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Abstract: Reservoir rocks of the Pearl River Mouth Basin’s Lufeng Sag have low porosity (average
porosity 12.6%) and low permeability (average permeability 16.5 mD), requiring hydraulic fracturing
to obtain economic production of oil and gas. To contribute to the understanding of these reservoirs,
and to promote successful production in the region, we analyzed the mechanical properties of
tight sandstone. Moreover, we introduced the shear/tensile strength factor, in combination with
the fracture toughness and horizontal stress difference coefficient, as an innovative approach to
characterize the ease of forming a complex fracture network after reservoir fracturing. Based on
this, we established a fracability evaluation model suitable for offshore low-permeability sandstone
reservoirs by an analytic hierarchy process from the perspective of whether the reservoir can form an
effective transformation volume and complex fracture network after fracturing. The results indicate
that the primary minerals of the target reservoir are quartz and clay minerals, and the natural fractures
are not developed. The mechanical properties exhibit a high Young’s modulus (ranging from 30.4
to 34.4 GPa) and high compressive strength (with cohesion between 41 and 45 MPa and an angle of
internal friction between 31.0 and 33.5◦). The relatively low tensile strength and fracture toughness
values are conducive to fracture initiation and extension during the fracturing process. Through
the fracability evaluation model constructed in this paper, the depth interval at 4155.1–4172.1 m is
identified as a high-quality fractured layer. The results of this study not only provide theoretical
guidance for target well and formation selection in the Lufeng Sag, but also have important practical
implications for increasing oil and gas production from tight sandstone reservoirs.

Keywords: low-permeability reservoirs; tight sandstone; mechanical properties; fracability evaluation

1. Introduction

The development of tight reservoirs has positive implications for mitigating energy
security issues. The subject of this paper is the Wenchang Formation of the Lufeng 14-4 field.
The Lufeng 14-4 oil field is located in the Lufeng Sag in the Pearl River Mouth Basin,
approximately 216 km south-east of Hong Kong, with an overall NWW–SEE spreading
pattern that is adjacent to the northern fault zone to the north and separated from the
Hanjiang Sag by the Haifeng Uplift to the northeast, the Dongsha Uplift to the south, and
the Huizhou Sag to the southwest. The stratigraphic amplitude is highly variable, the
oil layers are deeper, and the structure is more complex. The Wenchang Formation is a
terrestrial deposit with rapid longitudinal and transverse changes in the sand body, and the
oil formation is affected by the changes in the sand body and the cutting of faults, resulting
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in poor lateral comparability. The Wenchang Formation, as a whole, is interpreted by logs
to have a porosity of 10.2% to 14.9% (average porosity 12.6%) and a permeability of 2.4 mD
to 52.6 mD (average permeability 16.5 mD), which is generally a low-porosity and extra-low
to low-permeability reservoir. The Wenchang Formation, as the main formation for oil and
gas exploration in the middle-deep Pearl River Mouth Basin, is rich in oil and gas resources.
However, the lack of systematic studies on the impact of the various sub-depressional
formations, depositional environments, and diagenetic environments on the reservoirs has
restricted the exploration process (e.g., Qingming, 2021) [1].

Understanding reservoir properties (including evaluation of the fracability) and un-
derstanding the formation and geological evolution of hydrocarbon reservoirs is critical not
only for successful oil and gas exploration and production, but is also central to basin-scale
petroleum systems analysis and successful scientific understanding and characterization
of a region’s active petroleum systems (e.g., Magoon & Dow, 1994; Burton et al., 2019;
Schulz et al., 2021) [2–4].

