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Abstract: Blockchain 3.0, an advanced iteration of blockchain technology, has emerged with diverse
applications encompassing various sectors such as identity authentication, logistics, medical care,
and Industry 4.0/5.0. Notably, the integration of blockchain with industrial automation and control
systems (IACS) holds immense potential in this evolving landscape. As industrial automation and
control systems gain popularity alongside the widespread adoption of 5G networks, Internet of
Things (IoT) devices are transforming into integral nodes within the blockchain network. This
facilitates decentralized communication and verification, paving the way for a fully decentralized
network. This paper focuses on showcasing the implementation and execution results of data
preservation from industrial automation and control systems to IOTA, a prominent distributed ledger
technology. The findings demonstrate the practical application of IOTA in securely preserving data
within the context of industrial automation and control systems. The presented numerical results
validate the effectiveness and feasibility of leveraging IOTA for seamless data preservation, ensuring
data integrity, confidentiality, and transparency. By adopting IOTA’s innovative approach based on
Directed Acyclic Graph (DAG), the paper contributes to the advancement of blockchain technology
in the domain of Industry 4.0/5.0.

Keywords: IOTA; Industry 4.0/5.0; blockchain; data preservation; industrial automation and
control systems

1. Introduction

The application of Industry 4.0/5.0 is experiencing exponential growth across various
fields. As Internet of Things (IoT) devices are deployed, a substantial amount of data is
generated, which is traditionally centralized on client servers or cloud servers. However,
such a centralized infrastructure poses challenges such as a single point of failure and a lack
of trust between devices [1]. One solution to address these challenges is the implementation
of a distributed system based on blockchain technology. The application of blockchain in
Industry 4.0/5.0 has seen diverse use cases [2].

For instance, Datta et al. [3] proposed a security scheme that enables encrypted record
storage for information and energy transactions between vehicles. Hang et al. [4] utilized
Hyperledger Fabric to establish a fish farm platform, ensuring data integrity. Guan et al. [5]
designed a two-tier distributed energy transaction system that safeguards transaction
information through blockchain consensus mechanisms. Grecuccio et al. [6] leveraged IoT
devices to record the food supply chain process and established an Ethereum node as a
gateway to broadcast the data to smart contracts on the blockchain network for storage.

Despite the progress made, there are still several challenges in the application of
blockchain in Industry 4.0/5.0. For instance, sensor data monitoring over an extended
period is limited, and the costs associated with integrating blockchain into IoT systems,
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due to handling fees and scalability issues, can be substantial. Furthermore, while smart
contracts have shown promise in supply chain management, the historical data from IoT
devices cannot be recorded on the blockchain, and the data transmission process from the
IoT perception layer to the network layer lacks openness and transparency. To address
these challenges of scalability, efficiency, and handling fees, Popov introduced a distributed
ledger called Tangle, which is based on the Directed Acyclic Graph (DAG) structure [7].
Tangle differs from traditional blockchain ledgers as it utilizes the DAG structure as the
foundation, enabling faster transactions and comprehensive recording of the history of
Industry 4.0/5.0.

According to a report by Ericsson [8], it is projected that by 2021, there will be approximately
28 billion globally connected smart devices. Additionally, more than 15 billion devices have
already adopted machine-to-machine (M2M) communication [8]. With the widespread adoption
of the Internet of Things in various aspects of life, Wireless Sensor Networks (WSNs) have
emerged as a crucial component for the application of Industry 4.0/5.0. WSNs are characterized
by their low energy consumption, small size, and ease of deployment.

In the realm of IoT environments, ensuring real-time data reception and transmission
with data integrity is crucial. To address the challenges related to massive data transmission
and efficiency, Alsboui et al. [9] proposed the Mobile-Agent Distributed Intelligence Tangle-
Based approach (MADIT). They utilized the IOTA Masked Authenticated Messaging
(MAM) protocol to ensure data privacy on the Tangle. While ledger data are publicly
transparent, sensitive data may need to be uploaded to the ledger. Therefore, Zhang
et al. [10] introduced LDP, which preserves data confidentiality while uploading it to
the distributed ledger technology (DLT). In scenarios where data sizes exceed the single
transaction limit of the ledger, J. Jayabalan and N. Jeyanthi [11] proposed a model that
encrypts medical data and stores it on IPFS, while storing the IPFS-generated index on the
DLT, ensuring both data integrity and confidentiality.

