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Abstract: Skin lesion detection is crucial in diagnosing and managing dermatological conditions. In
this study, we developed and demonstrated the potential applicability of a novel mixed-scale dense
convolution, self-attention mechanism, hierarchical feature fusion, and attention-based contextual
information technique (MSHA) model for skin lesion detection using digital skin images of chick-
enpox and shingles lesions. The model adopts a combination of unique architectural designs, such
as a mixed-scale dense convolution layer, self-attention mechanism, hierarchical feature fusion, and
attention-based contextual information, enabling the MSHA model to capture and extract relevant
features more effectively for chickenpox and shingles lesion classification. We also implemented
an effective training strategy to enhance a better capacity to learn and represent the relevant fea-
tures in the skin lesion images. We evaluated the performance of the novel model in comparison
to state-of-the-art models, including ResNet50, VGG16, VGG19, InceptionV3, and ViT. The results
indicated that the MSHA model outperformed the other models with accuracy and loss of 95.0%
and 0.104, respectively. Furthermore, it exhibited superior performance in terms of true-positive and
true-negative rates while maintaining low-false positive and false-negative rates. The MSHA model’s
success can be attributed to its unique architectural design, effective training strategy, and better
capacity to learn and represent the relevant features in skin lesion images. The study underscores the
potential of the MSHA model as a valuable tool for the accurate and reliable detection of chickenpox
and shingles lesions, which can aid in timely diagnosis and appropriate treatment planning for
dermatological conditions.
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1. Introduction

Deep learning has experienced remarkable growth, progress, and development in skin
lesion detection and diagnosis, revolutionizing clinical practices and holding great clinical
significance [1-4]. With its ability to process vast amounts of data, deep learning algorithms
have shown immense potential in improving diagnostic accuracy, aiding treatment deci-
sions, and enhancing patient care [5]. Traditional methods often rely on visual inspection,
which can be subjective and prone to human error. Deep learning algorithms, on the other
hand, can analyze digital images of skin lesions with high precision, overcoming limita-
tions associated with human interpretation and reducing the reliance on subjective visual
examination, providing consistent and objective assessments, and enhancing diagnostic
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accuracy [6]. Deep learning algorithms trained on large datasets can learn to accurately
identify these specific lesions, enabling swift and accurate diagnosis. Additionally, they can
expedite the diagnosis process, potentially leading to earlier interventions and improved
patient outcomes [7]. Furthermore, the integration of deep learning algorithms in skin
lesion detection and classification has the potential to extend its reach beyond traditional
clinical settings. Telemedicine and remote health care can significantly benefit from deep
learning-powered diagnostic tools. By leveraging deep learning algorithms, health-care
providers can remotely analyze digital images of skin lesions, enabling accurate diagnoses
without requiring in-person consultations. This will not only enhance accessibility to expert
care, particularly in underserved areas, but also reduce the burden on health-care systems
and resources.

Chickenpox and shingles are two diseases that clinically manifest as characteristic
vesicular skin lesions on the skin of humans [8]. They belong to the varicella zoster virus
(VZV), a highly contagious virus that belongs to the herpesvirus family. Chickenpox and
shingles exhibit distinct optical image characteristics that aid in their identification. Chick-
enpox lesions typically appear as small, red spots that progress to fluid-filled blisters [8].
The color of these lesions can vary, ranging from pink to red. Chickenpox lesions are
generally small, often less than half an inch in diameter. Due to the presence of fluid-filled
blisters, these lesions may have a rough or bumpy surface. Additionally, chickenpox lesions
are often distributed and appear to scatter across the body, including the face, trunk, and
extremities [8]. Shingles, on the other hand, appears as red patches that progress to painful,
fluid-filled blisters [9]. The color of shingles lesions is typically red, but they may also have
a purplish hue. Unlike chickenpox, shingles lesions have a distinctive pattern and arrange-
ment. They often appear in a localized and linear pattern, following the path of specific
nerves known as dermatomes [9]. This linear arrangement is a key optical characteristic
of shingles. Additionally, shingles lesions tend to be larger and more raised compared to
chickenpox lesions, although this is dependent on the stage of the lesion. They may also
develop crusts as they heal.

However, there exist obvious similarities that can make prompt diagnosis challenging,
as shown in Figure 1, resulting in misdiagnosis and delayed or inappropriate treatment,
seriously affecting the patient’s health and well-being. These similarities include their
initial appearance as red patches or spots on the skin, the development of fluid-filled
blisters, and the characteristic rash they cause [9,10]. Additionally, both diseases can be
contagious and involve stages of lesion evolution, including the progression from red
patches/spots to blisters and subsequent healing [9,10]. These similarities may prove
difficult for prompt diagnosis. Hence, early detection of VZV-related skin lesions is vital
to the patient’s survival. While shingles is generally a self-limited disease, it can lead to
severe pain, discomfort, and long-term complications such as postherpetic neuralgia [9].
Early treatment with antiviral medication can help reduce symptoms’ severity and prevent
these complications [11].

