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Abstract: Integration of source, grid, load, and storage is an important measure for energy trans-
formation. However, at present, the oilfield industry lacks mature models and related technologies.
Therefore, an oilfield intelligent energy system integrating source, power grid, load, and storage is
proposed in this paper. In view of the poor oilfield data quality, abnormal/missing data diagno-
sis and repair methods are proposed to improve the information accuracy of the intelligent cloud
management center. The improved photovoltaic prediction method of conditional generation coun-
termeasure network (CGAN), PV-VSG control of additional control, and flexible load control are put
forward to upgrade the intelligent deployment system. The system design and key technologies
can provide reference for the construction of new power systems and energy Internet in the future
oilfield industry.

Keywords: intelligent energy system; integration of source-grid-load-storage; oilfield; intelligent control

1. Introduction

Vigorously developing the smart energy system with renewable energy as the main body
is an important measure to comprehensively promote the transformation of clean energy and
achieve the strategic goal of “double carbon” [1,2]. The core feature of a smart energy system
is that it can adequately cope with changes on the source side, the grid side, and the load side,
intelligent control technology, and information automation technology [3–6]. The aim is to
build a new energy system featuring extensive access, smart allocation of resources at the grid
end, and multiple flexible responses at the load end.

At present, more than 120 countries have defined the nodes for achieving the “double
carbon” goal and promoted its implementation. Germany, Switzerland, the United States,
China, and other countries have carried out research on smart energy systems. In 2003, the
Energy Office of the Swiss Federal Government launched the Vision of Future Energy Net-
works project [7]. The Energy Hub model and Energy Inter-connector model were proposed.
The optimal cold-heat-electricity scheduling model and strategy based on multi-energy
system under multi-objective demand were studied. In 2008, The United States established
the future renewable electric energy delivery and management system (FREEDM) research
center in North Carolina, conducting research on smart energy distribution systems. It is
planned to establish a safe, reliable, and environment-friendly modern energy network
managed by an energy router [8]. In 2008, Germany built an energy system based on
information and communication technology (ICT). The aim was to develop and test core
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technologies for smart energy, and try to tap into the huge potential of energy optimization
by adopting ICT [9]. At the same time, the energy market should be further developed to
achieve decentralization and liberalization. In 2010, Japan launched the smart community
demonstration project, which integrates multiple energy supply systems [10]. In 2013, the
Energy Systems Integration Program was established in the United States to continue to
deepen research. In April 2022, the first large-scale “source-grid-load-storage” project in
China—Ulanqab Base Phase I—was put into operation, realizing the complementary of
wind power, photovoltaic, and hydrogen energy. However, at present, the research on
smart energy systems at home and abroad is still in the preliminary stage [11–16]. The
functional structure of the system is not comprehensive, and the specific research and
application of key technologies are lacking, especially for the intelligent energy system
with oilfield characteristics.

The application prospect of a cloud management center based on big data in oilfield
power grid is becoming increasingly evident. The oilfield power grid has a large amount of
data, poor data quality, and even some data cannot be used directly, and there is a lack of
data. Therefore, it is urgent to study the data cleaning technology of the oilfield power grid
to improve data quality and accuracy of the cloud management center. At present, the tradi-
tional data cleaning technology only considers the single data distribution law, ignoring the
correlation between measurement points and collected variables in the power grid, as well
as historical data change laws, resulting in low data repair accuracy. For example, the most
commonly used method for identifying abnormal data is 3 σ criterion [17]. This criterion
is only valid for large amounts of normally distributed or nearly normally distributed
data. However, the data from the oilfield distribution grid such as voltage and line loss do
not obey normal distribution, so the 3 σ criterion is not applicable. The commonly used
methods for repairing abnormal data and filling gaps in oilfield power grids include the
interpolation model, mean replacement model, and regression model [18]. In addition,
there is an imbalance problem with datasets collected from different sources or fluctuating
operating conditions, and data enhancement methods need to be used to expand minority
samples [19]. However, all these methods fail to consider the correlation between the
distributions of the entire dataset and cannot quickly clean the online sequential or stream
data, let alone ensure the consistency of data detection in different periods.

Therefore, this paper proposes a method of oilfield abnormal/missing data diagnosis
and repair, and comprehensively upgrades the intelligent cloud management center. On this
basis, an improved conditional generation countermeasure network (CGAN) PV prediction
algorithm and VSG control method of additional control are proposed at the source side.
Flexible load control is proposed to increase oil production and reduce energy consumption.
Finally, the accurate and intelligent control of the deployment system is realized.