Moving on to Docker, it is an extensively adopted open-source platform for con-
tainerization, enabling developers to package applications and their dependencies into
lightweight, portable containers. Since its release in 2013, Docker has become an indispens-
able tool for building, shipping, and running applications. Containerization technology has
gained significant popularity due to its ability to provide lightweight, portable, and isolated
execution environments for applications. Researchers have explored various aspects of
containerization, including performance, security, and usability. In a study by Divya and
Sri [12], the potential of containerization technology and edge-fog cloud infrastructure is
showcased in enabling efficient and scalable fall detection systems in healthcare. The paper
emphasizes the importance of considering specific application workload requirements
when selecting a containerization platform and infrastructure architecture.

Another research by Singh et al. [13] proposes an innovative solution to address the
challenges of secure and efficient task containerization in IoT systems. The paper highlights
the significance of considering both security and efficiency requirements in designing
containerization solutions and demonstrates the effectiveness of game-theoretic approaches
in tackling these challenges.

In the context of industrial automation and control systems, the existing architecture
relies on a centralized server or cluster head to manage, identify, and encrypt connections
among a large number of deployed sensors in the sensing area. However, this centralized
approach presents challenges in terms of scalability, security, and privacy. Additionally,
ensuring the confidentiality and integrity of data during transmission from the sensor
collection end to the user end is crucial.

Furthermore, the application of blockchain in Industry 4.0/5.0 brings forth several
challenges. These challenges encompass the inability to monitor sensor data over an
extended period, the high costs associated with importing blockchain into the Internet of
Things (IoT) due to handling fees and scalability issues, the lack of IoT data recording in
the blockchain, and the lack of transparency in the data transmission process from the IoT
perception layer to the network layer.
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These challenges underscore the significance of addressing the limitations in current
architectures and exploring the potential of blockchain technology to overcome them.
By developing decentralized and secure solutions, achieving scalable, cost-effective, and
transparent data management in industrial automation and control systems becomes
feasible. The resolution of these challenges can enhance the reliability, efficiency, and
trustworthiness of Industry 4.0/5.0 applications, facilitating their widespread adoption
and unlocking their full potential in various domains.

2. Related Works
2.1. IOTA

IOTA is an open-source decentralized ledger technology operating on a peer-to-peer
network. It utilizes the Directed Acyclic Graph (DAG) method to store each transaction and
was officially launched in around 2018. The development of IOTA is primarily driven by the
Berlin-based non-profit organization, IOTA Foundation. The name “IOTA” originates from
the ninth letter of the ancient Greek alphabet, symbolizing tiny things and representing the
smallest unit of currency issued by IOTA.

In the era of the Internet of Everything, IOTA enables devices to conduct micropay-
ments and exchange data without incurring additional costs. The underlying structure of
IOTA, known as Tangle, employs a net-like ledger structure. Unlike traditional blockchains,
Tangle allows for multiple forks and does not require transactions to be specified behind spe-
cific blocks. Instead, new transactions are randomly selected for verification by referencing
two existing transactions. As a result, transactions can be generated synchronously, leading
to significantly improved speed and scalability compared to conventional blockchains.

An IOTA account serves as a means to prove ownership of transactions within the
Tangle. Similar to a bank account, it is created using a seed, which differentiates it from
traditional name- and password-based accounts. Importantly, the seed remains solely
accessible to the account owner and represents their identity on the internet. This approach
ensures decentralization and maintains anonymity within the IOTA network. To generate
addresses, IOTA employs Winternitz One Time Signature (WOTS) for which the seed acts
as the master key. Multiple private keys can be derived from the seed, and each private key
generates a unique address. It is worth noting that each address can only be used once and
can hold any amount of IOTA currency. The total balance of an account is determined by
the cumulative sum of currencies across all addresses within that account.

