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Abstract: The paper presents a novel charging load prediction model for electric vehicles that takes
into account traffic conditions and ambient temperature, which are often overlooked in conventional
EV load prediction models. Additionally, the paper investigates the impact of disordered charging
on distribution networks. Firstly, the paper creates a traffic road network topology and speed-flow
model to accurately simulate the driving status of EVs on real road networks. Next, we calculate the
electric vehicle power consumption per unit kilometer by considering the effects of temperature and
vehicle speed on electricity consumption. Then, we combine the vehicle’s main parameters to create
a single electric vehicle charging model, use the Monte Carlo method to simulate electric vehicle
travel behavior and charging, and obtain the spatial and temporal distribution of total charging load.
Finally, the actual traffic road network and typical distribution network in northern China are used
to analyze charging load forecast estimates for each typical functional area under real vehicle–road
circumstances. The results show that the charging load demand in different areas has obvious spatial
and temporal distribution characteristics and differences, and traffic conditions and temperature
factors have a significant impact on electric vehicle charging load.

Keywords: electric vehicles; traffic conditions; Monte Carlo method; spatio-temporal distribution;
load forecasting

1. Introduction

In recent years, with the increasingly stringent environmental requirements in coun-
tries, the electrification of transportation has been seen as an effective measure to achieve
energy savings, emission reduction, and carbon reduction [1]. Electric vehicles are an
important vehicle for promoting the transformation and upgrading of vehicle electrification
in transportation systems [2]. By the end of 2022, the ownership of pure electric vehicles in
China reached 10.45 million [3]. With the large-scale promotion and application in China, a
large number of electric vehicles are linked to the power grid for charging, which not only
raises the total demand for electricity but also intensifies the load peak-to-valley difference
and has a more adverse effect on the safe and stable operation of the power distribution
network [4]. Moreover, the charging demand of electric vehicles is also randomly influ-
enced by random driving behavior characteristics, which makes the charging requirements
of electric vehicles different from other loads, and the traditional load forecasting model
is no longer applicable to the charging requirements of the electric vehicle [5]. The load
forecasting model is not only the basis for assessing the ability of distribution networks
to accept the electric vehicle but also a necessary prerequisite for promoting research on
charging station planning and vehicle–road network integration and interaction, and it is
also of great significance for the operation and construction of future power systems [6].
Based on the above reasons, it is necessary to establish a model that can precisely describe
the spatio-temporal distribution characteristics of the electric vehicle charging demand.
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On the basis of the survey data of the National Household Vehicle Travel Survey
(NHTS) released by the United States [7], assuming that electric cars have the same travel
pattern as fuel cars, the fitted curves of departure time, charging time, and daily driving
distance are obtained. In [8,9], the Monte Carlo random sampling method is used to
simulate the charging load distribution of electric vehicles. In [10,11], the spatial and
temporal distribution characteristics of charging loads of different types of EVs in different
charging areas and on different typical days are studied according to the scale of EVs
and the development level of charging facilities in China and taking into account the
randomness of EV movements. In addition, the impact of EV user behavior decisions
and real-time charging tariffs on the spatial and temporal distribution of charging load
is considered in [12]. In [13], a coupled system considering the “vehicle-charging station-
distribution network” is constructed, and the spatio-temporal distribution of EV charging
load is simulated by the source–end matrix, taking into account the coupling of EVs with
the transportation network and distribution network. In [14], a prediction model of the
spatial and temporal distribution of EV charging load is proposed based on the law of
gravity, and the spatial and temporal distribution of EV charging load under the fusion
of “vehicle-road-station-grid” multi-source information is simulated. Notwithstanding
the above-mentioned research, which constructs a prediction model of EV charging load,
it ignores the stochastic characteristics of the EV driving process and charging process
and sets the characteristic parameters of EV charging location and charging duration
as fixed values, which cannot truly reflect the specific driving behavior and charging
process of EVs. To solve this problem, [15,16] proposes a spatial–temporal model of electric
vehicles based on stochastic travel chains and Markov decision theory. In [17], the spatio-
temporal distribution of EV charging demand is predicted by considering different dates
and functional areas with the inclusion of random travel chains. Considering multiple
charging behaviors and different destinations, a Monte Carlo approach is introduced to
simulate the driving and charging behavior of electric vehicles in [18]. Despite the fact that
the electric vehicle load forecasting model proposed has a certain effectiveness in the above
study, the impact of traffic jams, ambient temperature, and other factors on the driving
process of electric vehicles is not considered in predicting the charging load of electric
vehicles, and the charging load of electric vehicles cannot be accurately predicted.

