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Abstract: With the increase in battery usage and the decommissioning of waste power batteries
(WPBs), WPB treatment has become increasingly important. However, there is little knowledge
of systems and norms regarding the performance of WPB dismantling treatments, although such
facilities and factories are being built across the globe. In this paper, environmental performance
is investigated quantitively using life cycle assessment (LCA) methodology for a dismantled WPB
manufacturing process in Tongliao city of Inner Mongolia Province, China. The functional unit was
selected to be one metric ton of processed WPB, and the average data of 2021 were used. The results
indicated that WPB dismantling treatments are generally sustainable in their environmental impacts,
because the life cycle environmental effects can be neutralized by the substitution of virgin products
with recycled counterparts. Of all the processes of dismantlement, Crude Lead Making, Refining,
and Preliminary Desulfurization, were the top three contributors to the total environmental burden.
The results of the sensitivity analysis showed that increasing photovoltaic power, wind power, and
natural gas usage may significantly reduce the burden on the environment. On the basis of our
findings, some suggestions are put forward for a policy to promote environmental green growth of
WPB treatment. Although this paper is aimed at the power lead–acid battery, the research method is
also of significance for the power lithium-ion battery, and we will conduct relevant research on the
disassembly process of the power lithium-ion battery in the future.

Keywords: dismantled manufacturing; LCA; workflow analysis; waste power battery; disposal of
used lead–acid batteries

1. Introduction

The rapid pace of the development of new energy vehicles will lead to a much speed-
ier rate of waste power battery (WPB) generation. Therefore, the disposal of WPBs is
becoming a topic attractive to public investors, as well as receiving intensive attention from
academics [1,2]. Conventionally, the primary practice is a lack of specific treatment, with
only simple treatment to obtain valuable resources, landfill for materials that are not easy
to handle, or remelting taken directly considering the disposal cost, regardless of the im-
pact of the waste on the environment [3,4]. Environmentally friendlier alternative options
have increasingly been applied to dispose of WPBs. Therefore, an integrated approach
for WPBs is gaining increased popularity; such a dismantling model strategy is supposed
to exhibit superior environmental performance and higher energy efficiency [5–7]. Most
of the waste treatment models in the literature have focused only on the applications of
a certain process; for example, the suggestion in [8], in which the life cycle performance
evaluation for dismantled manufacturing is underexamined because the complex design of
such a system might lead to higher costs, making this strategy economically unsustainable.
Research regarding the recycling of spent lithium-ion batteries has provided meaningful
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references for this study [9]. Despite sustainability evaluation being a research hotspot,
according to our best knowledge, no one has examined the environmental performance of
life cycle dismantling processes in an integrated manufacturing method.

To fill the aforementioned knowledge gaps, the life cycle assessment (LCA) method is
applied to evaluate the environmental performance of dismantled WPB manufacturing.
LCA is an effective method and tool for quantifying different WPB treatments’ environmen-
tal impacts, offering possibilities to promote the sustainability of WPB treatments [10–12].
The dismantled WPB remanufacturing center is in a state-of-the-art factory in Tongliao
city of Inner Mongolia Province, which was designed to produce power batteries for new
energy vehicles in 2016. The construction of the plant started at the beginning of 2017 and
was finished in December 2018, and the trial operation took place in 2019. Afterwards,
the equipment and facilities were fully put into use with complete capacity production
on 1 January 2020. Our scientific research is on the basis of the operational data of 2021,
the management information systems, and communication with the relevant department
managers of the plant, which are the real data coming from the actual operation of the
enterprise. At the same time, the public datasets—for example, GaBi and EcoInvent (EI)—
are used as supplements. Because of the rich information resources, our research work
overcomes the difficulty of limited data. It is well known that the availability of data
severely affects research work on WPB disposal. Through a literature search, we learned
that other related research works only investigated the environmental performance on
“waste-to-energy and resource” technologies for the separation of lead compounds and
sulfates from the WPB [13–15].