2. Design of Oilfield Intelligent Energy System

An oilfield intelligent energy system is proposed, as shown in Figure 1, mainly includ-
ing an intelligent energy cloud management center based on big data, intelligent power
grid dispatching system based on distributed generation, and flexible load control. The
technology is based on digital infrastructure, cloud-edge-end technology, and research
and development of control center software. Multi-node redundancy, parallel computing,
and edge intelligence are realized and new energy active support control and flexible load
aggregation are promoted.



Processes 2023, 11, 2169 3 of 15Processes 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. The topology of the oilfield smart energy system. 

3. Key Technologies for Energy Systems 
3.1. Intelligent Energy Cloud Management Center 

As shown in Figure 2, system source data such as electricity trading system, dispatch-
ing automation system, production command system (PCS), meteorological data, and re-
lated derived data are collected. A panoramic monitoring system is established. In addi-
tion, a method for diagnosing and repairing abnormal/missing data in oil fields is pro-
posed. The “situation awareness” function of intelligent energy cloud management center 
is comprehensively improved. 

 
Figure 2. Schematic diagram of intelligent perception. 

3.1.1. Real-Time Identification of Oilfield Abnormal Data 
Therefore, each sampled data point is regarded as the linear transformation of sam-

pled data 𝑍 at each time, and then the correlation matrix 𝑆 is: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )( ) ( )T T T T
S S

p p p p
T T T T

= = = =TS X X ZT ZT Z TT Z ZDZ
 

(1)

where 𝑇 is the coefficient matrix of the linear transformation: 

Figure 1. The topology of the oilfield smart energy system.

3. Key Technologies for Energy Systems
3.1. Intelligent Energy Cloud Management Center

As shown in Figure 2, system source data such as electricity trading system, dis-
patching automation system, production command system (PCS), meteorological data,
and related derived data are collected. A panoramic monitoring system is established. In
addition, a method for diagnosing and repairing abnormal/missing data in oil fields is
proposed. The “situation awareness” function of intelligent energy cloud management
center is comprehensively improved.
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3.1.1. Real-Time Identification of Oilfield Abnormal Data

Therefore, each sampled data point is regarded as the linear transformation of sampled
data Ẑ at each time, and then the correlation matrix Ŝ is:

Ŝ =
p
T

X̂SX̂S
T =

p
T
(ẐT̂)(ẐT̂)T

=
p
T

Ẑ(T̂T̂T
)ẐT

=
p
T

ẐD̂ẐT (1)
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where T̂ is the coefficient matrix of the linear transformation:

T̂ =


ϕn ϕn−1 . . . ϕ2 ϕ1 0 . . . 0
0 ϕn . . . ϕ3 ϕ2 ϕ1 . . . 0
...

. . .
...

...
. . . 0

0 . . . 0 ϕn ϕn−1 . . . . . . ϕ1


T

(2)

The time-delay correlation of long time series of oilfield power data cannot be ignored.
If X̂s is N × T, when N → ∞, T → ∞ , and the row to column ratio C is fixed, the Stieltjes
transformation of the limit spectral distribution h(x) of Ŝ converges to:

1
m(z)

= −z +
1
c

∫ 2π

0

f (ω)

1 + f (ω)m(z)
dω (3)

where m(z) is the Stieltjes transformation value of the spectral density function h(x) at z.
f (ω) is the spectral density of the linear transformation. The Auto-Regressive and Moving
Average (ARMA) model is proposed for fitting time series. The spectral density of the
ARMA model is estimated to be:

f (ω) =

∣∣∣∣ θ(ejω)

φ(ejω)

∣∣∣∣2, 0 ≤ ω < 2π (4)

where θq(x) = 1 + θ1x + · · ·+ θqxq, φp(x) = 1− φ1x− . . .− φpxp.
The line voltage data of Dongyi Transformer in Shengli Oilfield from January to June