According to the analysis above, electric vehicles are closely coupled to the trans-
portation system and the distribution network. For the sake of describing the travel and
charging demand characteristics of the electric vehicle more realistically in the dimensions
of time and space and making the emulation results more precise, the coupling relation-
ship between traffic flow and electric current, as well as the influence of factors such as
traffic jams and ambient temperature, on the driving process and charging process of the
electric vehicle needs to be sufficiently studied. According to the above context, the paper
proposes a spatio-temporal distribution prediction model for electric vehicle charging load
considering road information and environmental temperature.

Compared with past studies, the contributions of this paper include the following:

(1) This study introduces the effects of traffic conditions and ambient temperature on
EV electricity consumption into the field of EV charging load forecasting, which
solves the problem of these two important factors of traffic conditions and ambient
temperature being ignored in the modeling process of load forecasting and further
improves the accuracy of electric vehicle charging load forecasting compared with
previous modeling methods.

(2) Proposed the shortest travel time as the goal of the path planning algorithm, according
to the current driving section of the road class and traffic density dynamic planning
route, so that the user can effectively avoid the shortest distance but the road speed
limit is low and the road conditions for the congested road, more in line with the
actual vehicle driving law.

(3) The spatial–temporal distribution characteristics of electric vehicle charging load and
its impact on the distribution network are analyzed to provide a basis for guiding
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the orderly charging of electric vehicles and the rational planning of the distribution
network in the future.

2. Electric Vehicle Driving Characteristics Modeling

Electric vehicles have the dual characteristics of traffic and mobile load and the driving
characteristics of electric vehicles, and their charge–discharge behavior links the urban
distribution network and transportation network together; the model of the coupled
“vehicle-road-network” system is shown in Figure 1. The topology and traffic saturation of
the urban road network directly affect the driving speed of electric vehicles and motorists’
path decisions, which, in turn, affect the spatial and temporal distribution of charging loads
and the state of the distribution network; therefore, it can be seen that the detailed portrayal
of the trip characteristics of electric vehicles is the foundation for the establishment of the
“vehicle-road-network” coupling system.
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2.1. Initial Travel Time

The initial travel time of private cars in a day is closely related to the spatio-temporal
distribution of charging demand for the EV. Applying the statistical results of the 2017
NHTS, and using data fitting methods from study [19], the starting time of private car
driving behavior in a day is extracted to study the travel characteristics of electric vehicles.
The probability density function for the initial travel time of electric private cars can be
calculated using real data. This probability distribution is then fitted, and it is discovered
that the probability density function of the consumer’s initial travel time is represented by
Equation (1):

f (x1) =
1

x1σ1
√

2π
exp

[
− (x1 − µ1)

2

2σ1
2

]
(1)

In Equation (1), µ1 is the expected value of the initial trip time, and σ1 is the initial
travel time’s standard deviation fitted with µ1 = 7.89 and σ1 = 1.96.
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2.2. Driving Distance

The charging frequency and duration required for each charge for EV customers are
closely related to driving distance, and there are obvious variances in driving distance
across EV users due to various car habits. Furthermore, the driving distances of various
types of electric vehicles vary greatly. Private automobile travel areas are primarily centered
in cities, where cars are primarily used for commuting and amusement, and driving lengths
are quite short and regular. As a result, the primary research object for this study is electric
private cars. According to the 2017 NHTS statistics, the probability density function for the
distance driven by electric private cars roughly fits a lognormal distribution, as shown in
Equation (2):

f (x2) =
1

x2σ2
√

2π
exp

[
− (ln x2 − µ2)

2

2σ22

]
(2)

In Equation (2), µ2 is the driving distance’s expected value, and σ2 is the driving
distance’s standard deviation fitted with µ2 = 3.68 and σ2 = 0.88.