In this study, we propose implementing a novel multi-modal contextual fusion con-
volutional neural network (CNN) model named MSHA to detect, classify and diagnose
chickenpox and shingles lesions using digital images of skin lesions. We further evaluated
the performance of our novel model with sophisticated state-of-the-art transfer learning
techniques, including ResNet50, vgg16, vggl9, inceptionV3, and vision transformer (ViT).
The outcome of this study will be useful in the improved accuracy and early detection of
skin lesions related to the two conditions, particularly for physicians and aid workers in
endemic regions. This ultimately will help curb future outbreaks of this disease.
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Figure 1. Digital images of chickenpox [4] and shingles [12].

2. Related Studies

Several studies have been conducted on the detection and classification of several skin
lesions. While the majority of the studies focus on chickenpox and monkeypox, others are
specific to chickenpox and shingles. These studies have contributed to the understanding
and advancement of diagnostic techniques for these viral diseases.

Mejia Lara and Arias Velasquez [13] conducted a study to discuss the development
of a new framework using convolutional neural networks (CNNSs) for early detection of
the herpes zoster virus (HZV) or varicella zoster virus (VZV), which primarily affects
the trigeminal nerve. The method was tested on 1000 images, achieving 89.6% accuracy
in detecting the early stage of HZV with low-cost image analysis. Different algorithms
were compared using preprocessing, segmentation, extraction, and classification steps.
The effectiveness of the detection system was 98.1% within eight days, with minimal
information, although there were 33% false positives during the training process. The
research contributes to understanding data management, deep learning, and technology for
successful classification in early HZ detection. Lanera et al. [14] used textual data from the
Italian pediatric primary care database Pedianet to train recurrent neural network (RNN)
models for automatic identification of varicella zoster virus (VZV) infection in children.
The models achieved a maximum area under the ROC curve (AUC-ROC) of 95.30% and
demonstrated potential for clinical outcome predictive modeling using electronic health
records (EHRs). This study’s findings supported the implementation of high-performance
systems in various medical domains.
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To overcome delays in confirming chickenpox data using traditional methods, Lee et al. [15]
proposed a deep learning model that leverages real-time web data. By capturing nonlinear
relationships and incorporating outbreak-related keywords, the LSTM prediction model
achieved high accuracy (correlation coefficient of 0.97114) and outperformed linear regres-
sion models (root mean square error of 341.01547). Uzun Ozsahin et al. [4] conducted a
study that integrated a well-trained deep learning (DL) algorithm for the early detection
and classification of chickenpox and monkeypox using digital skin lesions images in human
subjects. Using two open-sourced digital skin image datasets, a two-dimensional convolu-
tional neural network (CNN) with four convolutional layers and three max-pooling layers
was applied. The proposed CNN model demonstrated superior performance compared to
other DL models, achieving a test accuracy of 99.60% and a weighted average precision,
recall, and F1 score of 99.00%. The findings indicate the potential of the proposed model,
aided by unique features and image augmentation techniques, in rapidly and accurately
detecting monkeypox through digital skin images.

Early detection of herpes zoster virus (HZV) affecting the trigeminal nerve is crucial
to prevent eye damage. Arias and Mejia [16] developed a new methodology utilizing
convolutional neural networks (CNNs) and deep learning for early detection of HZV. The
methodology involved preprocessing, segmentation, extraction, and classification stages.
The study identified limitations, device, and software failures in developing an early HZ
detection system. The classification process is a key factor, incorporating such techniques
as k-nearest neighbor (KNN), neural networks, and logistic regression. On average, the
proposed paradigm achieves 97% effectiveness in early detection with minimal information.
Wang et al. [17] carried out a study to predict the development of postherpetic neuralgia
(PHN) in patients with acute herpetic neuralgia, aiding clinicians in decision-making. Risk
factors were identified through machine learning algorithms, with age, NRS score, rash site,
CClI score, antiviral therapy, and immunosuppression being significant. The random forest
algorithm achieved an accuracy of 96.24% in predicting PHN, demonstrating its potential
in developing predictive models for future cases.

Using Super Learner, a statistical machine learning method, Gilbert and Luedtke [18]
evaluated the varicella zoster virus-specific glycoprotein-based enzyme-linked immunosor-
bent assay (gpELISA) antibody titer as an individual-level indicator of herpes zoster (HZ)
risk. Gender and pre- and postvaccination gpELISA titers demonstrated moderate predic-
tive ability for HZ occurrence in 50-59-year-olds, with similar accuracy for vaccine and
placebo recipients. The findings supported the hypothesis that gpELISA titer is a statistical,
rather than mechanistic, correlate of protection against HZ.