Understanding basin-scale petroleum systems is critical in evaluating the prospects of
conventional and unconventional reservoirs and can substantially contribute to exploration
success (e.g., Bradshaw, 1993; Weimer et al., 1998; Mello et al., 2021) [5–7]. A petroleum
systems approach encompasses both assessment of the present day reservoir properties (as
explored in our work here), as well as understanding of the sedimentary basin evolution,
ranging from deep-water deposition of sand during varying tectonic and climate states
(e.g., Bjørlykke, 2014; Burton et al., 2023; Marghani et al., 2023) [8–10], organic matter
deposition and subsequent microbial and thermal degradation (e.g., Peters & Cassa, 1994;
Hackley & Cardott, 2016) [11,12], the influence of tectonism (including salt tectonism) on
reservoir properties (e.g., Hollis, 2011; Soliva et al., 2016; Burton & Dafov, 2023) [13–15],
and the general thermal history, fluid movement, and history of subsidence, erosion, and
uplift of a prospective hydrocarbon basin (e.g., Hantschel & Kauerauf, 2009; Allen & Allen,
2013) [16,17]. Overall, much remains to be understood about the development, evolution,
and properties of tight sandstone reservoirs (e.g., Shanley et al., 2004) [18].

Fracability evaluation is an important reference basis and key indicator for whether the
reservoir can be effectively fractured to obtain economic production of oil and gas [19,20].
Most of the current fracability evaluations are based on shale reservoirs, while few studies
have been conducted on tight sandstone reservoirs. Enderlin et al. (2011) argued that
material brittleness and toughness determine rock fracability and used Young’s modulus
and Poisson’s ratio to simply characterize the fracability [21]. Chong (2010) introduced
the brittleness index (BI) to characterize fracability and argued that fracability is strong
where the BI is large [22]. However, the subsequent field practice showed that the places
with a large brittleness index did not correspond to high-quality fractured layers one-by-
one; to overcome the limitation of single factor, De et al. (2022) took fracture toughness
into consideration in the fracability evaluation of sandstone [23]. Enderlin et al. (2011)
considered factors such as ground stress anisotropy, natural fracture orientation, combined
with logging data, compressive strength, and other mechanical parameter to discuss a
comprehensive fracability evaluation index [21]. Fang et al. (2023) used hierarchical
analysis to specify the influencing factors of fracturing, with shale brittleness and quartz
content as reservoir factors, and natural fractures and diagenesis as geological factors [24].
Mullen et al. (2012) calculated the fracability index of shale by considering the sedimentary
stratigraphy, stratigraphic properties, mineral distribution, weak surface orientation, and
ground stress field [25]. Junliang et al. (2013) established a fracability evaluation method
by using three rock mechanical parameters, Young’s modulus, Poisson’s ratio, and uniaxial
tensile strength [26]. Li et al. (2022) and Bai et al. (2021) established a fracability evaluation
method for shale gas using three aspects, including shale brittleness, fracture toughness,
and natural weak surface, and divided it into three levels of fracability [27,28].

In light of the unknown reservoir properties of the Wenchang Formation in the
Lufeng Sag and the absence of a systematic fracability evaluation model, this paper con-
ducts experiments on microstructural characterization and mechanical testing. It is sug-
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gested that the fracability of tight sandstone reservoirs should take into account the size
of the reservoir transformation volume and the difficulty in forming complex fracture
networks. The brittleness index, tensile/shear strength factor, fracture toughness, and
horizontal stress difference coefficient are proposed as fracability evaluation indexes of
tight sandstone. It provides a theoretical approach as to whether the target reservoir can be
effectively fractured.

2. Materials and Methods
2.1. Sample Preparation

Samples were collected from the Wenchang Formation in the Lufeng Sag at a depth of
4155.1–4172.1 m.

2.2. XRD Analysis

After grinding the rock sample to a particle size of less than 1 mm, the clay is separated
by centrifugation and the oriented flakes are prepared. XRD measurements were performed
on a MinFlexΠ polycrystalline X-ray diffractometer. A basic framework diagram of this
assembly can be seen in Figure 1, which included an X-ray generator with a power of 3 KW,
a ceramic X-ray tube with a power of 1.2 KW, and a Cu target vertical goniometer Q/2Q
with a goniometric accuracy of 0.0001 degrees.
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Figure 1. Basic framework diagram of the equipment.