2022 are collected at an interval of 1 h as example. First, the data identification results
of spectral deviation and average spectral radius calculated from the time dimension are
shown in Figure 3. Figure 3 shows that at the corresponding moment of the red circle, both
the spectral deviation and the average spectral radius are abnormal, deviating from the
normal indicator. Therefore, the two indicators confirm the time point of the abnormal data
with each other. Then, taking the 1080th abnormal moment as an example, the spectral
deviation degree is analyzed from the spatial dimension to find out the line where the
abnormal data are located. The result is shown in Figure 4, the spectral deviation of the
North 2nd Line and the East 1st Link Line is different from other lines, so it can be judged
that the abnormal data appeared in the 1080 h measured voltage of these two lines. For
further verification, the single ring theorem diagram of abnormal data and normal data
is compared, as shown in Figure 5. Abnormal data can be clearly identified from the
distribution of feature points in Figure 5. The abnormal data feature points are centrally
distributed within the circle, while the normal data feature points are centrally distributed
on the circle. Similarly, the M-P diagram can also be clearly compared to see the difference
between normal data and abnormal data. As shown in Figure 6, the normal data curve
should be close to the ideal state, while abnormal data deviates from the ideal state. The
above results can be adopted to diagnose and identify the abnormal data of oil field.
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3.1.2. Oilfield Abnormal Data Repair and Missing Data Completion

After identifying the abnormal power data from the oilfield, the GAN algorithm based
on Adam is proposed to repair the abnormal data or fill in the missing data. Each iteration
of its training can be divided into two steps:

(1) Fixed generator parameters, training update discriminator:
Set γ—learning rate of neural networks, m—a batch of training data samples, ϕ—
correction amount of network parameters, ndiscri, ngener—iterations of discriminator
and generator networks, θd, θg—two network weights, initialized at the beginning of
training. The specific process is as follows:
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(1) m batch data samples {x1, x2 · · · xm } are obtained from the real data distribu-
tion Pdata;

(2) m batch data samples {z1, z2 · · · zm } are obtained from the random distribution
Pz;

(3) Enter {z1, z2 · · · zm } into the generator to obtain
{∼

x1,
∼
x2 · · ·

∼
xm

}
, which is

∼
xi = G(zi);

(4) Updating discriminator network by gradient descent methodmax
D

V = 1
m

m
∑

i=1
logD(xi)+

1
m

m
∑

i=1
log(1− D(G(zi)) )

θd ← θd − γ∇V(θd)
(5)

After ndiscri iterations, θd is continuously updated to train the discriminator
that is closest to the objective function.

(2) Fixed discriminator parameters, training update generator:

(1) m batch data samples {z1,z2· · · zm } are obtained from the random distribution
Pz;

(2) Update generator network by gradient descent methodmax
G

V = 1
m

m
∑

i=1
logD(xi)+

1
m

m
∑

i=1
log(1− D(G(zi)) )

θg ← θg − γ∇V
(
θg
) (6)

After ngener iterations, θg is continuously updated to train the generator that is closest
to the objective function.

After several iterations of discriminator and generator adversarial training, G and D
performance continuously improved and finally reached stability. When Pz = Pdata, there is
a global optimal solution. At this point, G learns the distribution of the real sample Pdata;
that is, the data generated by the generator can effectively replace the missing or abnormal
data in the oilfield data.

In order to visually show abnormal data in power data, the active power box diagram
of Dongyi transformer on 30 May 2022 was created. The result is shown in Figure 7. It can be
seen that there are abnormal values at every moment, so it is necessary to repair these data.
The repair results are shown in Figure 8, the results are consistent with the actual operating
conditions of the power grid, and the fluctuation of active power decreases obviously.

Processes 2023, 11, x FOR PEER REVIEW 6 of 15 
 

 

generator networks, θd, θg—two network weights, initialized at the beginning of training. 
The specific process is as follows: 

1) m batch data samples 𝑥 , 𝑥 ⋯ 𝑥   are obtained from the real data distribution 
Pdata; 

2) m batch data samples 𝑧 , 𝑧 ⋯ 𝑧   are obtained from the random distribution 
Pz; 

3) Enter 𝑧 , 𝑧 ⋯ 𝑧    into the generator to obtain 𝑥 , 𝑥 ⋯ 𝑥   , which is 𝑥 =𝐺(𝑧 ); 
4) Updating discriminator network by gradient descent method 

max 𝑉 = 1𝑚 𝑙𝑜𝑔𝐷(𝑥 ) + 1𝑚 log (1 − 𝐷 𝐺(𝑧 ) )𝜃 ← 𝜃 − 𝛾∇𝑉(𝜃 )  (5)

After ndiscri iterations, θd is continuously updated to train the discriminator that is clos-
est to the objective function. 
(2) Fixed discriminator parameters, training update generator: 

1) m batch data samples {z_1,z_2⋯z_m } are obtained from the random distribution 
Pz; 

2) Update generator network by gradient descent method 

max 𝑉 = 1𝑚 𝑙𝑜𝑔𝐷(𝑥 ) + 1𝑚 log (1 − 𝐷 𝐺(𝑧 ) )𝜃 ← 𝜃 − 𝛾∇𝑉(𝜃 )  (6)

After ngener iterations, θg is continuously updated to train the generator that is closest 
to the objective function. 