The seed serves as the sole master key for proving ownership of IOTA currency within
messages or addresses. It consists of an 81-character Tryte string comprising 26 uppercase
English letters and the number 9. The number of possible seeds is immense, reaching
approximately 8.7 × 10115, making the likelihood of two identical seeds extremely low. A
seed can generate different private keys by varying the index and security levels. There are
three security levels available, each corresponding to different private key lengths. Higher
security levels feature longer private key lengths, which reduce the risk of theft. Security
level 1 is suitable for storing low-value IoT device data, while security level 2 is utilized
for wallet transactions and high-value IoT devices. For transactions requiring the utmost
security, such as exchanges, security level 3 is employed.

There are five main steps in the transaction sending process, which are described in
detail as follows:

1. Generate transaction information:

The first step is to create a single transaction. You must specify an Address and a Value
for each transaction. You can also define a Tag to classify different transactions. Message
is the message content of the transaction. In zero-value transactions, the Message is used
to trace the root address, and a Timestamp is automatically generated by IOTA. To send
a valuable transaction, at least two IOTA transaction messages are required; one with a
positive value to allow the receiver to obtain encrypted currency, and one with a negative
value to allow the sender to deduct the transferred amount.

2. Package into Bundle:
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A Bundle is a collection of transactions. After the transaction information is generated,
all transactions will be packaged into Bundles. The sum of the Value of all transactions in the
Bundle must be zero, and the Bundle also has a unique address for querying transactions.
After the packaging is complete, use the Seed to generate the private key, and use the
private key to sign the Bundle.

3. Choose two Tips:

The POW calculation must be performed before the transaction is attached to the
ledger. The object of performing POW is in the Tangle, using Markov chain Monte Carlo
(MCMC) to randomly select two Tips, called Branch and Trunk, and then add the Hash of
the two Tips to the Bundle.

4. Do proof of work:

Perform POW (proof of work) operation on the selected two Tips, and then append
the calculated Nonce value to the Bundle.

5. Broadcast to the Tangle network:

After verifying other transactions, the Bundle is broadcast to the Tangle for storage,
and the new transaction is Tips, waiting to be verified by others.

2.2. Signature and Verification

As depicted in Figure 1, the signature is generated during the Bundle generation
process, where the Bundle is signed to validate ownership, and the resulting signature is
appended to the Signature Fragment within the Bundle. To ensure the security and integrity
of the signature, the Hash value of the Bundle is first obtained, and the private key is derived
from the Seed using WOTS. The length of the private key varies depending on the chosen
security level. For the lowest security level, the private key length is 27 × 81 Trytes. The
private key is divided into segments, with each segment consisting of 81 Trytes. Unequal
hash operations are performed on these segments based on the Hash value of the Bundle.
By converting the Bundle Hash into its decimal representation, an integer between−13 and
13 is obtained. This integer is then subtracted from 13, and the resulting values are hashed
onto the segments. The combination of these hashed values constitutes the signature. It is
worth noting that higher security levels result in longer private keys and correspondingly
longer signatures. As illustrated in Figure 1, the first and second Trytes of the Signed Data
(Normalized Bundle Hash) are represented by the letters L and W, respectively, with their
corresponding decimal values being 12 and −4. Subtracting these values from 13 yields 1
and 17, respectively, indicating that Segment 1 undergoes one sponge function calculation
and Segment 2 undergoes seventeen sponge function calculations. Once all the values are
integrated, the resulting combination forms the signature.
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The node verifies the signature in the transaction through the Bundle Hash and
address. The method is similar to the signature. First, obtain the value of the Bundle Hash,
and then convert it to a decimal. Then add 13 to each Tryte value, and then each signature
fragment in the signature corresponds to the result of the Bundle Hash operation, and the
number of hash operations is different. Finally, combine the hash values of the signature
fragments and perform two hash operations to obtain the transaction address. Verify that
the address of the Bundle is consistent with this address to know whether the signature is
correct. Because the address generation method is also WOTS, in the step of the private
key, the segment is subjected to 26 sponge function operations, and the 13 − d (decimal
value) operation is performed when signing, and 13 + d (decimal value) is performed
again during verification. The result of 13 − d + 13 + d is 26 sponge operations. This
method can achieve the purpose of signature verification without leaking the private key
and seed. As shown in Figure 2, the decimal places of the first two Trytes of Signed Data
are 12 and −4, and the values after adding 13 are 25 and 9. After 25 and 9 operations, the
private values of Segment 1′ and Segment 2′ are obtained. Key hash value. After all the
fragments are merged and hashed, the address can be obtained. If the addresses match, the
transaction is valid.
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2.3. Proof of Work