2.3. SEM

The specimens were mounted in the device and evacuated. The samples were imaged
using a TM3030 benchtop electron microscope operating at 5 kev and 15 kev. At an
accelerating voltage of 5 kev, the amplification is 100×, 200×, and 1000×. At an accelerating
voltage of 15 kev, the amplification is 3000×.

2.4. Triaxial Compression Experiment

The cores need to be standardized to the International Society of Rock Mechanics standards
prior to the experiment, and the size of the processed rock samples is φ25 mm × 50 mm. A
diagram of the standard rock sample and a portion of the processed rock sample is shown
in Figure 2. Triaxial compression tests were then carried out using the rock mechanics
device TAW-2000 Deepwater Pore Pressure Servo Experiment System. The strain of the rock
samples was measured by LVDT differential transformer type displacement transducers.
The load and strain signals during the experiment are automatically collected, stored, and
processed by the computer-controlled HP305A data acquisition control system.

2.5. Brazilian Splitting Test

The Brazilian splitting test is currently the most widely used method for testing tensile
strength due to the advantages of the relatively simple specimen preparation and test
procedure [29–31]. The rock sample is made to meet the standard dimensions for the
test (Figure 3a) and is then fitted into the mold and fixed into the experimental set-up
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(Figure 3d). The Brazilian splitting experiments were also carried out using the rock
mechanics device TAW-2000 Deepwater Pore Pressure Servo Experiment System with a
constant displacement loading pattern until the rock sample underwent tensile damage.
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2.6. Fracture Toughness Test

Disc-shaped specimens were used to test type I and II fracture toughness [32,33], as in
Figure 4. A long straight seam of length 2a (10–12 mm) is prefabricated in the center of the
sample to ensure that the ratio of the prefabricated seam to the radius of the sample (a/R)
is less than 0.3. Fracture toughness tests were performed on the rock mechanics device
TAW-2000 Deepwater Pore Pressure Servo Experiment System. During the experiment,
the prefabricated seam is loaded at an angle (0◦ or 30◦) to the direction of loading and a
constant displacement loading pattern is used until the rock sample breaks.
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2.7. Acoustic Emission Experiment

The acoustic emission kaiser effect experiment allows for the determination of the
overburden pressure, the maximum horizontal principal stress, and the minimum horizon-
tal minimum principal stress to which the core is subjected in the reservoir state [34–37].
The rock samples required for the experiment need to be cored from different directions,
as shown in Figure 5. The experimental system consists of a rock mechanics test system
and a PAC acoustic emission test system, as shown in Figure 6. The rock mechanics test
system is responsible for applying the load and the acoustic emission test system collects
the acoustic emission signals generated inside the core during the loading process.
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3. Fracability Evaluation

Based on the research on the fracability system of tight sandstone and the development
practice, fracability is influenced by brittleness index, fracture toughness, natural fractures,
ground stress, and other factors [38–41]. The fracability model constructed in this paper
integrates the ability to form an effective reformed volume and complex fracture network
after fracturing, as shown in Figure 7. Combined with the mechanical characteristics of
the region, the brittleness index, shear/tensile strength factor, fracture toughness, and the
horizontal difference stress were preferred, taking into account that natural fractures are
not developed in Lufeng Sag. Among them, the brittleness index mainly affects the volume
of the reservoir reformation, and the shear/tensile strength factor, fracture toughness, and
the horizontal difference stress coefficient mainly affect the ease of the complex fracture
network formation after fracturing [42].