2.3. Parking Time

The duration of EV consumers’ stays at a destination location is highly tied to the
function of the area in which the destination is located. When a user travels to a work
area, the user’s stay is longer due to the consumer’s work needs; when the user travels
to a commercial area for entertainment and consumption, the consumer’s stay is shorter;
and when the consumer travels to a residential area, the consumer’s stay is also longer
due to the consumer’s home life needs. By fitting the statistical results of the 2017 NHTS,
the dwell time t of private cars in different areas is discovered to obey distinct types of
generalized extreme value distributions. The generalized extreme value distribution is
used to mathematically model the probability density of parking time in working areas, as
represented in Equation (3):{

z1 = t−438.455
164.506

f (z1) =
1

164.506 exp
[
−(1− 0.234z1)

4.27
]
× (1− 0.234z1)

3.27 (3)

The Weibull distribution is used to mathematically model the probability density of
parking time in residential areas, as represented in Equation (4):{

z2 = t
f (z2) =

1.153
195.787 exp

[
−( z2

195.787 )
1.153

]
× ( z2

195.787 )
0.153 (4)

The generalized extreme value distribution is used to mathematically model the
probability density of parking time in commercial areas, as represented in Equation (5):{

z3 = t−68.520
41.761

f (z3) =
1

41.761 exp
[
−(1 + 0.657z3)

−1.52
]
× (1 + 0.657z3)

−2.52 (5)

2.4. Initial State of Charge

At present, the range of electric vehicle batteries in China can meet the consumer’s
urban travel needs for more than two days, so the consumer’s battery is not fully charged
when he sets off initially, and the initial probability density function of SOC (state of charge)
is as shown in Equation (6):

f (S0) =

{
4.352S0

3.352, 0 < S0 ≤ 1
0, S0 = 0

(6)

In Equation (6), S0 is the initial battery SOC of the electric vehicle.
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2.5. Travel Chain Model

Travel chains are used to describe the space movement process of electric vehicles
within a day, including travel origins and destinations, because electric vehicles have
spatial movement characteristics, and the spatial and temporal distribution of charging
loads is affected by their uncertain movement process. Electric private automobiles travel to
destinations with a high degree of regularity, and travel chains can be used to characterize
this process. According to the functional differences of the destinations, they can be divided
into three categories: the residential area (R), the working area (W), and the commercial
area (C). These different types of areas also provide electric vehicle charging services. The
three basic travel chain types discussed in this paper are R–C–R, R–W–R, and R–W–C–R,
as shown in Figure 2.
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Figure 2. Different forms of travel chain structures.

The share of various travel chains for daily activities using private vehicles, as reported
by the 2017 NHTS, is displayed in Table 1.

Table 1. Percentage of different forms of travel chain.

Trip Chain Form Specific Gravity/%

R−C− R 23.1
R−W− R 52.8

R−W−C− R 24.1

3. Traffic Network and Distribution Network Modeling
3.1. Traffic Network Topology

In order to quantitatively explain the road structure in this paper, a graph theory
approach is employed to model the two-way traffic network. The topology of the traffic
network is shown by E(G). A(i,j) is the set of road weights of the traffic network in E(G)
used to describe the connection relationship between the nodes in E(G); the relationship
between E(G) and A(i,j) is as shown in Equation (7):

E(G) = [A(i, j)] (7)

The specific values of the traffic network road weights A(i,j) are as shown in Equation (8):

A(i, j) =


lij, (i, j) ∈ E(G)
0, i = j
inf, (i, j) /∈ E(G)

(8)
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In Equation (8), i and j both denote the nodes of E(G) in the traffic road network; lij
denotes the distance between nodes i and j in E(G); and inf denotes that the two road
network nodes concerned are not adjacent to each other.

As an example, taking the traffic network depicted in Figure 3, the intersections of the
six road sections constitute a traffic road network set whose corresponding matrix E(G) is
as shown in Equation (9):

E(G) =


0 l12 inf l14 inf

l21 0 l23 inf l25
inf l32 0 inf l35
l41 inf inf 0 l45
inf l52 l53 l54 0

 (9)
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3.2. Improvement of Road Traffic Impedance Model
3.2.1. Improved Roadway Impedance Model

The travel time of electric vehicles on the road can be calculated according to the BPR
(Bureau of Public Roads) model [20]. The road can be classified as smooth (0 < S ≤ 1.0) or
congested (1.0 < S < 2.0) by the road section saturation S. Since the road traffic network is
dynamic, S varies over time. The equation of road saturation S is as shown in Equation (10):

S =
Q
C

(10)

In Equation (10), Q is the section of road’s traffic flow, which varies dynamically with
time; and C is the section of road’s maximum capacity.