Our work overcomes the difficulties of data limitation and achieves effectiveness
with sufficient details. We propose a first quantitative analysis and assessment of the
environmental impact for every detailed process of WPB dismantling treatment. From
the perspective of methodology, the LCA application is much more complete and com-
prehensive than in other correlational studies of WPB treatment. The life cycle inventory
database of battery disposal would be further enriched by our research work. We provide
recommendations to reduce the environmental burdens of the studied WPB dismantlement
processes, as such integrated dismantlement treatments have been practiced across the
globe. In this manuscript, the data are collected from a real-world case of the dismantled
WPB disposal processes. We therefore provide very detailed information about flows of
mass and energy in the dismantling processes of WPB. These data are valuable in waste
disposal procedure modeling for other researchers. Moreover, the WPB disposal processes
system displayed in our research could be a meaningful reference on waste management
modeling. The study results also could provide some useful references on implementing
remanufacturing before process optimization.

2. Methods and Data

Typically, the LCA method is applied in accordance with ISO 14040 series standards,
where four basic steps are included. The four basic steps are “goal and scope definition”,
“inventory analysis”, “impact assessment”, and “final interpretation”. In this study, the
environmental impact evaluation was carried out with the help of both GaBi ts Professional
Academy (version 8.6.0) and EI (version 3.4) software; the selection of the software was due
to the fact that these tools are applicable to model WPB treatments and WPB manufacturing
processes such as Fragmentized Separation, Preliminary Desulfurization, Smelting, and
Battery Production.

2.1. Goal and Scope Definition

This work has two major objectives:
To evaluate the balance of quality of the WPB disposal processes that occur in the

studied WPB center, with the assistance of the material flow analysis (MFA) approach;



Processes 2023, 11, 2119 3 of 18

To assess the environmental performance of WPB disposal processes that take place
in the studied site. Further quantitative results about the contributions of each WPB
dismantling process to the total environmental impact are given.

The findings of our study can be applied to support the decisions that are concerned
with the implementation and promotion of dismantled WPB workshops, as well as deter-
mining possible improvements for related disposal procedures.

Referring to some extensive literature about the evaluation of the lifecycle environ-
mental impact of WPB systems [16], the functional unit (FU) is defined as one metric ton
of gathered WPB that is to be processed by the studied power battery dismantling center.
The material of dismantled power batteries is for sale or used for power battery manufac-
turing. The FU can also be defined as one metric ton of dismantled WPB and purchased
components that are to be processed by the studied power battery manufacturing center.
The FU is also applicable to gathered WPB that is to be processed by the studied power
battery dismantling center.

The components of one FU of gathered WPB were calculated on the basis of company
operating data in 2021, seen in Table 1.

Table 1. Average components of one FU of the gathered WPB.

Lead
Paste

Lead Block
and Grid Waste Plastics Waste Clapboard Waste Electrolyte

wt.% 33.0 33.2 5.2 3.6 25.0

The zero-burden assumption principle is adopted in this paper. The principle is
extensively applied in WPB research for defining system boundaries including all the
related procedures, as shown in Figure 1. The system boundaries are suited to the LCA
method especially. In system boundaries, there are nine processes: (1) Transportation,
(2) Separation, (3)Recycling (Plastics and Clapboard), (4) Waste Electrolyte Treatment,
(5) Preliminary Desulfurization, (6) Crude Lead Making, (7) Refining, (8) Dust Removal
and Desulfurization, and (9) Wastewater Treatment. Further, the previously mentioned
processes are classified into four generic phases:

(a) Transportation. This stage only has the first procedure. In this stage, the WPB is
transported from the WPB collecting entrance to the plant.

(b) Separation. This stage only includes the second procedure. In this stage, the
WPB is firstly pre-processed and separated, from which some intermediate products are
consequently derived.

(c) Processing. This stage consists of the procedures from the third procedure to the
seventh procedure. In this stage, the intermediate products are further processed and
turned into the final products.

(d) Disposal. This stage has two procedures: the eighth procedure and ninth proce-
dure. In this stage, the undesirable outcomes are treated. These undesirable outcomes,
such as dust, exhaust gas, and wastewater, are produced from the dismantled WPB
disposal processes.

Initially, all the collected WPBs are transported to the dismantling and manufacturing
plant. After WPB transportation, these WPBs are subjected to the “fragmentized separation”
process. From these procedures of the separation process, the preliminary outcomes are
obtained, such as lead block, grid, waste plastics, waste clapboard, lead paste, lead sludge,
and waste electrolyte. Some of these preliminary outcomes are treated in the corresponding
procedures. In Figure 1, products labeled as “final products” are sold or reused in the
remanufacturing processes. The processes of smoke and dust treatment and wastewater
treatment are explained in detail, because the equipment related to environment protection
was installed at the beginning of the factory’s construction.
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Figure 1. The WPB disposal processes system boundaries.