3.1. Influencing Factors of the Fracability Index (FI)
3.1.1. Brittleness Index

The brittleness index of the rock is the main factor affecting the fracability of the
rock and is directly related to the effectiveness of fracturing. The greater the brittleness
of the rock, the more microfractures that are induced near the main fracture produced by
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hydraulic fracturing, and the more likely they are to form a complex fracture network. There
is no clear definition of what brittleness is, and there are different methods of calculation.
The two most widely used methods of calculating the brittleness index are based on mineral
composition and elastic parameters [43–47].
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The former Is based on the conten” of ’Iittle minerals in the rock and is calculated as
in Equation (1) [46]. Brittle minerals mainly include calcite, quartz, and feldspar [46]. The
latter is based on the elastic modulus and Poisson’s ratio. A high elastic modulus and low
Poisson’s ratio often imply high brittleness. According to the Rickman brittleness index
evaluation method [47], Young’s modulus and Poisson’s ratio are normalized separately,
and the brittleness is described by the mean value of both, as in Equation (4) [47].

BW =
wqtz + w f eld + wcal

wtot
(1)

En =
E− Emin

Emax − Emin
(2)

µn =
µmax − µ

µmax − µmin
(3)

BE =
En + µn

2
(4)

To reduce the errors caused by the limitations of the two methods, the rock brittleness
is calculated by Equation (5).

BI =
BW + BE

2
(5)

where BI, BW , and BE are the integrated brittleness index, mineral composition-based brit-
tleness index, and elastic parameter-based brittleness index, respectively; wqtz, w f eld, wcal ,
and wtot are the quartz, feldspar, calcite, and total mineral composition masses, respectively;
En and µn are the normalized elastic modulus and Poisson’s ratio, respectively; E, Emax, and
Emin are Young’s modulus, the maximum Young’s modulus, and the minimum Young’s
modulus, respectively; µ, µmax, and µmin are Poisson’s ratio, the maximum Poisson’s ratio,
and the minimum Poisson’s ratio, respectively.

3.1.2. Shear/Tensile Strength Factor

The ease of creating shear and tension joints during fracturing is important for the
formation of complex fracture networks. The rock is prone to tensile damage at a low
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confining pressure, while at a high confining pressure, it is mostly shear damage [48]. Shear
modulus and tensile strength have a significant effect on the fracturing effectiveness [49].
The greater the shear modulus, the smaller the tensile strength, and the easier the fracture
initiation. Accordingly, a shear/tensile strength factor is introduced to characterize the
ease of forming complex fracture networks, calculated as in Equation (7). The larger the
shear/tensile strength factor, the larger the fracability index.

G =
E

2(1 + v)
(6)

FS/T =
G

St × 103 (7)

where G is the shear modulus, GPa; E is the elastic modulus, Gpa; v is Poisson’s ratio;
FS/T is the shear/tensile strength factor, dimensionless; St is the tensile strength, MPa.

3.1.3. Fracture Toughness

Fracture toughness visually reflects the ability of a fracture to extend forward dur-
ing the fracturing process, which can characterize the ability of fracture extension after
fracturing [50]. The smaller the value of the fracture toughness, the less energy required
for hydraulic fracture extension and expansion, resulting in more induced fractures and
stronger fracability. It is generally accepted that the main types of fractures produced by
the fracturing process are type I and type II fractures. Thus, the normalized mean value of
fracture toughness measures its fracture toughness, as shown in Equation (8).

KC =
KIC−n + KII IC−n

2
(8)

where KC is the fracture toughness index; KIC and KI IC are fracture toughness values of type I
and type II, respectively; KIC−n and KII IC−n are the standardized fracture toughness values.

3.1.4. Horizontal Stress Difference Coefficient

The ground stress affects the direction and morphology of fractured fractures. Gener-
ally speaking, the larger the horizontal stress difference, the easier it is to form a single main
fracture that extends along the direction of the maximum horizontal principal stress [51].
Considering that the target reservoir is buried deep, the horizontal difference stress co-
efficient is applicable to represent the influence of horizontal stress difference on FI. The
calculation method is shown in Equation (9). A small difference coefficient of horizontal
stress is beneficial to reservoir fracturing.

Kσ =
σ1 − σ3

σ3
(9)

where Kσ is the difference coefficient of horizontal stress; σ1 and σ3 are the maximum and
minimum horizontal principal stresses, respectively.