After several iterations of discriminator and generator adversarial training, G and D 
performance continuously improved and finally reached stability. When Pz = Pdata, there is 
a global optimal solution. At this point, G learns the distribution of the real sample Pdata; 
that is, the data generated by the generator can effectively replace the missing or abnormal 
data in the oilfield data. 

In order to visually show abnormal data in power data, the active power box diagram 
of Dongyi transformer on 30 May 2022 was created. The result is shown in Figure 7. It can 
be seen that there are abnormal values at every moment, so it is necessary to repair these 
data. The repair results are shown in Figure 8, the results are consistent with the actual 
operating conditions of the power grid, and the fluctuation of active power decreases ob-
viously. 

 
Figure 7. The active power box diagram of Dongyi transformer on 30 May 2022. (a) 8:00–11:30. (b) 
12:00–15:00. 
Figure 7. The active power box diagram of Dongyi transformer on 30 May 2022. (a) 8:00–11:30.
(b) 12:00–15:00.



Processes 2023, 11, 2169 7 of 15Processes 2023, 11, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 8. Repair result of abnormal active power data. 

For missing data completion, in order to obtain the accuracy of model completion 
data, this paper simulated the missing data, and took the average error percentage as the 
index to judge the model performance. The data completion results are shown in Figure 
9. The average error percentages of active power and reactive power are 4.63% and 4.55%, 
respectively, which are less than 5%, indicating high accuracy. It can also be seen from 
Figure 9 that the filling value of the missing data is close to the real value measured, indi-
cating that the data completion effect is excellent and can be effectively adopted to fill the 
missing data information. 

 
Figure 9. The missing data completion results of active power and reactive power. 

In addition, on the basis of complete data restoration, energy–flow transition model-
ing is carried out for power supply operation state and load flexible production state, 
combining the principles of electricity market trading and energy balance. The real-time 
optimization control model under multi-objective conditions is studied as shown in Fig-
ure 10. the optimal structural proportion of supply side was determined to achieve the 
“sources–loads” optimal matching. Finally, the panoramic monitoring of intelligent en-
ergy system was formed. 

Figure 8. Repair result of abnormal active power data.

For missing data completion, in order to obtain the accuracy of model completion
data, this paper simulated the missing data, and took the average error percentage as
the index to judge the model performance. The data completion results are shown in
Figure 9. The average error percentages of active power and reactive power are 4.63% and
4.55%, respectively, which are less than 5%, indicating high accuracy. It can also be seen
from Figure 9 that the filling value of the missing data is close to the real value measured,
indicating that the data completion effect is excellent and can be effectively adopted to fill
the missing data information.
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In addition, on the basis of complete data restoration, energy–flow transition modeling
is carried out for power supply operation state and load flexible production state, combining
the principles of electricity market trading and energy balance. The real-time optimization
control model under multi-objective conditions is studied as shown in Figure 10. the
optimal structural proportion of supply side was determined to achieve the “sources–
loads” optimal matching. Finally, the panoramic monitoring of intelligent energy system
was formed.

3.2. Intelligent Dispatching System of Power Grid

The upgrading of the intelligent dispatching system of the oilfield power grid mainly
includes the source side and load side, which are realized from two levels of prediction
and control, respectively.
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3.2.1. Prediction and Control of Photovoltaic Power Generation