According to the section of road’s traffic condition, the road section impedance model
corresponding to different road section saturation S is obtained. The function can reflect
the change in road resistance with road congestion. Considering the dynamic flow and
speed limit of the road, the improved equation is obtained [21], as shown in Equation (11):

Tr =

{
t0(1 + α(S)β), 0 ≤ S ≤ 1.0
t0(1 + α(2− S)β), 1.0 < S < 2.0

(11)

In Equation (11), α and β are the impedance impact factors, usually set to 0.15 and 4,
respectively; Tr is the actual time required to go through this section; t0 is the zero-flow
travel time required to go through this section, which can be obtained from Equation (12):

t0 =
Lij

V0
(12)

In Equation (12), Lij is the path length from road node i to node j; V0 is the zero-flow
velocity of the indicated road, and there are differences in the zero-flow velocity of different
levels of roads.
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3.2.2. Improved Node Impedance Model

Most current studies set the road parameters as static parameters, which makes it
difficult to characterize the impact of road intersections on the whole process of vehicle
traffic, so this paper uses a modified Webster model to calibrate the nodal impedance of
road intersections [22], which can be expressed as shown in Equation (13):

Tc = 0.441

[
c(1− λ)2

2(1− λS)
+

S2

2q(1− S)

]
+ 6.996 (13)

In Equation (13), c is the signal period; λ is the ratio of the effective green duration of
a signal phase to the total duration of the cycle; q is the vehicle arrival rate of the driveway;
S is the road saturation.

Considering that the time consumed in the process of vehicle travel is not only im-
pacted by the road congestion situation but also by the control of road intersection signals,
the road traffic impedance should include two parts, road section impedance and road
node impedance, and then the improved road traffic model can be expressed as shown in
Equation (14):

Th = Tr + Tc (14)

3.3. Path Selection Method

In graph theory, a common method for solving path planning problems is Dijkstra’s
algorithm. When the total length h of the path is represented by Lh, the goal of the
Dijkstra algorithm is to find the path that minimizes Lh among all possible h values, which
ignores the impact of actual road traffic factors on the vehicle movement process [23].
In the actual driving process, users prefer to choose the path without congestion; if the
Dijkstra algorithm’s objective is the minimum value of Th, where Th indicates the road
traffic impedance, i.e., the total time consumed through path h, planning for the dynamic
shortest journey time can be achieved, and electric vehicle users can combine road traffic
information when they reach the road intersection, and, according to the current traffic
congestion, the shortest travel time path can be replanned when the EV user reaches the
road intersection.

3.4. Regional Distribution Network Model

On the basis of establishing a dynamic transportation network node model, the IEEE
33 standard node distribution network model is used to connect distribution network
nodes and transportation network nodes. Figure 4 displays the topology diagram of the
distribution network.
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4. Electric Vehicle Charging Load Model

The spatio-temporal distribution of electric vehicle charging load in the transportation
network is associated with the distribution of traffic travel. Electric vehicles are impacted by
external environmental factors, including road speed limits, traffic congestion, road grade,
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and ambient temperature during normal travel, which, in turn, affect the spatio-temporal
distribution of electric vehicle charging time in terms of duration and charging location
in the transportation network. By coupling the impact of external environmental factors
on the electricity expenditure per unit kilometer to the process of electric vehicle travel, a
more refined model of electric vehicle energy expenditure per unit kilometer considering
traffic conditions and ambient temperature is established.

4.1. Model of Electric Vehicle Electricity Expenditure per Unit Kilometer Taking into Account
Vehicle Speed and Temperature
4.1.1. Model Considering Road Conditions

Driving speed and battery energy expenditure of electric vehicles are linked with
different road categories and under varying traffic jam scenarios. The electricity expenditure
per unit kilometer for electric vehicles Ei (i = 1, 2, 3, 4) can be calculated under real-time
congestion conditions by calculating the measured data. Ei (i = 1, 2, 3, 4) can be expressed
by Equation (15) as follows:

E1 = 1.52
V − 0.004V+2.992× 10−5V + 0.247

E2 = 0.004V + 5.492
V − 0.179

E3 = −0.001V + 1.531
V + 0.21

E4 = −0.002V + 1.553
V + 0.208

(15)

In Equation (15), E1, E2, E3, and E4 are the electricity expenditure per unit kilometer
(kWh/km) of the vehicle traveling on the highway, main trunk, secondary main trunk, and
branch way, respectively; V indicates the real-time driving speed of the electric vehicle
(km/h), which can be obtained from Equation (16):