3.2. Evaluation Method

In view of the small amount of data on evaluation factors, it is difficult to adopt an
objective evaluation method. We have used the Analytic Hierarchy Process (AHP) to
qualitatively and quantitatively evaluate reservoir fracability. The AHP can accurately
determine the respective weights of influencing factors and the model constructed is a
simple linear model [52,53]. Therefore, the fracability evaluation model constructed in this
paper can be initially defined as Equation (10).

FI = W1× BI + W2× FS/T + W3× KC + W4× Kσ (10)



Processes 2023, 11, 2135 8 of 18

3.2.1. Determination of Weights

Modelling by AHP can be broadly divided into 3 steps [54]. The detailed steps are
as follows:

Step 1. Establishment of recursive hierarchy

The factors influencing the FI of tight sandstone are clearly defined, and the hierar-
chical structure is divided into three layers, as shown in Figure 8. The target layer is the
characterization of FI for tight sandstone. The criterion layer is the reservoir reformation
volume and the ease of formation of complex fracture network after fracturing that affect
the FI of tight sandstone. The scheme layer is the specific parameters characterizing the cri-
terion layer, which mainly include the brittleness index affecting the reservoir reformation
volume and the parameters changing the ease of forming a complex fracture network after
fracturing are the shear/tensile strength factor, fracture toughness, and horizontal stress
difference coefficient.

Processes 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

The ground stress affects the direction and morphology of fractured fractures. Gen-
erally speaking, the larger the horizontal stress difference, the easier it is to form a single 
main fracture that extends along the direction of the maximum horizontal principal stress 
[51]. Considering that the target reservoir is buried deep, the horizontal difference stress 
coefficient is applicable to represent the influence of horizontal stress difference on FI. The 
calculation method is shown in Equation (9). A small difference coefficient of horizontal 
stress is beneficial to reservoir fracturing. 

1 3

3

Kσ
σ σ

σ
−=  (9)

where Kσ  is the difference coefficient of horizontal stress; 1σ   and 3σ   are the maxi-
mum and minimum horizontal principal stresses, respectively. 

3.2. Evaluation Method 
In view of the small amount of data on evaluation factors, it is difficult to adopt an 

objective evaluation method. We have used the Analytic Hierarchy Process (AHP) to qual-
itatively and quantitatively evaluate reservoir fracability. The AHP can accurately deter-
mine the respective weights of influencing factors and the model constructed is a simple 
linear model [52,53]. Therefore, the fracability evaluation model constructed in this paper 
can be initially defined as Equation (10). 

/1 2 3 4S T CFI W BI W F W K W Kσ= × + × + × + ×  (10)

3.2.1. Determination of Weights 
Modelling by AHP can be broadly divided into 3 steps [54]. The detailed steps are as 

follows: 
Step 1. Establishment of recursive hierarchy 

The factors influencing the FI of tight sandstone are clearly defined, and the hierar-
chical structure is divided into three layers, as shown in Figure 8. The target layer is the 
characterization of FI for tight sandstone. The criterion layer is the reservoir reformation 
volume and the ease of formation of complex fracture network after fracturing that affect 
the FI of tight sandstone. The scheme layer is the specific parameters characterizing the 
criterion layer, which mainly include the brittleness index affecting the reservoir refor-
mation volume and the parameters changing the ease of forming a complex fracture net-
work after fracturing are the shear/tensile strength factor, fracture toughness, and hori-
zontal stress difference coefficient. 

 

Figure 8. Framework diagram for the Analytic Hierarchy Process.

Step 2. Construction of a comparison matrix

According to the AHP method, a two-by-two comparison judgment matrix is con-
structed, and the characteristic roots and eigenvectors are calculated. The selected evalua-
tion parameters are compared and assigned values according to their influence on the FI of
tight sandstone. For example, Aij indicates the relative importance value of element i (Ai)
compared with element j (Aj). The detailed assignment rules are shown in Table 1.