3. Methodology

This section highlights the data and methodology adopted in this study. Figure 2
presents the roadmap implemented throughout the study.

3.1. Data Collection and Description

This study employed digital imaging datasets comprising two classes: chickenpox and
shingles lesions. The chickenpox dataset consisted of 640 original images obtained through
web scraping, as previously used in other studies as shown in Table 1. To ensure image
quality, a rigorous screening process was conducted, eliminating blurry, low-detail, and
subpar images. Only unique and visually clear images were retained. The shingles dataset
was obtained by manually searching publicly available case reports on the internet. Low-
resolution and low-quality images were excluded, focusing on higher-resolution images
that provided better visual information and clarity. Preference was given to images with
minimal compression artifacts, as optimized compression artifacts can adversely affect
image quality and subsequent analysis. Images without a distinctive label of chickenpox
were discarded. All low-resolution and low-quality images were removed, leaving us
with only higher-resolution images that provided clearer visual information, better detail,
and clarity. Furthermore, we selected only the images with minimal compression artifacts
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whenever possible. The presence of optimized compression artifacts can degrade image
quality and affect subsequent analysis. Additionally, images with no distinctive label of
chickenpox were discarded. All images were resized while maintaining their aspect ratio
and cropped to the region of interest. Identifying features were removed from chickenpox
and shingle-cropped images to protect patient privacy. By considering these additional
processes and characteristics, we were able to enhance the quality and usability of the
scraped images, ensuring that the obtained skin lesion images of chickenpox and shingles
consisted of optimal images for the intended purposes.

O
-
e

Figure 2. A complete methodology of the study.

Table 1. Distribution of data.

Distribution after Un-augmented Images

Reference Class Class Distribution Augmentation Reserved as Test Dataset Label
[4] Chickenpox 640 10,000 50 0
[12] Shingles 622 10,000 50 1

3.2. Data Preprocessing and Augmentation

Image preprocessing enhances fine details and improves key features by removing
unwanted variations [19]. Properly preprocessed images improve segmentation and classi-
fication, as all algorithms are susceptible to noise. Image preprocessing techniques can be
classified based on their target pixel region size. These techniques operate on neighboring
pixels of the sub-image to eliminate distortion and noise and improve images. The poor
quality of cameras, environmental factors, and limited user interface can prevent digital
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skin images from becoming distorted, resulting in a loss of visual information and pro-
cessing difficulties [20]. In this study, image contrast enhancement was used to improve
the display of the region of interest in two datasets. The original chickenpox and shin-
gles datasets were augmented using the Python Imaging Library (PIL) version 9.2.0 and
Scikit-image library version 0.19.3 to increase the number of images and add variability
to the data. This resulted in 10,000 augmented images each for chickenpox and shingles
lesions, while 50 images each were reserved as test data without any augmentation. These
un-augmented images were used to evaluate the model’s performance on new skin lesion
images, preventing overfitting and knowledge leakage.

Table 2 shows the augmentation techniques used in this study, including positional
and color augmentation techniques to maintain the originality of the data, with ranges
chosen based on previous experience augmenting data. The techniques included shear
range, zoom range, rotation, zero-phase component analysis (ZCA) whitening, image shift,
and flipping. These techniques were used to improve model prediction accuracy, prevent
overfitting, and create variability and flexibility in the training data [21]. However, there
are limitations to the technique, including the need for evaluation systems for quality
checks and the difficulty of creating new synthetic data using advanced techniques such as
generative adversarial networks (GANSs) [22].

Table 2. Image augmentation settings.

S/N Augmentation Settings Range
1 Shear range 0.2
2 Zoom range 0.2
3 Rotation range 0.2
4 ZCA whitening False
5 Width shift range 0.3
6 Height shift range 0.3
7 Channel shift range 0.2
8 Vertical flip True
9 Horizontal flip True

The encoder and decoder of deep neural networks process and reconstruct the image.
Image denoising is also an essential process to remove noise from images, which can
cause a loss of information. To address this, a deep CNN auto-encoder was adopted to
reconstruct the input image by learning useful features and data representations through
an unsupervised learning process.

3.3. Hyperparameter Optimization

Optimizing hyperparameters is crucial for our novel model, as it directly influences its
performance and generalization. Hyperparameters are configurations set by the researcher
that significantly impact the model’s behavior, convergence speed, regularization, and ca-
pacity. While we kept the hyperparameters of established models unchanged, we employed
the grid-search optimization technique to optimize our novel model’s hyperparameters.
Grid-search optimization involves exhaustively searching through predefined hyperpa-
rameter combinations to identify the best configuration that maximizes performance. We
explored four key hyperparameters: batch size, epochs, optimizer choice, and learning rate.
The batch size determines the number of samples processed before weight updates, ranging
from 10 to 100. The number of epochs defines the passes through the dataset, varying from
30 to 100.