Based on our previous research work about municipal solid waste (MSW) treat-
ment [17], the multi-functionality work is discussed by extending the system boundaries to
include the production of primary materials and energies. These materials and energies
would be replaced by counterpart secondary materials and energies recovered from the
WPB dismantling processes. Similar to the composition of WPBs (seen in Table 1), both
the materials and energies of the inputs and outputs are calculated in accordance with the
average values of the operation data acquired from 1 January 2021 to 31 December 2021 for
all treatment processes. Details of the life cycle inventory (LCI) data are presented in the
following subsection.
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2.2. Inventory Analysis

As previously mentioned, not only primary data but also secondary data are used in
this research work. The primary data incorporate the records from the plant’s management
information systems and the interviews with relevant department managers. The secondary
data are derived from reference to the public LCI database of GaBi and EI (version 3.4),
which covers a wide range of materials, energies, and procedures for WPB treatment. The
following subsection elaborates on the data and assumptions that are employed to model
the WPB dismantling processes in the studied center.

2.2.1. Transportation

The WPBs are collected from waste battery recycling points in the Northeastern
provinces and eastern Inner Mongolia of China. Twelve garbage trucks are used to carry
the WPB from four major acquisition points to the treatment factory. The four acquisition
points include three points in the capital city of the Northeastern provinces and one point
in Tongliao city of Inner Mongolia. The detailed geographic information of WPBM center
is presented in Figure S1 (seen in the Supplementary Materials).

Based on actual operation data, it is supposed that these WPBs are evenly dis-
tributed among the above four recycling points and the distance traveled by the trucks is
1,802,854 km per year. In the GaBi database, “CN Transport, truck (50 t total cap., 47.3 t
payload)” is utilized to estimate the “transportation” effects on the environment.

2.2.2. Separation

The “Separation” process is crucial for WPB dismantling treatment. “Separation”
greatly affects the subsequent processes and outputs. In this studied plant, the WPB
separation procedure consists of nine subprocesses (seen in Figure 1). The detailed datasets
and assumptions are presented in Table S1 (seen in the Supplementary Materials). The
obtained material information is presented in Table 2 from one FU of the WPBs.

Table 2. Weight and purpose of separated materials from one FU of the WPBs.

Material Obtained Weight (kg) Application Description

Lead Paste 330 Lead Ingot Making
Lead Grid 332 Lead Ingot Making

Recyclable Plastics 52 Plastic Recycling
Recyclable Clapboard 36 Clapboard Recycling

Lead Sludge 5.067 Lead Ingot Making
Waste Electrolyte 244.993 Sulfuric Acid Preparation

2.2.3. Processing

After the “Separation” process, most of the separated material is subjected to the
subsequent “Processing” procedure. “Processing” includes plastic recycling, clapboard
recycling, sulfuric acid preparation, by-products of sodium sulfate and ferrous oxide
production, and lead ingot making. The detailed datasets and assumptions are presented
in Table S2.

2.2.4. Disposal

In the studied integrated WPB treatment plant, two disposal procedures, i.e., wastew-
ater treatment, and dust removal and desulfurization, are used to dispose of the wastes,
which are shown in Table S3, and the emissions from the aforementioned disposal pro-
cesses are presented in Table S4. The detailed datasets and assumptions for these disposal
procedures are presented in Table S5. Specifically, we summarize the consumptions of
energy and water for all procedures (seen in Figure 2) in Table S6.
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2.2.5. Substitution

Referring to other case studies of WPB treatment [18], the secondary products derived
from this integrated WPB treatment plant are assumed to be substitutes for the original
counterparts in Table S7. For the recycled materials, such as lead, plastics, and clapboard,
their substitution ratios are all set to a 1:1 proportion. Perhaps these recycled materials
are slightly inferior in terms of quality grade to the corresponding primary product. For
sulfuric acid, its substitution ratio is determined from the comparison of its concentration
or purification value and that of the primary waste electrolyte; the overall substitution
ratio of lead is kept at 1:1. The detailed LCI data are presented in Table S8 for avoidable
primary products.