V =
Lij

Th
(16)

4.1.2. Model of On-Board Air Conditioner Considering Temperature Effects

As the largest single auxiliary load on electric vehicles, one of the influences of tem-
perature on the on-board electric battery capacity is mainly embodied by the electricity
expenditure of the air conditioner in summer and winter. When it is a high temperature
inside the cabin in summer, owners may choose to open the on-board air conditioner to
cool the vehicle, which increases the battery’s electricity consumption. When temperatures
inside the cabin are low in the winter, owners may choose to turn on the air conditioning to
raise the temperature, resulting in increased battery electricity consumption. The above
analysis shows that the operating state of the on-board air conditioner affects the battery
electricity expenditure and thus the spatio-temporal distribution of the electric vehicle
charging load.

The air conditioning electricity expenditure of the electric vehicle at distinct tempera-
tures after the air conditioning is opened is as shown in Equation (17):

Eh =


0.03347 L

V (Tset − Tamb)
1.324, Tamb < Tset

0, Tamb = Tset

0.03669 L
V (Tamb − Tset)

1.084, Tamb > Tset

(17)

In Equation (17), Eh is the electricity expenditure of air conditioning when the ambient
temperature is Tamb and the vehicle travels L km at speed V. The real-time vehicle speed V
can be obtained from Equation (16); Tamb is the current ambient temperature; and Tset is
the vehicle cockpit set temperature, which is set to 22 degrees Celsius.
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4.1.3. Model of Battery Losses in Electric Vehicles Considering Different
Ambient Temperatures

In summer, when temperatures are high, the high external temperature causes the self-
discharge of the vehicle battery to become more pronounced and the rate of battery aging
to accelerate and causes problems such as restricted power and overheating protection,
resulting in a certain degree of battery capacity loss. When the temperature is low in
winter, the internal resistance of the battery increases, and the internal electrochemical
process slows down, affecting the battery capacity and hindering charging and discharging
performance. The above analysis shows that ambient temperature affects the battery
performance of electric vehicles and therefore the spatio-temporal distribution of the
charging load.

The loss per unit kilometer Et of the on-board battery of the electric vehicle without
considering the air conditioning load as a function of the ambient temperature T is as
shown in Equation (18):

Et =


−3.2547× 10−3T − 6.3657× 10−5T2 + 6.5058× 10−6T3 + 2.4575× 10−7T4

−8.4631× 10−9T5 − 1.9318× 10−10T6 + 0.21077, Tamb < Tset
1.011× 10−2T + 2.6278× 10−4T2 + 0.6777, Tamb ≥ Tset

(18)

In Equation (18), Et is the power loss of the on-board battery due to temperature when
the ambient temperature is Tamb (not considering the air conditioning load).

4.1.4. Model of Electric Vehicle Electricity Expenditure Taking into Account Vehicle Speed
and Temperature

From the above analysis, it can be concluded that vehicle speed and temperature
jointly affect the electricity consumption per unit kilometer. Consequently, a model is
established to count electricity consumption per unit kilometer considering vehicle speed
and temperature, as shown in Equation (19):

ET = Eh + Et + Ei (i = 1, 2, 3, 4) (19)

In Equation (19), ET represents the real-time electricity consumption per unit kilometer
of the electric vehicle when the vehicle speed is V and the ambient temperature is T, unit:
kWh/km.

4.2. Electric Vehicle Charging Method

The fast charging power is selected as 60 kW, and the slow charging power is selected
as 7 kW. Considering the charging cost and battery loss of consumers, it is assumed that
consumers prioritize the slow charging method. However, if the SOC does not reach the
preset expectation during the parking time period, i.e., there is not enough power for the
next leg of the electric vehicle’s route, as shown in Equation (20), then the consumer will
choose the quick charging method.

PslowTi
p

CEV
+ soci

init < socexp (20)

In Equation (19), Pslow denotes the slow charging power; and Ti
p denotes the parking

time of the vehicle at node i.
Since the current quick charging technology can guarantee that the battery SOC of an

electric vehicle with a capacity of 60 kWh can be charged from 0 to 80% in 20 min [24], the
situation in which the SOC of the battery after quick charging is less than the SOC required
for the next trip is ignored.
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4.3. Electric Vehicle Charging Load Calculation

The spatio-temporal information of each distribution network node is counted based
on the coupling relationship between transportation network nodes and distribution net-
work nodes and then on statistics data on the charging load for the entire region.