Proof of Work (PoW) is a cryptographic process used to demonstrate that a problem
has been solved, granting the right to write data into the ledger. These problems are
challenging to solve, but their correctness can be easily verified. PoW is employed to
safeguard the network against spam attacks, as the associated computational effort incurs
a certain cost. In IOTA, PoW is not performed by miners but rather delegated to nodes for
execution by individuals initiating transactions. Prior to writing data into the ledger, every
node must execute PoW. As illustrated in Figure 3, the Nonce value consists of 81 Trytes
within the transaction message. To carry out PoW, the Nonce value must be randomly filled
in, and the transaction message, including the Nonce, is converted into a Trits format for
hashing operations. The resulting Minimum Weight Magnitude (MWM) of the final Trit
sequence must be zero. The difficulty of achieving MWM varies based on the network. In
the main network, the MWM is set to 14, meaning that the next 14 Trits after PoW execution
must be zero. In the test network, the MWM is nine. When the transaction initiator node
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completes PoW and broadcasts the transaction to other nodes for storage, these nodes
independently perform the calculation using the provided Nonce value. If the calculation
result satisfies the MWM requirement, the transaction can be written into the Tangle.
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2.4. Channel

MAM’s Channel is like streaming media. Publishers can publish messages regularly,
viewers can receive messages through subscriptions, and only the owner can publish
messages. In IOTA, this owner is the seed owner. If the Seed is stolen, the attacker can
publish messages at will. There are three modes in the Channel to control the message
flow, namely Public, Private, and Restricted. In the Public mode, everyone can directly
obtain the message content while in the Private message content, only the owner of the
Seed can unlock the encrypted content. In the Restricted mode, encrypted content can be
unlocked by using a key called Sidekey. By sharing the Sidekey, confidential information
can be easily opened by specific people for viewing. The address generation methods of
the three modes are not the same. Although they all use the Merkle-tree Signature Scheme,
they are different in the last Root. The detailed address is generated as follows:

1. Public: Address = Root.
2. Private: Address = hash (Root), hidden messages are decrypted using Root.
3. Restricted: Address = hash (Root), hidden messages are decrypted using Sidekey.

2.5. Sponge Function

The sponge function is a cryptographic algorithm. It uses a limited state to receive
input bit streams of any length. After the data are “absorbed” into the sponge, the desired
result is “squeezed out”, and then it can satisfy any Length of the output. Sponge function
can be divided into two stages, namely Absorbing and Squeezing. The information is
first input and compressed repeatedly, and then the result is repeatedly extruded. As
shown in Figure 4, the values M0~M3 need to be input; after inputting M0, go through the
calculation of XOR and function, then input the value of M1, and repeat the calculation
until all the values are counted. Then when the value is taken out, it will go through the
function calculation again to obtain the value of Z0. If the length is not enough, continue
the calculation until the required length is obtained.
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3. Implementation
3.1. Method

The proposed study will employ a research design focused on evaluating the im-
plementation and execution of data preservation from industrial automation and control
systems to the IOTA DAG technology within the context of Industry 4.0/5.0.

1. Research Design: The research design will be based on a practical implementation
and execution approach, aiming to assess the feasibility and effectiveness of utilizing the
IOTA DAG technology for data preservation in industrial automation and control systems.
The design will involve setting up a testbed or simulation environment to simulate real-
world scenarios and evaluate the performance of the proposed solution.