To explore different optimization algorithms, we considered seven optimizers: SGD,
RMSProp, Adagrad, Adadelta, Adam, Adamax, and Nadam. The learning rate, tested at
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values of 0.0001, 0.001, 0.01, 0.1, and 0.2, was also varied. Through grid-search optimiza-
tion, we found that a batch size of 32, 50 epochs, Adam optimizer, and learning rate of
0.0001 yielded optimal performance for our MSHA model. These hyperparameter settings
were determined based on their ability to maximize performance for our specific task
while avoiding such issues as overfitting or slow convergence. The grid-search technique
systematically explored the hyperparameter space and allowed us to evaluate multiple
combinations, ensuring the selection of the best configuration for our novel model.

By employing this approach, we optimized our model’s hyperparameters and ob-
tained the optimal set of configurations, enhancing its performance and suitability for our
specific problem.

3.4. MSHA Model

The MSHA is a novel multi-modal contextual fusion CNN model. It got its name by
combining mixed-scale dense convolution, self-attention mechanism, hierarchical feature
fusion, and attention-based contextual information techniques in a single architecture.
The MSHA model was employed in this study to showcase the capabilities of a CNN
model that was developed from scratch, incorporating unique modifications tailored to
the specific data and problem at hand to achieve optimal performance. The model was
carefully designed, starting with a simple CNN architecture and gradually enhancing it by
adding convolution, pooling, and dense layers, while also fine-tuning the hyperparame-
ters. Throughout the hyperparameter tuning process, precautions were taken to prevent
overfitting and underfitting, ensuring the model’s ability to generalize well to unseen data.
This is evident in the model’s performance when compared to a state-of-the-art pre-trained
model evaluated in this study.

The MSHA model is specifically designed to handle both image classification and
object detection tasks. It consists of dedicated components for feature extraction, object
detection using the region proposal network (RPN), and final classification. The detec-
tion method of classification, which derives output information from a single image, was
adopted using a 2-dimensional (2-D) CNN architecture. The network comprises four con-
volutional and three max-pooling layers applied at specific points within the architecture
as shown in Figure 3. The kernel sizes of these layers are 3 x 3 and 2 x 2, respectively.
Following the convolutional layers, a series of 5 fully connected layers with different units
(128, 64, 32, 16, and 1) are utilized to enable high-level reasoning before reaching the final
sigmoid classifier layer.

[Real FC2 FC3 FC4
—— [ i R S S Y Y G SR
a a a Chickenpox
o o o =l
3 8| 3 a1 % § 3 3| | ¢ 3 g /-
g gl & gl = 5 g g g g g \
B3 B3 B3 T [a} &
< o < (9] < =] &
= = = Shingles
-~/ N | ~— ~— ~— l;} — ~—
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Figure 3. The basic architecture of the MSHA model.

During the training process, the Adam optimizer, a gradient-based stochastic opti-
mizer, was employed with a batch size of 32. Dropout regularization was applied at a rate
of 25% on the convolutional and fully connected layers to prevent overfitting. The binary
cross-entropy loss function was used to compare the predicted probabilities with the actual
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class outputs (0 or 1). The rectified linear activation function (ReLU) was selected as the
activation function throughout the network before the final sigmoid activation function.
To prevent overfitting, a validation dataset extracted from the training set was used to
monitor the model’s performance, and early stopping was implemented to halt training
if no improvement was observed. Additionally, dropout regularization was applied after
the third max-pooling layer and in the dense layer to simplify and regularize the neural
network, reducing overfitting.

By providing these comprehensive details, we ensure transparency and demonstrate
the rigor of our approach in developing and training the MSHA model.

Our model stands out as a unique and novel approach in several respects. Firstly,
it incorporates additional features, such as batch normalization layers, dropout layers,
residual connections, and attention mechanisms. These additions contribute to improved
training stability, regularization against overfitting, enhanced gradient flow, and the ability
to capture long-range dependencies. Secondly, our model is designed to handle both image
classification and object detection tasks within a single unified framework. It consists of
components dedicated to feature extraction, object detection using the region proposal
network (RPN), and final classification. This multi-purpose architecture offers versatility
and efficiency, eliminating the need for separate models for different tasks. Moreover,
the attention mechanism in our model allows for capturing dependencies across spatial
locations, enabling the model to focus on relevant image regions and understand contextual
relationships. This attention mechanism enhances performance in both image classification
and object detection tasks. Additionally, combining convolutional layers and residual
connections empowers the model to learn complex image features and structures effectively.
The convolutional layers capture hierarchical features, while residual connections facilitate
gradient flow and enable the training of deeper models. Lastly, our model’s flexibility and
modifiability make it a valuable tool for researchers and practitioners.