According to the characteristic quantity of electric vehicles, the total charging load
at node i of the distribution grid at time t is calculated. The entire load of the nodes
in different functional areas is then calculated by adding the grid node’s base load and
the whole EV charging load, finally obtaining the spatio-temporal distribution of the EV
charging load. The prediction model predicts the first 24 h at an interval of 1 min, as shown
in Equation (21):

Pi
a = Pib

a +
N

∑
i=1

Pi
j,t(2 ≤ i ≤ 33, t, i ∈ Z) (21)

In Equation (21), Pi
a denotes the total load at the distribution network’s node i of area

a; Pib
a denotes the base load at the distribution network’s node i of area a; N denotes the

number of electric vehicles performing charging activities near the distribution network’s
node i at moment t; Pi

j,t denotes the charging power of the electric vehicle with serial
number j at the distribution network’s node i at moment t.

4.4. Load Forecasting Model Solving Process

The Monte Carlo method is utilized to simulate the spatio-temporal distribution of
charging load on the basis of the created model of movement characteristics and charge
characteristics of electric vehicles. Figure 5 depicts the flow chart for the prediction solution
of the spatio-temporal distribution of the charging load of electric vehicles.
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5. Example Analysis

To verify the validity of the proposed model, an actual urban road network in a region
of Hebei Province in northern China is selected for simulation analysis.
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5.1. Simulation Parameter Setting

The actual area indicated in Figure 6 is used as an example; the selected area’s acreage is
approximately 50.4 km2, and the perimeter is approximately 30.6 km. The spatio-temporal
distribution of electric vehicle charging load in various functional areas is calculated over a
24 h period.
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(1) Considering the main sections of the region, there are 64 traffic nodes and 98 traffic
sections;

(2) The actual area is simply divided into three functional categories, namely, residential,
working, and commercial areas;

(3) Combined with the practical road traffic situation in China, the roads are divided
into four types, as shown in Figure 6: the ring highway that is the green road with
a set zero-flow speed of 100 km/h; the main trunk that is the yellow road with a set
zero-flow speed of 60 km/h; the secondary main trunk that is the red road with a set
zero-flow speed of 50 km/h; the branch way that is the blue road with a set zero-flow
speed of 40 km/h;

(4) It is assumed that there are a total of 2500 electric private cars in this area whose initial
locations are evenly distributed around the residential areas.

5.2. Charging Load Forecast Results

Figure 7 shows the total charging load of each functional area in the region. Subse-
quently, the typical nodes in each functional area are selected separately, and the charac-
teristics of EV charging demand in different functional areas are analyzed by taking each
typical node as an example.

Figure 8a shows what happens when electric vehicle charging load is linked to a
typical node in a residential area. The residential area load increases comprehensively
during all hours, showing an obvious double-peak phenomenon. Furthermore, the peak
electric vehicle charging load is stacked on the peak residential basic load, causing the
undesirable effect of adding a peak to a peak, resulting in a further increase in the load
peak-to-valley difference, with the maximum peak-to-valley difference reaching 649 kW.

Figure 8b shows that the charging load in the working area begins to climb at 6:00 a.m.
The charging load in the working area peaks after the morning peak commute to work,
i.e., the peak load occurs at about 12:00 p.m.
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Figure 8. (a) Typical node load in the residential area; (b) typical node load in the working area;
(c) typical node loads in the commercial area.

Figure 8c depicts the charging load distribution in the commercial area, with EV
charging loads beginning to grow significantly at 12:00 p.m. and 20:00 p.m., the peak
business hours in commercial regions, which is in line with the business characteristics of
the commercial area.

A comprehensive comparison of Figure 8a–c shows that charging load is tightly
coupled to travel destination and travel time. The charging load peaks in the working
area after the morning rush hour and in the residential area after the evening rush hour.
The peak charging load in the commercial area is concentrated during the midday meal
and dinner times. The charging load in the residential, the commercial, and the working
area increases to varying degrees after the EV charging load is linked, causing a significant
change in the load curve, which has a significant effect on the regional distribution network.

Based on the emulation results, it can be seen that charging load prediction can provide
an important reference for distribution network planning and safe and stable operation.