2.3. Effect Evaluation

The ReCiPe method is a coordinated lifecycle impact assessment (LCIA) modeling
tool. ReCiPe 2016, a new commonly used version, is applied to estimate the environmental
effects for WPB dismantling treatments at both midpoint and endpoint levels. In terms
of midpoint indicators, the following commonly used characterization factors are used
in this paper through a top-down approach according to ISO recommendations. These
midpoint indicators and their dimensions are listed as follows: agricultural land occupation
(ALOP, in m2a), global warming potential (GWP, in kg CO2-Eq), fossil depletion (FDP, in
kg oil-Eq), freshwater ecotoxicity (FETP, in kg 1,4-DCB-Eq), freshwater eutrophication (FEP,
in kg P-Eq), human toxicity potential (HTP, in kg 1,4-DCB-Eq), ionizing radiation (IRP, kg
U235-Eq), marine ecotoxicity potential (METP, in kg 1,4-DCB-Eq), marine eutrophication
potential (MEP, in kg N-Eq), metal depletion (MDP, kg Fe-Eq), natural land transformation
(NLTP, in m2), ozone depletion potential (ODP, in CFC-11-Eq), particulate matter formation
potential (PMFP, in kg PM10-Eq), photochemical oxidant formation potential (POFP, in
kg NMVOC), terrestrial acidification potential (TAP, in kg SO2-Eq), terrestrial ecotoxicity
potential (TETP, in kg 1,4-DCB-Eq), urban land occupation (ULOP, in m2a), and water
depletion (WDP, in m3). For the endpoint indicators, four damage categories are calculated
and discussed. These four endpoints are ecosystem quality (EQ, in points), human health
(HH, in points), resources (RE, in points), and the total impact (Total, dimensionless). It
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is worth mentioning that both midpoints and endpoints only serve to evaluate potential
damage rather than actual environmental impact.

For characterization at the midpoint level, the formula is

Im = ∑
i

Qmimi (1)

where mi is the magnitude of intervention i (e.g., the mass of CO2 released to air), Qmi is
the characterization factor that connects intervention i with midpoint impact category m,
and Im is the indicator result for midpoint impact category m.

The way to proceed for characterization at the endpoint level starts from the interme-
diate midpoints. The formula is

Ie = ∑
m

Qem Im (2)

where Im is the indicator result for midpoint impact category m, Qem is the characterization
factor that connects midpoint impact category m with endpoint impact category e, and Ie is
the indicator result for endpoint impact category e.

2.4. Sensitivity Analysis

Changes in inputs or assumptions cause fluctuations in results. Therefore, sensitivity
analysis is used to evaluate the fluctuations. Here, our attention focuses on the refining
procedure, because the refining procedure is the most intensive for energy consumption
and ranks the second in the volume of water used among all the disposal processes. Further,
we consider sodium sulfate, a by-product of the preliminary desulfurization procedure,
as sodium sulfate is sold as an industrial raw material. Preliminary desulfurization is
the procedure that consumes the most water, the second largest in terms of electricity,
and consumes much more steam. Thus, the sensitivity analysis should be performed to
investigate the following three aspects: (1) WPB source separation ratio, (2) sodium sulfate
replacement, and (3) usage of photovoltaic power in the integrated WPB treatment plant.
We demarcate the initial setting point as the base scenario.

2.4.1. Source Classification Ratio of WPBs

At present, the Chinese government is actively pushing ahead green and sustainable
manufacturing in all industries, especially in WPB recycling. Source governance is con-
sidered an effective method for WPB treatment. To estimate the impact on environmental
performance for increasing the source classification ratio (SCR) of WPBs, we assume that
the SCR is set to 10%, 30% and 50% in weight. In other words, 10%, 30%, and 50% in weight
of the WPBs are processed directly with no separation.

2.4.2. Sodium Sulfate Substitution

Sodium sulfate is regarded as an important industrial material, the making of which
realizes not only the low-temperature desulfurization of lead sulfate, which is environmen-
tally friendly, but also the process of economic value growth. To investigate the impact
of the sodium sulfate economic value, we here assume that the price of sodium sulfate is
346.82 CNY/ton according to the average price in the local market.

2.4.3. Usage of Photovoltaic Power

The use of green and clean energy, including wind and solar, is widely advocated
in China, despite its supply being heavily influenced by the weather conditions [19,20].
To investigate the environmental impact of photovoltaic power replacements, we here
assume that photovoltaic power is used to replace natural gas as heating energy in the
smelting process and the refining process, and electricity in the integrated dismantled WPB
treatment plant. In addition, photovoltaic power can be used to generate electricity power
for dismantled WPB manufacturing. In this case, it is supposed that all the electricity in the
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factory is provided by photovoltaic power with a conversion efficiency of 70% considering
the weather, day and night in all kinds of different conditions.