2. Data Collection: Data collection will involve capturing sensor data from industrial
automation and control systems. The specific environmental parameters and performance
metrics to be collected will be determined based on the objectives of the study. The collected
data will be securely transferred and stored using the IOTA DAG technology, ensuring
data integrity throughout the process.

3. Implementation and Execution:
The proposed solution for data preservation using the IOTA DAG technology will be

implemented and executed within a testbed or simulation environment. This will involve
designing and deploying the necessary infrastructure, configuring the sensor networks,
and integrating the IOTA DAG technology. The execution phase will focus on monitoring
and evaluating the performance of the data preservation process, assessing factors such as
scalability, efficiency, and cost-effectiveness.

By adopting a practical implementation approach and focusing on the evaluation of
the IOTA DAG technology for data preservation, the study aims to provide insights into the
feasibility and effectiveness of this solution in industrial automation and control systems
within the Industry 4.0/5.0 context. The system designed in this paper is divided into three
main members: Base Station, Cluster Head, and Sensor Node. The hardware configuration
of the system is as follows.

3.2. Base Station

The base station is divided into two parts, namely Gateway and IOTA nodes. The Base
Station runs on the Windows 10 operating system and is equipped with Intel’s i7 processor
and 16G of memory. The Proxy Server run by Gateway is written in node.js language,
while IOTA nodes are set up using Hornet, and only the 15,600 Port is open for external
node synchronization. In the data storage part, use Chronicle to store the data in Scylla’s
NoSQL database.

Because MAM data upload must choose a website with SSL/TLS standards, the Base
Station must apply for a Domain Name and generate a certificate. To set up a node, you
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must first download the public account snapshot from the IOTA website, then select a fixed
node, and wait for the node to complete synchronization before uploading data to the node.

3.3. Cluster Head

Cluster Head uses a Raspberry Pi 4/8G device with a network card, as shown in
Figure 5. The operating system uses a Linux system and uses the version of ubuntu-20.04.2-
preinstalled-server-arm64+raspi. Cluster Head also uses node.js to write, uses mosca’s
suite to run MQTT Server, and uses IOTA’s node.js Client Library to encrypt and sign data.
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3.4. Sensor Node

Sensor Node uses the development version of Arduino Nano 33 IoT with 256 KB of
CPU Flash Memory and 32 KB of SRAM. And the part of the sensor that uses the RFID
Reader of RC522, as shown in Figure 6, uses the C/C++ language to write the program.
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3.5. Gateway

The Gateway in the Base Station is responsible for configuring new identity data for
the new device, as shown in Algorithm 1. When a new device wants to join the network, it
will first indicate whether it is Cluster Head or Sensor Node, and then obtain the latest data
from Channel 3, and determine whether the new device is in the blacklist. If everything is
correct, Gateway will configure a new AES key and ID for the new device and obtain the
whitelist of the network from Channel 2, and then append the ID of the new device to the
whitelist and upload it to Channel 2.
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Algorithm 1: New Device.

Input: field, ch, information
Output: device_id, encryption key
count = 2
tag = SECONDCHANNEL
mac← get address f rom in f ormation
blacklist← f etch mam data f rom channel 3
If mac in the blacklist then

return f ailed
else

f etchdata← f etch mam data f rom channel 2
ID ← generate random number f or new device If f ield is cluster then

generate cluster key by hash(BSkey ||ID
else if f ield is sensor then
generate sensor key by hash(BSkey ||ch ||ID)
end if
channelState← read channel detail f rom channel2.json
channelState.count = count
newdata← pack ID to f etchdata
message← createmessage(channelState, newdata)

mamAttach(message, 3, 14, tag)
Strore the mam root to channel2.json

end if
return ID, key

Assuming that the wireless sensor network has a detection tool for malicious devices,
when a malicious device is detected, the Blacklist program can be called, as shown in
Algorithm 2. Pass in the ID and MAC address of the malicious device, then obtain the
latest blacklist from Channel 3 and obtain the latest network identity list from Channel 2.
Then record the ID, MAC, and time of the malicious device on the blacklist and upload it
to Channel 3. Finally, the malicious device is removed from the list of Channel 2 and then
re-uploaded to Channel 2, and the latest root is stored in channel2.json.