Table 1. Scaling of the comparison matrix.

Aij Meaning

1 Ai is equally important as compared to Aj
3 Ai is slightly more important than Aj
5 Ai is more important than Aj
7 Ai is more strongly important than Aj
9 Ai is definitely more important than Aj

2, 4, 6, 8, Median of two adjacent judgments

Step 3. Determination of the weights and consistency of each factor

Weights are calculated by the geometric mean, sum–product, eigenvector, and least
squares methods, each of which does not differ significantly. Meanwhile, the consistency
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index (CR) is used to test the consistency of the judgment matrix. When the consistency
index is less than 0.1, the constructed judgment matrix is considered reasonable.

CR =
CI
RI

(11)

CI = (λmax − n)/(n− 1) (12)

λmax = ∑n
i=1
|Awi|
nwi

(13)

where λmax is the maximum eigenvalue of the comparison matrix, |A| is the value of the
comparison matrix A, n is the number of factors, CI is the general consistency index, RI is
the average random consistency index, CR is the consistency ratio, and wi is the weight of
the factor in row or column i of the comparison matrix.

3.2.2. Parameter Standardization

Due to the different magnitudes of the brittleness index, shear/tensile strength factor,
fracture toughness, and the horizontal difference stress coefficient, the effective range of
the values of each parameter will have a large deviation from the FI, and the parameters
need to be normalized when substituting into the model calculation [55].

The rock brittleness index and shear/tensile strength factor are proportional to the FI
and are positive indicators, which are normalized by Equation (14). The fracture toughness
and horizontal stress difference factor are negatively related to the FI and are normalized
by Equation (15).

Sp =
X− Xmin

Xmax − Xmin
(14)

Sn =
Xmax − X

Xmax − Xmin
(15)

where Sp is the standardization of positive indicators, Sn is the standardization of negative
indicators, X is the specific assignment of a factor, and Xmax and Xmin are the maximum
and minimum values of the factor.

4. Results and Discussion
4.1. Microstructure of Tight Sandstone

The microstructure of rocks determines the mechanical properties to a certain ex-
tent [56], and the development of microscopic fractures also has a significant impact on the
effect of reservoir modification. Accordingly, X-ray diffraction (XRD) mineral composition
analysis experiments and natural fracture electron microscopy scanning experiments were
conducted to study and analyze the microstructural characteristics of tight sandstone.

4.1.1. Mineral Composition

According to the X-ray diffraction experiment results of 24 rock samples, the com-
position minerals of Wenchang formation in Lufeng Sag are quartz, potassium feldspar,
plagioclase, calcite, pyroxenite, square zeolite, barite, and some rock samples contain small
amounts of dolomite and rhodochrosite (Figure 9). The XRD patterns of typical samples
are shown in Figure 10. The main minerals are quartz and clay minerals with an average
percentage of 51.13% and 29.7%, respectively. The high content of brittle minerals (calcite,
quartz, and feldspar) has a good foundation for fracability.
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Figure 9. Mineral composition of rock sample (note: each peak in the graph represents the specific
mineral content of each rock sample).
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4.1.2. Natural Fracture

The SEM results showed that the natural fractures in the target reservoir were not
developed; only a few intergranular micro-fractures were observed when the magnifica-
tion reached 1000× or more, and the fracture width was approximately 1 µm to 30 µm
(Figure 11). Therefore, the effect of natural fractures can be ignored in the fracability model
built for this region.

