous siltstone.

(3) The first section of the Lower Silurian Xintan Formation (S1x1): approximately 180 m
thick; gray, green-gray hydromica shale, silty shale, mixed with gray medium-thick to
thick bedded argillaceous siltstone. The local shale contains a small amount of carbon
and integrates and contacts with the underlying strata.

(4) Lower Silurian Longmaxi Formation (S1l): approximately 50 m thick; black carbona-
ceous silty hydromica shale, carbonaceous hydromica shale, with light yellow-gray
thin to medium-thick bedded quartz siltstone in the middle and upper part. Contains
a large number of graptolite fossils, and integrates and contacts with the underly-
ing strata.

(5) Upper Ordovician Wufeng Formation (O3w): approximately 10 m thick; black thin-
layer carbonaceous siliceous shale, occasionally mixed with light gray thin-layered
dolomitic limestone; integrates and contacts with the underlying strata.

(6) Upper Ordovician Linxiang Formation (O3l): thickness of about 10 m; black medium-
thick layered nodular argillaceous limestone; integrates and contacts with the under-
lying strata.
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(7) Middle Ordovician Baota Formation (O2b): gray to dark gray thin to medium-thick
layered dry cracked limestone, occasionally mixed with mesoscale limestone.
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4.2. Prediction of Shale Gas Reservoir Distribution with SPCNSI

SPCNSI was used to carry out special processing on the 3D seismic data collected in
S-Q work area, in order to explore the horizontal and vertical distribution characteristics
and reservoir thickness of shale gas reservoirs in the Longmaxi Formation and Wufeng
Formation, and provided a basis for the deployment of shale gas horizontal wells and
reservoir stimulation. The first division allows for an acceptable error between the seismic
phase sequence boundaries and geological models due to the random inversion.

The distribution characteristics with SPCNSI of the shale gas reservoirs in this area
are shown in Figure 7. The sequence interface corresponding to the 3D seismic profile is
based on the comprehensive drilling, logging and logging data of the S-Q-2 well. Due to
the fact that the S-Q area is a new exploration area, there are fewer wells data available for
calibration, and the interval of the two wells is relatively short (only 200 m).

In terms of the stratigraphic velocity profile, the boundaries of the shale gas reservoir
less than 35 m can clearly be identified, and the reservoirs can be traced throughout the
area (Figure 8); this reflects the spatial distribution characteristics of reservoirs in both
the horizontal and vertical directions. The distribution range of shale reservoirs is wide,
with the obvious low P-wave velocities (approximately 3500–4700 m/s). Combined with
geological parameters such as the gas content, reservoir thickness and rock porosity in this
area, the original oil in place of the shale gas in this area reached 210 × 108 m3.

The shale gas reservoir of the Longmaxi Formation is distributed stably in the whole
area, with less thickness variation, as shown in Figure 9. The maximum thickness is about
18 m, and the minimum thickness is about 7 m. Reservoirs with a thickness greater than
15 m are mainly developed in the S-Q-2 well area and in the north of the area. Thicknesses
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of less than 9 m only appear locally. The reservoir of the Wufeng Formation is characterized
by a stable distribution and wide range, with a maximum thickness of 12 m and an average
thickness of about 7 m. Reservoirs with a thickness greater than 10 m are concentrated in
the north of the study area, while thicknesses less than 4 m are mainly distributed near the
faults. The inversion results are consistent with the logging interpretation of the shale gas
reservoir on wells Q1 and Q2.

In addition, the results of drilling, logging and gas content testing from the S-Q-6
well show that there are three shale gas reservoirs with a total thickness of 77.8 m in the
Longmaxi Formation and Wufeng Formation in the north of the study area. The vertical
depths are 730.4 m to 784 m, 786 m to 795 m and 801.3 m to 816.5 m. The shale gas reservoir
with the best gas content is the Wufeng Formation (801.3–816.5 m), with a thickness of
15.2 m, an average total organic carbon (TOC) content of 3.8%, a porosity of about 4.1%
and a gas content of 3.1 m3/t. After the reservoir stimulation, the daily gas production
is 1.38 × 104 m3 per day. The accuracy and reliability of this method w also verified in
predictions of the marine thin shale gas reservoir.
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5. Discussion

As for predicting the thin shale gas reservoir, the SPCNSI method solves for the
minimum value between the seismic model and seismic record, with the constraints of
stratigraphic sequence or seismic facies through iterative processes. It could effectively
improve the vertical and longitudinal resolution. The method is suitable for the prediction
of thin shale gas reservoirs in complex geological structures. However, the method needs
a lot of data (i.e., logging, petrophysical and geology), as the inversion constraints condition
differs from the acoustic impedance inversion and geostatistics-based stochastic inversion.
It is limited for the new exploration area due to a lack of the necessary data. On the
other hand, we only implemented SPCNSI programming with Microsoft Visual Studio
C++ (version 2019, Microsoft Corporation, Redmond, WA, USA) [35], and the inversion
results were imported into Landmark [36] software (version 2016, Halliburton Company,
Odessa, TX, USA) for further reservoir analysis and interpretation. Unfortunately, we did
not integrate these methods into a complete software package until now. However, we will
address this problem in the next study.

In recent years, machine learning has become an effective method for understanding
geophysics and geomorphic properties [37]. Due to its excellent ability to solve nonlinear
problems, it has become a popular topic in seismic exploration. It has been widely devel-
oped to predict seismic attributes and formation structures [38–41]. Objectively, reservoir
heterogeneity leads to multiple solutions and uncertainty in solving petroleum geological
problems, and it is difficult to obtain “textbook” tag data for machine learning. Due to the
strong specialty and particularity of oil E&D data, the general artificial intelligence (AI)
algorithm cannot be used directly. However, AI technology will certainly provide new
momentum for scientific breakthroughs in the whole industrial chain of oil and gas [42].
The multi-type unstructured data (i.e., logging, geology, seismology and petrophysics)
could be applied to machine learning models for reservoir predictions of thin interbed
shale gas.

6. Conclusions

Seismic phase-controlled nonlinear stochastic inversion (SPCNSI) can effectively im-
prove the resolution of oil and gas reservoir predictions. In this research, we solved the
difficulty of predicting thin layer shale gas reservoirs under marine sedimentation condi-
tions. Three sets of reservoirs with a thickness of less than 20 m were identified, and can be
traced throughout the study area. Two favorable areas for shale gas have been determined
in the S-Q area, in terms of the inversion results. The horizontal and vertical distribution
characteristics of the reservoir have been proven. The following understandings have
been obtained:

(1) The characteristics of low formation acoustic velocity in high-quality shale gas reser-
voirs is obviously in southeast Chongqing, in China.

(2) The inversion results of SPCNSI can effectively improve the vertical resolution of
seismic profiles, and can also identify thin reservoirs below 7 m in thickness.

(3) The high-quality shale gas reservoirs (Longmaxi Formation and Wufeng Formation)
are stably distributed in the study area, with little change in thickness. The average
thickness of the Longmaxi Formation is about 12 m, and the reservoirs with a thickness
greater than 10 m in the Wufeng Formation are concentrated in the north of the study
area, with an average thickness of about 7 m.

(4) Combined with drilling, logging and geology, the sequence and sedimentary phases from
seismic profiles can be interactively calibrated, and the results of SPCNSI can accurately
describe the sedimentary characteristics of thin interbeds of shale gas reservoirs.
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