Algorithm 2: Blacklist.

Input: id, mac
Output: root
count = 3
tag = THIRDCHANNEL
blacklist← f etch mam data f rom channel 3
f etchdata← f etch mam data f rom channel 2
newlist← pack id and mac to blacklist
channelState← read channel detail f rom channel3.json
channelState.count = count
message← createmessage(channelState, newlist)
mamAttach(message, 3, 14, tag)
Strore the mam root to channel3.json
If id is in f etchdata then

newdata← remove id f rom f etchdata
channel2← read channel detail f rom channel2.json
channel2.count = 2
msg← createmessage(channelState, newdata)
mamAttach(msg, 3, 14, ”SECONDCHANNEL”)
Strore the mam root to channel2.json

end if
return mam root
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As shown in Algorithm 3, when the Cluster Head wants to register the connection identity
data, it will send the Cluster Head ID and encrypted data to the Gateway. Then Gateway
will use the Cluster Head ID and its own key to perform MD5 operations and use the first 16
Digest as the decryption key and the last 16 Digest as the IV of the AES CBC. Then use the
Key and IV to unlock the encrypted content to obtain the timestamp and the identity ID. After
the Gateway verifies that the Cluster Head identity is correct and the Channel 2 list exists, a
temporary certificate and the validity of the certificate will be generated. Then use the key and
IV of the Cluster Head to encrypt the certificate data and send it back to the Cluster Head.

Algorithm 3: Register.

Input: CHID, encryptdata
Output: BSID, return_data
return_data = ““
concat_id← BSkey concatenate with CHID
SKey← MD5 hash(concat_id)
key← get f irst 16 digest f rom SKey
iv← get last 16 digest f rom SKey
content← AES CBC decrypt(encryptdata, key, iv)
TS1← content XOR CHID
If TS1 is timeout then

return f ailed
else

f etchdata← f etch mam data f rom channel 2
If CHID is not in f etchdata then

return f ailed
else

TE← compute the overdue time
Pi← MD5 hash the value o f (CHID||BSID||TE)
TC ← MD5 hash the value o f (Pi||BSkey)
phrace← package TC, Pi, TE, and the timestamp TS2
return_data← AES encrypt(phrase, key, iv)

end if
end if
return return_data

The logged-in Pseudocode is shown in Algorithm 4. The Cluster Head will send
the certificate-related data to the Gateway for identity verification and at the same time
send the first root data of the MAM and the decrypted sidekey to the Gateway. When the
Gateway receives the message, it will verify whether the certificate has expired and whether
the Cluster Head has the correct certificate data. Then the Gateway will generate the AES
CBC Key and IV and decrypt the encrypted content and, at the same time, verify whether
the timestamp is within a reasonable transmission time. Finally, the MAM information
of the Cluster Head is recorded in Channel 1, which is used to unlock the MAM data
stream uploaded by the Cluster Head. Then Gateway stores the latest root of Channel 1 in
channel1.json and records the IP, sidekey, and TE of the Cluster Head in whitelist.json.

In the part of secure communication, because the Cluster Head has been authenticated
during the previous registration and login, the secure communication does not verify too
much information; it only confirms whether the IP of the Cluster Head is in the whitelist
and whether the validity of the certificate of the Cluster Head has expired. If it is correct, it
will be transferred to the IOTA node of the Base Station, as shown in Algorithm 5.

3.6. Raspberry pi

Algorithm 6 is the Pseudocode of the Cluster Head. The Cluster Head will receive the data
passed by the Sensor Node and use the ID of the Sensor Node and its own Key to perform
the MD5 hash function calculation. Then the first 16 Digests of the generated value are used
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as the Key, and the last 16 Digests are used as the IV. Then the Key and IV are calculated by
the AES CBC to obtain the encrypted content of the Sensor Node. When it is confirmed that
the encrypted content of the Sensor Node can be correctly unlocked and the timestamp is in
line with the upload delay, the Cluster Head will package the sensor data and send it to the
3000 Port of the Base Station so that the Gateway will forward the packet to the IOTA node for
upload. Finally, the Cluster Head will store the latest Root data in channel.json.