3. Results
3.1. Material Balance and Energy Balance

Combined with LCI data compiled in the previous subsection and other information,
the mass flows and energy flows for disposing one FU of the WPBs were calculated and are
described in Figure 2. According to Figure 2, the top three electricity consumers are refining,
preliminary desulfurization, and fragmentized separation. Although the electricity energy
consumption for the procedure of crude lead-making is ranked in fourth position of all
procedures of WPB dismantling, it uses the highest amount of natural gas energy. Refining
uses the largest amount of electricity energy and the second highest amount of natural gas
energy. Preliminary desulfurization uses the second highest amount of electricity and a
high amount of steam for sodium sulfate crystallization. Fragmentized separation uses the
third highest amount of electricity and high amounts of tap water and reclaimed water.
Consistent with our previous LCA study, plastic recycling is ranked fifth for electricity
consumption. For reclaimed water, the main users are preliminary desulfurization, refining,
and fragmentized separation. However, tap water is principally used in the process of
preliminary desulfurization, recycling the water system, and separation. Comparatively,
tap water consumption is far less than reclaimed water consumption for WPB dismantling
treatment, due to internal water recycling.

Out of all the processes, refining is the process with the highest energy intensity,
accounting for 13.104 kWh per one FU of WPBs, followed by preliminary desulfurization,
fragmentized separation, crude lead-making and recycling (plastics and clapboard), whose
electricity consumptions are 6.561, 5.710, 5.101, and 4.118 kWh, respectively, per one FU
of WPBs. The most water-intensive procedure is preliminary desulfurization, consuming
19,639.6 kg per one FU of WPBs, followed by refining, fragmentized separation, dust
removal, and desulfurization, whose water consumptions are 4160.0, 3407.7, and 1200.0 kg,
respectively, for disposing one ton of WPBs.

3.2. Total Environmental Achievements

The underlying environmental effects related to one ton of dismantled WPBs are
summarized in Table 3, with measurements in terms of midpoint and endpoint indicators
selected from ReCiPe 2016. The data analysis results are reported by the contribution of
midpoints and endpoints to the WPB disposal processes in Figure 3. Further, the top three
contributors are summarized in Tables S9 and S10, according to the values of the midpoint
and endpoint indicators.

Table 3. Indicator values of the disposal of one ton of WPBs.

Category Value Unit of Measurement (UoM)

Midpoint

ALOP 13.61804792 m2a
GWP 528.8701177 kg CO2-Eq
FDP 296.6366039 kg oil-Eq
FETP 14.76361101 kg 1,4-DCB-Eq
FEP 0.238595722 kg P-Eq
HTP 3133.759531 kg 1,4-DCB-Eq
IRP 29.1974986 kg U235-Eq

METP 12.25284895 kg 1,4-DCB-Eq
MEP 0.615142614 kg N-Eq
MDP 15.57298361 kg Fe-Eq
NLTP 0.076092593 m2

ODP 3.76907 × 10−5 kg CFC-11-Eq
PMFP 1.089223377 kg PM10-Eq
POFP 1.740287176 kg NMVOC
TAP 2.17274774 kg SO2-Eq

TETP 0.075203026 kg 1,4-DCB-Eq
ULOP 7.368844859 m2a
WDP 1.401757654 m3
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Table 3. Cont.

Category Value Unit of Measurement (UoM)

Endpoint

Ecosystem quality 9.573223828 points
Human health 62.37041674 points

Resources 36.26269081 points
Total 108.2063314 points
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From Figure 3 and Table S9, crude lead-making is the greatest contributor to the impact
values of the selected midpoints. A total of 16 out of the 18 selected midpoint indicators
rank highest except for ALOP and MDP. Crude lead-making leads all other processes in
four endpoint indicators; that is, EQ (47.39%), HH (61.23%), RE (52.86%) and Total (57.20%).
Additionally, crude lead-making is the second highest contributor to the value of ALOP
(27.23%) and the third largest contributor to the value of MDP (23.72%). This is probably
ascribed to the reason that crude lead-making consumes the most natural gas with 87 m3,
and much more electricity with 5.101 kWh, for one FU of WPBs. In the crude lead-making
procedure, the smelting furnace adopts an oxygen-enriched side-blown furnace, which
requires a large amount of oxygen. As coke powder is used as a reducing agent to prevent
lead oxidation, a high amount of carbon dioxide is produced in this process.