4. Result and Discussion

This study conducted the model training and evaluation using the Keras package and
Python programming language in the Jupyter Notebook environment. The preprocessed
data were divided into training and test sets and fed into the novel MSHA model. The
model was validated using a subset of the training data and trained using 50 epochs. Two
callbacks, EarlyStopping and ReduceLROnPlateau, were implemented to improve the
training process, optimize model performance, and prevent overfitting. EarlyStopping
monitors the validation loss and stops the training process early if the loss does not
improve for a certain number of epochs [23]. In our case, we selected the validation loss.
The ReduceLROnPlateau callback reduces the learning rate when the validation loss does
not improve for a certain number of epochs [24]. In this case, patience = 3.

It is crucial to determine whether the modifications introduced are indeed tailored
to the problem at hand. To ensure this, we carefully explored the dataset’s characteristics,
including the total number of images, class distribution, image resolutions, and color spaces.
Additionally, to ensure robust model performance, we applied rigorous data preprocess-
ing techniques, such as image resizing, normalization, and data augmentation, to handle
variations in image quality and content. Moreover, we conducted a class-specific analysis
to identify the unique challenges presented by chickenpox and shingles detection, which
guided the integration of specialized techniques into our model architecture. Through this
analysis, we gained critical insights into the dataset’s properties and intricacies, leading to
the tailored combination and optimization of elements such as batch normalization layers,
dropout layers, residual connections, and attention mechanisms. Our model’s architec-
ture was systematically fine-tuned to accommodate these unique challenges, resulting in
improved performance and robustness. By tailoring the model to the specific dataset, we
ensured that it can effectively generalize to unseen data and maintain high accuracy across
diverse conditions.
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During the hyperparameter tuning process, we evaluated the performance of the
MSHA model in classification tasks, as we are currently conducting another study on its ef-
fectiveness for object detection tasks. Our experimental results unequivocally demonstrate
that the integration of image classification and object detection components in the unified
framework does not compromise the model’s performance. This finding highlights the
effectiveness and efficiency of our unified approach, eliminating the need for separate mod-
els and reducing computational overhead while maintaining high accuracy and localization
capabilities. By carefully fine-tuning the model’s components and incorporating adaptive
learning rates, we ensured that the model effectively learns discriminative features for
image classification while retaining its precise object localization capabilities for detection.

4.1. Performance Evaluation Metrics

Performance evaluation metrics are crucial in developing, testing, and deploying
machine learning models, allowing for more accurate and effective Al solutions [25]. They
provide a way to quantitatively measure accuracy, precision, sensitivity, specificity, and
other aspects of the model’s performance. With performance evaluation metrics, it is possi-
ble to determine how well a model performs or compare different models” performance.
The use of performance evaluation metrics also helps to improve the transparency and
interpretability of machine learning models, which is essential for building trust in these
systems [26].

In this study, the performance of the novel MSHA model was evaluated using perfor-
mance evaluation metrics. The results indicated that the MSHA model was highly accurate
in classifying digital images of skin lesions of chickenpox and shingles disease, with a
precision of 96% for chickenpox and 94% for shingles, as shown in Table 3. The model’s
high precision score indicates it could correctly identify the target class for most cases.
Moreover, the sensitivity score of 94% for chickenpox and 96% for shingles show that the
model can correctly identify all positive cases. This indicates a highly sensitive model with
promising clinical significance in accurately detecting chickenpox and shingles disease
in skin lesions. Subsequently, the specificity scores of 98% for chickenpox and 94% for
shingles showed that the model can correctly identify all negative cases. This indicates
that the model is highly specific and can accurately detect when the disease is absent. The
F1 score of 95% for chickenpox and shingles indicates the model’s potential to balance
precision and sensitivity efficiently. This means the model can identify the positive cases
(chickenpox and shingles lesions) while correctly minimizing the false positives. Finally,
the accuracy score of 95% indicates that the model can correctly classify the skin lesions of
chickenpox and shingles with a high degree of accuracy.

Table 3. Performance evaluation metrics for the MSHA model.

Precision Sensitivity Specificity F1 Score Accuracy
% % % % %
Chickenpox 96 94 98 95
95
Shingles 94 96 94 95

The high performance of the MSHA model in classifying these skin diseases has
significant clinical implications in providing rapid and accurate diagnosis, particularly in
regions with limited access to specialized medical care and facilities. The model can aid
dermatologists and health-care providers in the early detection and diagnosis of these skin
diseases, leading to better treatment outcomes and improved patient care.

4.2. Confusion Metrics

A confusion matrix is a statistical tool commonly used to evaluate the performance of
machine learning models. We implemented it to help determine how well our model can
classify all the images into the two classes. The matrix presents the number of true-positive
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(TP), true-negative (TN), false-positive (FP), and false-negative (FN) predictions made by
the model. A confusion matrix is essential for evaluating the accuracy and effectiveness
of models, as it provides a clear visual representation of the model’s performance. By
examining the matrix, the strengths and weaknesses of the model can be identified, and
adequate improvements can be made to ensure more accurate and reliable diagnoses [27].