4.2. Mechanical Properties of Tight Sandstone

Knowledge of regional rock mechanics is an important prerequisite for development
planning and the selection of production enhancement methods. The Young’s modulus,
Poisson’s ratio, tensile strength, and fracture toughness all directly affect the formation of
the fracture pattern [57,58].
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Triaxial compression tests are used to obtain the elastic parameters (Young’s modu-
lus, Poisson’s ratio, and shear modulus) and strength parameters (compressive strength,
cohesion, and angle of internal friction) of rocks. The experimental results show that the
compressive strength and Young’s Modulus increase with the increase in the confining
pressure. In addition, the test rock samples show typical hard and brittle deformation
damage characteristics under different confining pressures, as shown in the stress–strain
curve (Figure 12). The data shows a modulus of elasticity of 30.37~30.86 GPa, Poisson’s
ratio of 0.24~0.28, and compressive strength of 187.99~212.13 MPa at a confining pressure
of 20 MPa. The modulus of elasticity is 31.1~31.92 GPa, Poisson’s ratio is 0.22~0.28, and
compressive strength is 216.35~251.59 MPa at confining pressure of 30 MPa (Table 2). The
rocks are mostly shear damaged and the damage characteristics are illustrated in Figure 13.
In addition, the shear damage parameters of the target reservoir rocks calculated by com-
bining the experimental results with the Mohr–Cullen shear damage criterion equation
are shown in Table 3. The cohesion and friction angle are 41~45 MPa and 31.0~33.5◦,
respectively, reflecting the high cohesion and denseness of the specimens.
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Table 2. Mechanical parameters of triaxial compression tests.

Well Depth
(m)

Confining
Pressure

(MPa)

Young’s
Modulus

(GPa)
Poisson’s Ratio Compressive

Strength (MPa)

4155.1–4172.1

30.37 0.28 212.13
20 30.86 0.28 187.99

30.52 0.24 201.86
31.28 0.28 251.59

30 31.10 0.26 216.35
31.92 0.22 222.1
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Table 3. Shear damage parameters of rocks in the target reservoir.

Well Depth (m) Lithology Cohesion (MPa) Angle of Internal
Friction (◦)

4155.1–4172.1
Tight sandstone 45.31 33.47
Tight sandstone 41.01 31.10
Tight sandstone 45.08 31.00

The results of the Brazilian splitting test showed that the tensile strength of the speci-
mens ranged from 3.63 to 4.63 MPa, with a mean value of 4.04 MPa, as shown in Table 4.
The overall low tensile strength was prone to tensile damage, which was conducive to the
extension of fractures after fracturing.

Table 4. Results of the Brazilian splitting test of rock.

Well Depth (m) Thickness (mm) Diameter to
Thickness Ratio Damage Load (N) Tensile Strength (MPa)

4155.1–4172.1

13.81 0.56 2309 4.34
13.65 0.56 2433 4.63
13.47 0.55 1990 3.85
13.61 0.56 2041 3.91
12.36 0.55 2309 4.49
14.03 0.57 1979 3.67
13.62 0.56 1886 3.63
12.11 0.54 1886 3.78

The results of the fracture toughness experiment showed that the type I fracture
toughness of the reservoir rocks in the target block ranged from 0.263 to 0.304 MPa·m1/2

with an average of 0.287 MPa·m1/2, and the type II fracture toughness ranged from 0.417 to
0.489 MPa·m1/2 with an average of 0.459 MPa·m1/2, as shown in Figure 14. The damage
pattern of the specimens after the fracture toughness experiments is shown in Figure 15.
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The fracture forms are cleavage damage (type I fracture toughness) and shear damage
(type II fracture toughness).
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Since fracture toughness testing is expensive, many scholars have used statistical
methods to establish relationships between fracture toughness and other physical and
mechanical parameters [59–61]. Based on the indoor experimental results, the relationship
between fracture toughness and tensile strength of the region is fitted, as shown in Figure 16.
In conclusion, the fracture toughness of the region is low, which favors fracture initiation
and extension.

The acoustic emission experiment results show that the overburden pressure, horizon-
tal in situ stress (max), and horizontal in situ stress (min) equivalent density of 4155.1-4172.1
m tight sandstone in the Wenchang Formation in Lufeng Sag are 1.25 g/cm3, 1.92 g/cm3,
and 1.57 g/cm3, respectively, as shown in Figure 17. The stress state of the block belongs
to normal faults, and the horizontal stress difference coefficient is less than 0.3, which is
conducive to the formation of a complex network of fractures.
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Figure 17. Results of the acoustic emission experiment.