Traditional photovoltaic power generation forecasting methods, such as physical meth-
ods, statistical methods, and meta-heuristic learning methods, have high data requirements
and are mainly used for photovoltaic power stations that have been in operation for a long
time [20,21]. Therefore, it is not applicable to oilfield scenarios. The emerging recurrent
neural network (RNN) prediction algorithm does not consider the correlation of variables,
resulting in large prediction errors when affected by natural variables. The Elman neural
network (ENN) based on Pearson correlation coefficients (PCCs) improves the problem
of variable correlation, but the conditions for PCCs require that the variables be normally
distributed and ENN converges slowly and is prone to falling into local optimizations.
Therefore, an improved conditional generation adversarial network (CGAN) prediction
algorithm is proposed. the time series is input before the prediction starting point as an
additional condition into the model. The data after the starting point are applied as the
real sample to solve the problem that traditional GAN cannot control the data generation
mode under the condition of multi-noise in oilfield. Compared with traditional physical
models, its significant advantage is that it does not involve any explicit modeling and only
relies on a pure data-driven method to describe the possible fluctuation range of PV output.
Compared with original GAN, CCAN comprehensively considers the mapping relationship
between historical data and predicted power. The prediction is accurate and fast.

The overall algorithm flow of photovoltaic prediction in the oilfield distribution grid
is shown in Figure 11.

The CGAN loss function based on condition c = { x0, x1, · · · xt} (composed of histori-
cal data and strongly correlated weather variables) is as follows:

LG = −Ez∼pz(z)[D(G(z|{x0, . . . , xt})|{x0, . . . , xt})] (7)

LD = −Ex∼pr(x)[D(
∧
xt+1, . . . ,

∧
xt+h|{x0, . . . , xt})] + E[D({xt+1, . . . , xt+h}|{x0, . . . , xt})] (8)

where LG and LD are loss functions during the training of generator and discrimina-
tor, respectively. E is the calculation expectation. z~pz(z) represents the noise vector z
sampled from the Gaussian distribution pz(z). x~pr(x) represents the measured power
x =

{
xt+1, · · · xt+h

}
sampled from real data. G(z|{ x0, · · · xt}) is the predicted power

under condition c. D(·) is the probability that the discriminator determines that the input
sample is the measured power.
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Figure 11. The overall algorithm flow of photovoltaic prediction in oilfield distribution grid.

To avoid the problem of gradient disappearing in training, the traditional JS divergence
is replaced by the loss function based on Wasserstein distance. Wasserstein distance is
applied to measure the similarity between two distributions. The smaller the value, the
higher the similarity. It is defined as:

W
(

Pr, Pg
)
= inf

γ∼∏ (Pr ,Pg)
E(x,y)∼γ[‖x− y‖] (9)

where ∏
(

Pr, Pg
)

represents the set of joint probability distribution γ when actual distri-
bution Pr and generated distribution Pg are applied as edge distribution. W (Pr, Pg) is the
infimum of γ (x, y) expectation.

It is difficult to solve Wasserstein distance directly, so the Kantorovich–Rubinstein
dual form is adopted:

W
(

Pr, Pg
)
=

1
K

sup
‖D‖L≤K

Ex∼pr(x)[D(x)]− Ez∼pz(z)[D(G(z))] (10)

where ‖D‖L ≤ K indicates that the gradient of the constraint discriminator parameter is
within a certain range.

Modeling and training were conducted for YH, YW, EH, and EL photovoltaic power
stations in Shengli Oilfield. Taking 23 November–3 December 2022 as an example, the actual
and predicted results of PV power generation are shown in Figure 12. Figure 12 shows
that the predicted and actual power generation curves of the four PV stations have similar
variation trends, indicating that the improved CGAN model proposed can effectively solve
the problem of oilfield photovoltaic power prediction.
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Root mean square error (RMSE) and mean absolute percent error (MAPE) were calculated:

RMSE =

√√√√ 1
N

N

∑
i=1

(pi − Pi)
2 (11)

MAPE =
1
N

N

∑
i=1

|pi − Pi|
Pi

(12)

where N is the number of samples. pi and Pi are the predicted and actual values of PV
power, respectively.

The prediction error results of the four PV plants are shown in Table 1. Table 1 shows
that the predicted RMSE for both YH and YW are less than 5 kW, and the MAPE are
smaller than for both EH and EL. This is because there are relatively more missing values
in the original data of EH and EL, which affects the prediction error. However, in general,
the MAPE is less than 5%, indicating that the accuracy of the model prediction is still
guaranteed even when the original data are missing.

Table 1. Prediction error.