The MSHA model produced excellent results, as evidenced by the confusion matrix.
The model correctly predicted all 42 instances (TP) for chickenpox, with only 8 images
misclassified as shingles (FP), as shown in Figure 4. This result indicates that the model is
highly accurate and reliable for diagnosing chickenpox. Additionally, the model correctly
classified 46 instances (TN) for shingles, but misclassifies 4 shingles lesion images (FN). The
confusion matrix results for the MSHA model in classifying digital skin images of human
subjects into the two classes are highly significant for medical diagnosis.

Confusion Matrix of the MSHA Maodel

Chickenpox

Actual

Shingle

1 ]
Chickenpox Shingle

Predicted
Figure 4. The confusion matrix of the MSHA model.

4.3. Learning Curve

Model accuracy and model loss learning curves are important tools for evaluating the
performance of deep learning models. They provide information about the accuracy and
loss of a model over time during the training process, which can help identify potential
issues with the model’s performance and guide improvements to the model [28]. The
model accuracy learning curve shows the model’s accuracy on the training and validation
datasets over time. It can reveal whether the model is overfitting or underfitting the training
data [29]. An overfit model will have high accuracy on the training data but low accuracy
on the validation data, indicating that it needs to generalize better to new and unseen
data [30]. An underfit model will have low accuracy on both the training and validation
data, indicating that it needs to learn the patterns in the data better [31]. Monitoring the
model accuracy learning curve makes it possible to identify the optimal number of epochs
to train the model and ensure that it is not overfitting or underfitting.

The MSHA model produced a good fit and was able to learn the underlying patterns
in the data without overfitting or underfitting. The increased training accuracy over the
epochs indicated that the model was learning and improving. As shown in Figure 5, the
training started slowly between epochs 0 to 3 before an upward and steady increase to
produce an accuracy of 0.80 to 0.95 between epochs 4-32. There was a slightly irregular
decrease at epoch 33 before a continuous upward trend up to a training accuracy of 0.96. As
important as the training accuracy is, it is important to evaluate the model’s performance on
the validation data, which represents new, unseen data, to ensure that the model is balanced
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with the training data. Similarly, to the training accuracy, the validation accuracy started
slowly and showed an irregular increase until it plateaued at a validation accuracy of 0.96 at
epoch 35, indicating that further training may not improve the model’s performance on new
data. This temporal irregularity experienced at epoch 33 can be attributed to overfitting,
which was eventually addressed by measures such as regularization, early stopping, and
data augmentation. Another reason will be the impact of dataset variations. The specific
samples in the validation set at epoch 33 may have introduced challenges or discrepancies
that were not adequately captured during training, resulting in a temporary increase in
validation loss. It is also worth considering the impact of learning rate decay. The learning
rate decayed too rapidly or aggressively at epoch 33, making the model fail to achieve
sufficient weight updates, causing a disruption in the learning curve. Preventing deviations
in a learning curve does not indicate total stoppage of deviation, as no learning curve is
without deviation. Rather, the goal is often to minimize deviations and improve the overall
performance and stability of the trained model.
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Figure 5. MSHA model accuracy and loss.

The model loss learning curve shows the change in the loss function of a model as
it trains over multiple epochs. The training loss decreases over time as the model learns
to fit the data better, which is a good sign. The training loss started at 0.64 at epoch 1
and gradually decreased in a uniform manner to 0.07 at epoch 41. This indicates that
the model improves its ability to predict the correct output with less error. On the other
hand, the validation loss initially decreased from epoch 1 to 11 with consistent fluctuation
between epoch 14-34 before stabilizing at epoch 35 and maintaining a uniform decrease.
The validation loss measures the difference between the predicted and actual outputs on
a data set that the model has not seen during training. Thus, it estimates the model’s
performance on new data. A good fit is achieved when the model’s low training and
validation losses have stabilized over several epochs. Low training and high validation
loss indicate overfitting, while high values of both losses may suggest underfitting [24].
Therefore, analyzing the model accuracy and model loss learning curves is crucial in
evaluating a model’s performance and deciding how to improve it.