4.3. Evaluation Results

The degree of influence of each parameter with reference to other literature, as well as
expert opinions, and the comparison matrix obtained is shown in Table 5.

Table 5. Comparison matrix.

Degree of Importance Brittleness Index Shear/Tensile Strength Factor Fracture Toughness Horizontal Stress
Difference Coefficient

Brittleness index 1 3 2 2

Shear/tensile strength factor 1/3 1 1/2 1/2

Fracture toughness 1/2 2 1 1

Horizontal stress
difference coefficient 1/2 2 1 1
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Based on the comparison matrix above, the sum–product method was used to obtain
the weights, and the calculation results are shown in Table 6.

Table 6. Weighting coefficients of the comparison matrix.

W1 W2 W3 W4 CI CR

0.42 0.12 0.23 0.23 0.0035 0.0039

According to the results of the analysis, the CR was 0.0138 < 0.1, which satisfied the
consistency test. The weights of the brittleness index, shear/tensile strength factor, fracture
toughness, and horizontal stress coefficient of variation were obtained as 0.42, 0.12, 0.23,
and 0.23, respectively. The fracability index can therefore be calculated by Equation (16).

FI = 0.42BI + 0.12× FS/T + 0.23× KC + 0.23× Kσ (16)

Combined with the laboratory experiment and relevant reports, the brittleness index,
shear/tensile strength factor, fracture toughness, and the horizontal difference stress co-
efficient of the Wenchang formation rocks in Lufeng Sag were calculated by applying the
quantification methods of the factors affecting FI in the above sections. The parameters were
substituted into the proposed model, and the calculation results are shown in Figure 18.
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Drawing on the grading standard of the fracability degree for rock by Yin [62], a com-
prehensive evaluation standard suitable for offshore low-permeability sandstone reservoirs
was established. It is considered that when the comprehensive FI is < 0.3, the fracability
of the tight sandstone reservoir is poor; when the comprehensive FI is between 0.3 and
0.5, the fracability is acceptable; when the comprehensive FI > 0.5, the fracability is good.
Hence, it can be inferred that 4155.1–4172.1 m of the Wenchang formation in Lufeng Sag is
a high-quality fractured layer with a good fracturing effect. This is supported by the fact
that the Wenchang formation of well A5 is due to come on stream in April 2022, with a
seven-fold increase in daily oil production after fracturing.

5. Conclusions

(1) The Wenchang formation in Lufeng Sag exhibits a mineral composition characterized
by “high quartz, high clay,” resulting in a high content of brittle minerals and a
high brittleness index. This geological characteristic favors the fracturing process,
facilitating the economic production of oil and gas.

(2) The rock mechanics of the Wenchang formation in Lufeng Sag are characterized by
a “high Young’s modulus, high compressive strength, high cohesion, and internal
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friction angle.” These attributes reflect the rock’s denseness. Additionally, the reservoir
exhibits low tensile strength and low fracture toughness, indicating its potential to
develop a complex fracture network after hydraulic fracturing.

(3) An Analytic Hierarchy Process-based fracability evaluation model is developed for
offshore low-permeability sandstone reservoirs, considering the formation’s ability
to form an effective transformation volume and complex fracture network post-
fracturing. This model incorporates factors such as shear/tensile strength, fracture
toughness, and the horizontal stress difference coefficient.

(4) The fracability index of the reservoir is calculated as 0.548 using the proposed eval-
uation model. Specifically, the interval from 4155.1 m to 4172.1 m is identified as a
high-quality fractured formation. The findings of this study not only provide theoreti-
cal guidance for well and formation selection in the Lufeng Sag, but also have practical
implications for enhancing oil and gas production from tight sandstone reservoirs.
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