5.3. Path Selection Method

The path planning experiments designed in this paper do not take into account the
costs incurred by electric vehicles in the process of finding charging stations and in the
charging process; they only compare and verify the search effect and the path selection
method presented in this paper and the traditional shortest path selection method. The
path selection results are shown in Figure 9, and the comparison results are shown in
Table 2.
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Table 2. Comparison of different types of path selection.

Path Selection Type Path Length/km Total Time/h

Shortest distance (open) 35 0.764
Shortest time (open) 47.3 0.544

Shortest time (congestion occurs) 47.3 0.679
Shortest time (change of path) 46 0.646

As can be seen in Figure 9, the shortest time path selection method based on traffic
information combines the road speed limit and real-time traffic situation in the path
planning process to dynamically plan the driving path. When the road is clear, the shortest
path selection method tends to select the road with a higher speed limit, as shown by the
yellow arrow in Figure 9, and the selected road sections are all distributed on the ring road.
The traditional shortest path selection method ignores the influence of road speed limits
and chooses the road shown by the black arrow in Figure 9, and the selected road sections
are mostly distributed on secondary arterial roads with lower speed limits, which are not
given priority in the actual driving process for travel time. In addition, when congestion
occurs in a certain road section, the shortest time path selection method presented in this
paper modifies the path. For example, when congestion occurs in a certain section for the
electric vehicle, the shortest path planning method modifies the original path shown by the
yellow arrow to the new path shown by the blue arrow to avoid congestion. The different
path passage times and path lengths are shown in Table 2.

Analysis of Table 2 shows that the path length planned by the shortest route selection
method is 35.14% longer than that planned by the traditional shortest route selection
method, but the shortest route selection method is 28.79% less than the traditional shortest
route selection method in terms of travel time. Additionally, when a section of the planned
route is congested, the replanned route consumes 5.11% less time than the original route
which was previously congested, verifying that the shortest route selection method may
make users effectively avoid paths with the shortest distance but low road speed limits and
congested road conditions.



Processes 2023, 11, 2256 14 of 19

5.4. Consideration of the Impact of Traffic and Temperature Factors on the Charging Load

Taking into account the influence of traffic and temperature factors, the comparative
results of EV charging load before and after the introduction of traffic and temperature
in Figure 10 are obtained, and the proportion of energy consumption accounted for by
different factors is obtained to compare and analyze the effect of traffic and temperature
factors on charging load.
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From Figure 10, it can be seen that traffic conditions and ambient temperature factors
have a greater impact on charging load. Taking the high-temperature environment in
summer as an example, in the case of considering only the traffic road conditions, the
peak hours of vehicle travel are 7:00–10:00 a.m. and 18:00–20:00 p.m., corresponding to the
high saturation of the traffic road sections at this time. The traffic mileage consumption of
vehicles in the process of driving increases, and the charging load starts to surge at this time.
After 22:00 p.m., the saturation of traffic road sections is low, owing to the comparatively
small number of vehicles on the road, and the energy consumption of traffic miles caused
by traffic road conditions starts to decrease. In the case of considering only the traffic factor
on the charging load, the charging load caused by the traffic road condition during the
peak travel period increases by 30.63% compared with the case that does not consider the
traffic road condition, obtaining an overall increase of 20.97%. In the case where only the
ambient temperature causes the air conditioning to turn on, as the ambient temperature
gradually increases over time, the electricity expenditure of the on-board air conditioning
caused by the ambient temperature begins to rise continuously during the high-temperature
hours of 10:00 a.m.–16:00 p.m., increasing the charging load by 12.90% compared to the
charging load without the on-board air conditioning, with an overall increase of 6.52%.
Considering only the battery loss due to ambient temperature, the charging load during
the high-temperature period increases by 17.63% compared to that which does not consider
the battery loss due to ambient temperature, obtaining an overall increase of 9.74%. The
overall charging load increases by 38.28% compared to charging loads that do not take
these two factors into account, verifying the validity of the model.

From Figure 11, the effect of different temperatures on the charging load can be seen;
due to the difference in the cooling and heating principles of the on-board air conditioning
of electric vehicles, the heating power of the on-board air conditioner in the winter low-
temperature environment is higher than the cooling power of the on-board air conditioning
in the summer high-temperature environment, and battery capacity loss due to temperature
factors is higher in cold winter environments than in high-summer environments, resulting
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in the winter peak charging load and the total charging demand in winter being higher
than in summer, and the charging load caused by the winter low-temperature environment
is 20.35% higher than that caused by the high summer temperature. The analysis shows
that the low-temperature environment is particularly detrimental to the electric vehicle
range, validating the model.
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Comprehensive analysis of the simulation results shows that the dynamic energy
consumption model established in this paper can accurately obtain the actual energy
consumption of electric vehicles in different ambient temperatures and different traffic
conditions, which further improves the accuracy of the electric vehicle load prediction
results and is expected to promote the sharing of information and win–win cooperation
between electric vehicle users, the traffic network, and the distribution network to improve
the comprehensive benefits to society and provide a reasonable basis of planning for the
future layout of the distribution network.