4.4. Receiver-Operating Characteristic (ROC) Curve

The area under the ROC curve (AUC ROC) is an important supervised learning metric,
especially in binary classification problems that provide a graphical representation of
the diagnostic performance of a classification model [32]. This metric comprehensively
measures a classifier’s performance across all possible classification thresholds. The AUC
ROC considers the true-positive rate (sensitivity) and the true-negative rate (specificity).
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It provides a single scalar value that summarizes the classifier’s ability to discriminate
between chickenpox and shingles lesions. This ensures that a higher AUC ROC implies
better model performance. While the AUC and ROC curves are closely related, they
represent different concepts. The ROC is a curve plot that represents the performance of
a binary classification model as its discrimination threshold is varied [33]. The AUC, on
the other hand, is a numerical value that quantifies the overall performance of a binary
classification model based on its ROC curve [34]. The AUC value quantifies the overall
discriminatory power of the model, with a value of 1 representing perfect classification and
0.5 indicating random chance.

A ROC curve with an AUC of 0.99, as shown in Figure 6, suggests that the MSHA
(model for skin lesion analysis) has an extremely high discriminatory capacity for dif-
ferentiating between chickenpox and shingles lesions. This implies that the model can
effectively separate true-positive cases (correctly identified lesions) from false-positive
cases (incorrectly identified lesions) with a very high level of accuracy. Such a high AUC
value indicates that the model has exceptional performance in correctly classifying the skin
lesions associated with chickenpox and shingles. This signifies that the MSHA model has
the potential to provide reliable and accurate diagnostic support for dermatologists and
other healthcare professionals, especially at the initial point of diagnosis in distinguishing
between chickenpox and shingles lesions. This high discriminatory power can aid in mak-
ing precise diagnoses, guiding appropriate treatment decisions, and potentially reducing
misdiagnoses or unnecessary procedures [34].

Receiver Operating Characteristic (ROC) Curve
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Figure 6. ROC curve of the MSHA model.

4.5. Comparative Evaluation with State-of-Art Transfer Learning Techniques

Comparing our model with other state-of-the-art transfer learning techniques such as
ResNet50, VGG16, VGG19, InceptonV3, and ViT (Vision Transformer) provides a bench-
mark for evaluation, assesses generalizability, contributes to advancements in the field,
and aids decision-making for practical applications. Furthermore, these models are well-
known and widely used transfer learning techniques in computer vision with remarkable
performance and significant contributions to image recognition tasks. By comparing the
MSHA model with these well-established models, we can effectively assess its performance,
competitiveness, and potential superiority. This comparison will help position the novel
MSHA model within the context of existing state-of-the-art approaches and establish its
credibility and relevance in computer vision.



Processes 2023, 11, 2268

13 of 17

Similarly, to the implementation of the MSHA model, all the state-of-art transfer
learning techniques used were implemented on the Jupyter Notebook. The last layers
were frozen during the fine-tuning process to preserve learned representations and prevent
them from being modified or overwritten, allowing the model to focus on adapting its
parameters to the new task at hand and reducing the number of parameters that need to be
updated, making the training process faster and more efficient. Three dense layers with
the ReLu activation function were adopted before the final output layer with the sigmoid
activation function. Finally, the model was trained using 50 epochs, while callbacks were
adopted to prevent overfitting.

The ResNet50 is a convolutional neural network (CNN) architecture known for its
deep residual learning framework. It addresses the problem of vanishing gradients in very
deep networks, allowing for the training of extremely deep models. It has succeeded in
various image classification challenges and is renowned for capturing intricate features
from images [35]. VGG16 and VGG19 are deep CNN architectures developed by the Visual
Geometry Group (VGG) at the University of Oxford. These models are characterized by
their uniform architecture, consisting of multiple stacked convolutional and fully connected
layers. VGG16 and VGG19 are known for their excellent performance on large-scale image
classification tasks, exhibiting high accuracy due to their deep and fine-grained feature
extraction capabilities [36]. The InceptionV3, also known as GoogleNet, introduced the con-
cept of inception modules, efficiently capturing multi-scale features by employing parallel
convolutions at different spatial resolutions. This architecture reduces the computational
complexity while maintaining high accuracy. InceptionV3 has been widely used in various
image recognition tasks and has demonstrated excellent object recognition and localization
performance [37]. Finally, the ViT (Vision Transformer) represents a recent breakthrough
in computer vision by applying transformer architectures, originally designed for natural
language processing, to image classification. ViT models use self-attention mechanisms to
capture global and local relationships within an image. This approach eliminates the need
for handcrafted feature extraction and demonstrates impressive performance on various
image classification benchmarks.