PV Plant RMSE/kW MAPE/%

YH Line 4.13 3.98
YW line 4.30 4.05
EH line 6.21 4.72
EL line 5.61 4.39

Based on accurate prediction of photovoltaic power generation, an additional photo-
voltaic control and transient process optimization based on MPPT evaluation of DC side
voltage tolerance is proposed for source side photovoltaic dynamic virtual synchronization
control. As shown in Figure 13, MPPT obtains the minimum DC voltage, then passes
through PI controller with an upper limit of 0, and superposes with active/reactive power
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loop input to change the reference value of active/reactive power input. Then, the inertia
parameters and damping coefficients under the approximate optimal strategy are further
solved, and the analytical expressions are obtained by piecewise linearity to realize the
online adjustment of key control parameters.
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The result of the control applied to GD demonstration area is shown in Figure 14. When
the angular frequency of the system rises rapidly and uniformly and drops rapidly, through
additional control and adaptive adjustment of transient optimization key parameters J and
D, the transient performance of the system is significantly improved when the frequency
fluctuates. The frequency does not exceed the threshold, and the response is faster and
smoother than before.
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3.2.2. Prediction and Control of Flexible Production

Shengli Oilfield Company has about 9000 oil wells and 308 plunger pumping stations
with variable frequency capability, which can flexibly adjust loads. Although partial
flexible production has been realized, there are still some problems: (1) Lack of interactive
response between load side and source-grid-storage. (2) Lack of collaborative strategy for
maximizing development benefit and flexible intelligent production. (3) The intelligent
adjustment means of load side are obviously insufficient. To solve the above problems, this
paper adopts the edge intelligence platform which integrates edge computing and artificial
intelligence. Integrate intelligent tuning, demand side response, flexible follow-up, and
other applications. Production optimization models such as oil well condition identification,
production dynamic analysis, single well optimization, injection–production linkage, and
block cooperation are constructed. Intelligent empowerment of flexible production loads
through machine learning can reduce oil recovery costs, increase average oil recovery, and
achieve efficient and sustainable development of oil fields.

The demonstration area of HK oil plant was established. The intelligent optimization
results are shown in Figure 15. The BAE55-X10 well was optimized automatically based on
the dynamic level in the early stage, and the frequency was reduced to 22 Hz. Then, the well
was hot washed and the moving liquid level rose. The system automatically adjusted and
increased the frequency to 25 Hz, which accelerated the drainage and increased the liquid
yield by 45.9%. In the later stage, when the moving liquid level dropped, the frequency
was automatically optimized to 21 Hz, and the liquid yield was still more than 10 tons. The
results show that the single well optimization realizes the fine control and timeliness of oil
well production.
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As shown in Tables 2 and 3, automatic real-time tuning of more than 300 frequency
conversion wells was carried out in HK 4 zone, HK 5 zone, HX management zone, ZX
1 zone, GD 4 zone, and other management zones. The results show that the effect of
increasing oil and saving electricity is obvious, with an annual increase of about 18 tons of
oil per well and an annual reduction of about 327 USD.

Flexible follow-up control is used to optimize the influence of the oil well string after
multiple factors interweave, parameters are difficult to define and there are multiple rounds
of changes in production. To realize the inverse ratio rule of the motor speed and load
distribution to a certain extent, the rigid impact of the top and bottom dead center is
reduced, and the service life of the equipment is extended. The optimization control 1 and
2 is to adjust the pumping unit speed by a small and a large amount near the dead point,
respectively. As shown in Figure 16, the results show that the two optimal control methods
improve the current impact better than constant speed control, and the effect of optimal
control method 2 is better. Table 4 shows that the replacement cycle of flexible control belt
and pump inspection is extended by 23.9% and 19.45%, respectively.
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Table 2. Results of frequency conversion flexible adjustment for 300 wells.

Deployment
Management Area

Optimize the
Number of

Wells

Tuning
Duration
(Month)

Accumulated
Liquid Increase (t)

Accumulated Oil
Increase (t)

Converted
Annual Oil

Increase of Single
Well (t)

HK area IV 92 9 12,396 2625 19
HK area V 38 10 5135 498 18
HK area I 15 2 33 6 18

HX management area 77 5 2316 504 16
ZX area I 42 5 1410 446 16

GD area IV 9 5 515 36 18
DX area I 6 3 87 56 20
DX area II 8 2 192 7.8 19

Table 3. Results of flexible production in five demonstration areas.