Algorithm 4: Login.

Input: CHID, encryptdata, C, TE, R, P
Output: BSID, confirm
IP← get ip address f rom TCP/IP
If TE is timeout then

return f ailed
end if
P∗ ← concatenate BSID, CHID, TE
If P 6= P∗ then

return f ailed
end if
Compute TC by MD5 hash(P ||BSkey)
C∗ ← MD5 hash(CHID ||TC ||R)
If C 6= C∗ then

return f ailed
else

concat_id← BSkey concatenate with CHID
SKey← MD5 hash(concat_id)
key← get f irst 16 digest f rom SKey
iv← get last 16 digest f rom SKey
content← AES CBC decrypt(encryptdata, key, iv)
TS3← get timestamp f rom content
If TS3 is timeout then

return f ailed
else

sidekey← get sidekey f rom content
root← get f irst root f rom content
Store IP
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TE to whitelist.json
rootKey← MD5 hash(CHID ||sidekey)
mam publish(root, sidekey)
Store mam publish root to channel1.json

end if
end if
return con f irm← true

Algorithm 5: MAM publish.

Input: mam transaction data
Output: forward transaction to hornet node
IP← get ip address f rom TCP/IP
If IP is not in the whitelist.json then

return f ailed
else

TE← get TE f rom the whitelist.json
If the TE is timeout then

return f ailed
else

Forward to 14265 port where the hornet is located
end if

end if
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Algorithm 6: Cluster Head.

Input: SID, mqtt_data
seed← get mam seed f rom con f ig
sidekey← get mam key f rom con f ig
TC ← get temporary con f irm f rom storage
TE← get time expired f rom storage
If not register then

call base station port 3001 to register
end if
If not login then

create new channel by using seed, sidekey
create mamMessage by channelState, TC, TE
call base station port 3002 to login

else
If TE is timeout then

login again
else

concat_id← CHkey concatenate with SID
SKey← MD5 hash(concat_id)
key← get f irst 16 digest f rom SKey
iv← get last 16 digest f rom SKey
content← AES CBC decrypt(mqtt_data, key, iv)
channel ← read channel detail f rom channel.json
msg← createmessage(channelState, content)
mamAttach(msg, 3, 14, ”CLUSTERHEAD”)
Strore the mam root to channel.json

end if
end if

3.7. Arduino Nano

Algorithm 7 is the upload process of the Sensor Node. The Sensor Node can collect
data on a regular basis, but because the experimental device is an RFID Reader, the Sensor
Node will passively obtain the data. When the Sensor Node obtains the data, it will obtain
the Key and IV from the configuration file and convert the sensor data to hexadecimal and
then encrypt it with AES CBC. Then it is sent to the Broker of the Cluster Head through the
MQTT protocol. After the Subscriber of the Cluster Head obtains the Sensor Node data
from the Broker, the data will be packaged and uploaded to the Tangle ledger.

Algorithm 7: Sensor Node.

Input: sensor data
Output: SID, mqtt_data
iv← get AES iv f rom con f ig
key← get AES encryption key f rom con f ig
If WiFi is not connected then

reconnect()
end if
If MQTT broker is not connected then

reconnect()
end if
While read the RFID tag f rom reader do

hexdata← change data to hex string
TS4← get timestamp o f sensor node
encdata← AES CBC encrypt(TS4, hexdata, iv, key)
publish(SID, encdata) to cluster head

end while
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4. Execution Results