The comparative analysis of the novel MSHA model with state-of-the-art models
reveals significant variation in performance and provides differing clinical implications. The
novel MSHA model significantly outperformed other models with improved performance.
Even though the MSHA model achieves identical levels of accuracy, precision, sensitivity,
and F1 score as the InceptionV3 model, at 95.0%, as shown in Table 4, it exhibits a higher
level of specificity at 96.0% compared to InceptionV3’s 95.2%. This suggests that the
MSHA model performs slightly better in correctly identifying shingles lesions, which is
valuable in minimizing false-positive results. This is important to help avoid unnecessary
interventions or treatments for individuals without shingles lesions. The MSHA model also
demonstrated a good balance of high true positives, true negatives, and low false positives
and false negatives, contributing to its superior overall performance. The lowest loss value
of 0.104 achieved by the MSHA model indicates that the model minimized the discrepancy
between predicted and actual values during training, resulting in a better understanding of
the patterns in the data and improved performance. The ResNet50 model had the highest
loss value of 0.537, suggesting that it had a higher level of uncertainty and made less
accurate predictions. Additionally, the higher loss indicates the model’s struggle to capture
the intricate patterns and features associated with chickenpox and shingles lesions. The
loss metric quantitatively measures the model’s ability to minimize errors and accurately
predict the presence or absence of chickenpox and shingles skin lesions. Models with lower
loss values are generally more reliable and can provide valuable support to dermatologists
in effectively diagnosing chickenpox and shingles.

The superior performance of the novel MSHA model can be attributed to several fac-
tors, such as its unique architectural design, effective training strategy, and better capacity
to learn and represent the relevant features in the skin lesion images. The incorporation
of specific design choices, such as the mixed-scale dense convolution layer, self-attention
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mechanism, hierarchical feature fusion, and attention-based contextual information, en-
abled the MSHA model to capture and extract relevant features more effectively for skin
lesion classification. The MSHA model’s architecture seems better suited to learning and
representing the intricate patterns and structures in the skin lesion images associated with
chickenpox and shingles. Additionally, the MSHA model was trained using optimized con-
figuration and effective training strategies by carefully selecting hyperparameters such as
learning rate, batch size, and regularization techniques. These configurations will facilitate
faster convergence and help the model find a more optimal solution.

Table 4. Comparative analysis of the novel MSHA and other state-of-the-art models.

Models Precision  Sensitivity  Specificity F1 Score TP FP TN EN AUC Loss Accuracy
% % % % %

MSHA 95.0 95.0 96.0 95.0 47 3 48 2 0.99 0.104 95.0
ResNet50 73.0 72.0 79.5 72.0 40 10 32 18 0.82 0.537 72.0
VGG16 89.0 88.0 88.0 88.0 48 2 40 10 0.96 0.295 88.0
VGG19 86.0 86.0 88.0 86.0 44 6 42 8 0.92 0.416 86.0
InceptionV3 95.0 95.0 95.2 95.0 47 3 48 2 0.99 0.149 95.0
ViT 94.0 94.0 93.9 94.0 50 0 43 7 1.00 0.213 93.0

Despite ResNet50 being a sophisticated model known for its deep architecture and skip
connections, it exhibited the poorest performance compared to other models. The lower
precision of 73.0% and F1 score of 72.0% suggest that ResNet50 had a higher rate of false
positives and false negatives, resulting in suboptimal predictions. This could result from
the unique characteristics of the data used and the architectural complexity of the ResNet50
model, which may not be ideal for detecting digital skin lesions associated with chickenpox
and shingles. The VGG19 model, designed as a more sophisticated version of VGG16,
achieved slightly lower performance, with a precision of 86.0% and an F1 score of 86.0%
compared to VGG16's 89.0% and 88.0%, respectively. This difference can also be attributed
to factors such as increased model complexity in the case of the VGG19 model leading to
insufficient representation of the specific features relevant to the classification task.

After extensive evaluation, our findings revealed that the integration of batch nor-
malization layers, dropout layers, residual connections, and attention mechanisms in the
MSHA model resulted in several key advantages. Firstly, the combination led to improved
training stability, as evidenced by faster convergence and reduced training loss fluctuations,
as shown in Figure 7. Secondly, the regularization effects of the integrated techniques effec-
tively mitigated overfitting, enhancing the model’s generalization capabilities on unseen
data. Furthermore, the incorporation of attention mechanisms significantly contributed
to capturing long-range dependencies within the images, allowing the model to focus on
relevant regions critical for accurate detection. This attention mechanism is particularly
beneficial in detecting subtle and localized patterns associated with chickenpox and shin-
gles. Comparing the MSHA model’s performance with existing models, we observed a
substantial improvement in accuracy, achieving state-of-the-art results in image classifica-
tion tasks. These improvements demonstrate that the careful and unique combination of
techniques in our model does indeed yield genuinely novel outcomes, setting it apart from
conventional approaches in the field.
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5. Conclusions

This study introduced the MSHA model for detecting, classifying, and diagnosing
chickenpox and shingles lesions. The model demonstrated impressive performance, as
indicated by its learning curves, ROC curve, and comparative evaluation with state-of-the-
art transfer learning techniques. The MSHA model holds promise as a valuable diagnostic
support tool for dermatologists and health-care professionals, aiding in precise diagnoses
and treatment decisions and potentially reducing misdiagnoses or unnecessary procedures
in identifying chickenpox and shingles skin lesions.
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