Deployment
Management Area

Optimize the Number
of Wells

Tuning Duration
(Month)

Accumulated Cost
Reduction (USD)

Converted Annual
Cost Reduction of
Single Well (USD)

HK area IV 26 6 1792 321
HX management area 32 5 2692 345

GD area IV 41 5 4169 397
ZX area I 15 5 1310 302
DX area II 53 4 2509 390

Processes 2023, 11, x FOR PEER REVIEW 13 of 15 
 

 

zone, GD 4 zone, and other management zones. The results show that the effect of increas-
ing oil and saving electricity is obvious, with an annual increase of about 18 tons of oil per 
well and an annual reduction of about 327 USD. 

Table 2. Results of frequency conversion flexible adjustment for 300 wells. 

Deployment 
Management Area 

Optimize the 
Number of Wells

Tuning 
Duration 
(Month) 

Accumulated 
Liquid Increase (t) 

Accumulated Oil 
Increase (t) 

Converted Annual Oil 
Increase of Single Well 

(t) 
HK area IV 92 9 12,396 2625 19 
HK area V 38 10 5135 498 18 
HK area I 15 2 33 6 18 

HX management 
area 77 5 2316 504 16 

ZX area I 42 5 1410 446 16 
GD area IV 9 5 515 36 18 
DX area I 6 3 87 56 20 
DX area Ⅱ 8 2 192 7.8 19 

Table 3. Results of flexible production in five demonstration areas. 

Deployment Management 
Area 

Optimize the 
Number of 

Wells 

Tuning 
Duration 
(Month) 

Accumulated Cost 
Reduction (USD) 

Converted Annual Cost 
Reduction of Single Well 

(USD) 
HK area IV 26 6 1792 321 

HX management area 32 5 2692 345 
GD area IV 41 5 4169 397 
ZX area I 15 5 1310 302 
DX area Ⅱ 53 4 2509 390 

Flexible follow-up control is used to optimize the influence of the oil well string after 
multiple factors interweave, parameters are difficult to define and there are multiple 
rounds of changes in production. To realize the inverse ratio rule of the motor speed and 
load distribution to a certain extent, the rigid impact of the top and bottom dead center is 
reduced, and the service life of the equipment is extended. The optimization control 1 and 
2 is to adjust the pumping unit speed by a small and a large amount near the dead point, 
respectively. As shown in Figure 16, the results show that the two optimal control meth-
ods improve the current impact better than constant speed control, and the effect of opti-
mal control method 2 is better. Table 4 shows that the replacement cycle of flexible control 
belt and pump inspection is extended by 23.9% and 19.45%, respectively. 

 
Figure 16. Current curves under different flexible follower optimal control. Figure 16. Current curves under different flexible follower optimal control.

Table 4. Flexible production results in extended pump and belt life cycles.

Oil Production Plant

Before Flexible Control (3 Years) After Flexible Control (3 Years) Extended Pump
Inspection Period

Extended Belt
Replacement Cycle

Pump
Inspection

Cycle (Day)

Belt
Replacement
Cycle (Day)

Pump
Inspection

Cycle (Day)

Belt
Replacement
Cycle (Day)

Day % Day %

HK oil production plant 284 42 314 48 30 10.56 6 14.29
XH oil production plant 311 49 359 56 48 15.43 7 14.29
GD oil production plant 278 33 378 47 100 35.97 14 42.42
SL oil production plant 289 35 337 46 48 16.61 11 31.43

Total 290.5 39.75 347 49.25 56.5 19.45 9.5 23.90

4. Conclusions

An oilfield intelligent energy system integrating source, grid, load, and storage is
designed. We improved the situational awareness function of the intelligent cloud man-
agement center, and proposed a method to identify and repair abnormal/missing data of
oilfield data with an accuracy of more than 95%. In terms of oilfield intelligent dispatching
system, the improved CGAN photovoltaic prediction, VSG control method of additional
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control, and flexible load control of oilfield are proposed. The results show that the PV pre-
diction deviation is less than 5%. Through the automatic optimization method of dynamic
liquid level based on edge computing, the liquid yield is increased by 45.9%. Precise control
of single well optimization was realized. Through the collaborative intelligent control of
the oilfield area, the annual increase in oil production and cost savings of a single well
are about 18 tons and 327 USD, respectively. The economic benefits are significant. An
optimization method of flexible follow-up control was proposed. The results show that
the replacement cycle of flexible control belt and pump inspection were extended by 23.9%
and 19.45%, respectively. The system design and key technologies of the intelligent energy
system integrated with source, grid, load, and storage in the oilfield provides technical
support for building a clean, efficient, and sustainable energy consumption system.
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