The execution results depicted in Figures 7–12 provide valuable insights into the im-
plementation and functionality of the proposed system. Figure 7 showcases the verification
screen for Gateway registration and login, displaying the successfully logged-in IP of the
Cluster Head. Subsequently, the MAM message is forwarded to the IOTA node. In Figure 8,
the Cluster Head execution and login screen illustrate the encrypted message generated
during registration and login, along with the screen displaying the first MAM message
stream sent after a successful login. Figure 9 demonstrates the process in which the Cluster
Head receives the message from the sensor node. Upon receiving the sensor node message,
the Cluster Head repackages it and uploads it to the Tangle.
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Figure 10 portrays the sensor node reading the sensor data. After receiving the sensor
data, the Arduino Nano encrypts the packet and forwards it to the Raspberry Pi via MQTT.
Once the sensing data are successfully uploaded to the Tangle, users can utilize the IOTA
Tangle Explorer to query the recorded data. Furthermore, Figure 11 presents the First Root,
certificate information, certificate validity, and hashed sidekey of the Cluster Head in WSNs.
Figure 12 showcases the Dashboard of the node in the Base Station, enabling users to view
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the current running status. The “Synced” indication on the node signifies that it has been
operating synchronously with the IOTA network.

These experimental results provide visual representations of the system’s functionality
and data flow, highlighting the successful execution of key processes such as registra-
tion, login, message transmission, encryption, and data recording. The figures offer a
comprehensive understanding of the system’s operation, further supporting the proposed
methodology’s effectiveness and demonstrating the feasibility of preserving data from
industrial automation and control systems using IOTA technology.
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5. Conclusions

Numerous achievements have been made in the application of IOTA in industrial
automation and control systems, with several papers proposing solutions to integrate
IOTA into these systems. However, these solutions often overlook the constraints faced by
wireless sensor networks, where many sensor nodes have limited computing power and
storage capacity. Particularly in industrial control networks, sensing data must traverse
multiple network layers before being uploaded to the distributed network, necessitating
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the protection of security and privacy in the intermediate stages. The IOTA Foundation has
proposed solutions for IoT devices, including the design of hardware devices and firmware
such as CryptoCore and STM X-Cube-IOTA1. Nevertheless, the lack of hardware support
poses a hindrance to the development of industrial automation and control systems as these
devices still require substantial computing power. Although lightweight Bee nodes have
been enhanced by IOTA for data upload actions, not all hardware is capable of supporting
these nodes. Therefore, this paper focuses on conducting identity authentication for
resource-constrained sensing devices and securely uploading their sensing data to the
Tangle for storage. The implementation of IOTA in industrial automation and control
systems is demonstrated in this paper, with satisfactory execution results.

By addressing the challenges of scalability, security, and privacy in existing centralized
architectures, the proposed solution holds promising implications for various stakeholders
in this domain.

1. Enhanced Scalability: The utilization of the IOTA DAG technology allows for
improved scalability in managing a large number of sensors deployed in industrial au-
tomation and control systems. The decentralized nature of the DAG structure enables
efficient communication and verification among the sensors, fostering a more scalable and
resilient network.

2. Strengthened Security and Privacy: The integration of the IOTA DAG technology
provides enhanced security and privacy measures for data preservation. The utilization of
a distributed ledger ensures data integrity and confidentiality during the transmission pro-
cess, mitigating vulnerabilities associated with centralized approaches. This has significant
implications for ensuring the confidentiality and integrity of sensitive data in industrial
automation and control systems.

3. Transparent and Immutable Data Record: The adoption of the IOTA DAG tech-
nology enables the establishment of a transparent and immutable record of the collected
data. This has implications for auditability, compliance, and trustworthiness in various do-
mains, such as supply chain management and regulatory compliance, within the Industry
4.0/5.0 context.

4. Potential Cost Reduction: The implementation and execution of data preservation
using the IOTA DAG technology have the potential to reduce costs associated with import-
ing blockchain technology into the Internet of Things (IoT). The decentralized nature of the
DAG structure eliminates the need for intermediaries, resulting in potential cost savings
for the stakeholders involved.

Ultimately, these implications can drive the widespread adoption of decentralized and
secure approaches in the industrial automation and control systems domain, unlocking
their full potential and benefits.
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