5.5. Analysis of the Impact of Uncontrolled Charging on the Distribution Network

In accordance with the spatial–temporal distribution of the EV charging loads obtained,
an effort is made to assess the impact of macroscale electric vehicle disorderly charging on
the distribution network.

From Figures 12 and 13, it is obvious that, with access to the EV charging load, the
successive increase in load at the individual nodes in the different functional areas leads to
a drop in the nodal voltage at each node.

As seen in Figure 14, node 18 is also the most affected as it is far away from node 1,
the power node, and, as the electric vehicle is connected to node 18, the node voltage at
this node drops from 0.9631 to 0.9447, which exceeds the lower limit of the node voltage.

A comprehensive analysis of Figures 12–14 shows that, during the peak electricity load
period, with the connection of electric vehicle charging load, the node voltage of each node
has a relatively large reduction which seriously affects the voltage quality for consumers.
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Figure 15 clearly shows that, around 12:00 p.m. and 20:00 p.m., the overall network
loss of the distribution network is larger because there are more EV charging loads at each
functional area node during this time period. Under the base load, the peak losses are
0.199 MW and 0.172 MW, respectively, and when the charging load is linked, the peak
losses are 0.220 MW and 0.193 MW, respectively, increasing by 10.6% and 12.5%. It can be
seen that, along with the charging load being connected to the distribution network, the
distribution network’s network loss increases considerably, posing a serious threat to the
distribution network’s safe and economical functioning.
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6. Conclusions

In this paper, considering the effects of road congestion and ambient temperature on
the electricity consumption of electric vehicles per unit kilometer, an electric vehicle charg-
ing load demand prediction model containing multiple stochastic processes is developed
and solved using Monte Carlo simulation, which is used for predicting the spatio-temporal
distribution of electric vehicle charging loads under the influence of road conditions and
ambient temperatures, as well as investigating the impact of disordered charging on the
distribution network. Through path planning experiments and spatio-temporal prediction
of electric vehicle charging demand in different functional areas under actual road network
distribution network conditions, the results verify the validity of the proposed model and
method, and the conclusions and main contributions are as follows:

(1) The charging loads of different electric vehicles are obviously affected by the charac-
teristics of functional areas, and there are obvious differences between the charging
characteristics of different functional areas. The total charging load of electric vehi-
cles has obvious “double-peak” characteristics, and, if not reasonably guided, it is
superimposed on the peak value of the base load, resulting in an unfavorable impact;

(2) Electric vehicle users tend to choose roads with high traffic levels and flat road
conditions for route planning. In order to simulate user behavior more realistically,
this paper uses an improved shortest path algorithm with road weights as the objective
function to plan the driving paths of electric vehicles, which reduces the traveling
time by 28.79% compared with the traditional shortest path algorithm;

(3) Ambient temperature and traffic conditions have an impact on electric vehicle electric-
ity consumption. In order to analyze the impact of these two factors on the charging
load of electric vehicles, this paper introduces traffic conditions and ambient tem-
perature in the modeling process, which can accurately obtain the actual electricity
consumption of electric vehicles under different environmental conditions and im-
prove the model prediction accuracy by 38.28% compared with the charging load
prediction model which does not consider these two factors and provides a reasonable
planning basis for the layout and capacity allocation of the distribution network.
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Nevertheless, in the modeling process, this article assumes that there are charging
stations at each node of the road network and that the capacity of the charging stations is
large enough; therefore, the queuing time for charging a car and the process of the user
selecting a charging station when charging is ignored, and further analysis is needed in
the future taking into account the distribution of actual charging stations. In addition, due
to the phenomenon that electric vehicle charging causes peak loads to superimpose on
each other, a more effective, orderly charging strategy will be proposed in the future on the
basis of the vehicle–road network coupling system to guide electric vehicles to charge in an
orderly manner so as to achieve the effect of “peak load shifting”.
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