Refining is the second high contributor to the midpoint indicators GWP (17.90%),
FDP (31.26%), FETP (28.14%), FEP (16.10%), HTP (32.14%), METP (26.05%), MEP (25.26%),
MDP (25.72%), NLTP (22.51%), ODP (20.77%), POFP (15.77%), and TETP (25.84%), which is
mainly attributed to the electricity and natural gas that are used in the procedure. Refining
uses electricity (13.104 kWh), natural gas (75 m3), water (4160 kg of reclaimed water),
sodium nitrate (6.970 kg), sodium hydroxide (5.000 kg), sulfur (0.127 kg) and electricity
energy (6.561 kWh) per disposal of one FU of WPBs. Currently, China’s electricity structure
is mainly based on coal power, which causes the deletion of fossil fuels and emissions of
CO2 and SO2. Therefore, upgrading processing units and equipment has become popular
and effective in easing the related environmental burden.

Preliminary desulfurization is a much greater contributor to the values of the midpoint
impact categories selected. A total of 17 out of the 18 selected midpoint indicators are
ranked in the top three, except TETP which ranks fourth. Preliminary desulfurization is
the largest contributor to the values of ALOP and MDP. Preliminary desulfurization is the
second highest contributor to the values of IRP (12.51%), PMFP (17.01%), and TAP (26.52%).
Preliminary desulfurization shows the highest environmental burden, due to consuming
sodium carbonate (65.667 kg), steam (359.600 kg), water (19,280 kg of reclaimed water),
and electric energy (6.561 kWh) per disposal one FU of WPBs.

Wastewater treatment is the second largest contributor to the value of WDP (14.93%),
mainly attributed to the circulating water system replenishment of 151.2 kg of fresh water
per disposal of one FU of the WPBs in the procedure. Of the processes that are included in
the wastewater treatment process, biochemical treatment is proved to be the highest envi-
ronmental burden, on account of sodium hydroxide (2.837 kg), flocculant PAM (1.914 kg)
and electrical energy (1.404 kWh) per disposal of one FU of WPBs. Except for the above,
the environmental impact can primarily be attributed to the emission of SS, COD, non-
methane hydrocarbon, NH3-N, and sodium salt. Biological treatment exhibits remarkable
potential in reducing eutrophication and human toxicity. Thus, the biological treatment of
wastewater is an effective method and is widely adopted to treat reclaimed water.

Transportation takes the third position in the value of the midpoint indicator TETP
(22.26%) and occupies the second largest share in the value of midpoint indicator ULOP
(34.72%). This might be due to the consumption of 3.9357 kg of diesel oil per disposal
of one FU of WPBs. The mean distance from the four WPB recycling points to the WPB
treatment plant is 284.25 km and the plant treatment capacity is 150,000 tons per year. Thus,
using new energy truck transportation route optimization tends to be effective in reducing
the related environmental burden.

The other procedures including fragmentized separation, recycling, waste electrolyte
treatment, dust removal, and desulfurization have a limited impact on the values of all the
indicator categories selected.

The endpoints expressing environmental impact are stacked together to obtain the
data of each WPB treatment process, as shown in Figure 3c. From Figure 3c, the top three
WPB processes are crude lead-making, refining, and preliminary desulfurization in the
endpoint single score.
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3.3. Secondary Product Substitutions

According to Section 2.2.5, recovered products are supposed to substitute for their
counterparts. We have calculated and present the environmental performance of secondary
substitutional products in Figure 4. The environmental impact is allocated to secondary
products obtained from the corresponding procedures in the dismantling of WPBs. Re-
ferring to the literature [21], the environmental burden and environmental benefits are
arranged on the right and left in Figure 4, respectively. The above-mentioned environ-
mental burden refers to the production of recycled products, and the above-mentioned
environmental benefits refer to the savings resulting from the acquisition of relevant al-
ternative or substitution materials. Generally, as shown in Figure 4, the environmental
burden could almost be counteracted by the environmental benefits in the performance
of most midpoint indicators, except TETP, ODP, and NLTP. The top two contributors of
environmental benefits are secondary lead ingot and plastics, contributing to 96.9% of
the total environmental savings. Compared to lead ingot and plastics, other substitutions
provide a relatively small contribution.
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indicators selected from ReCiPe 2016 and (b) endpoint indicators selected from ReCiPe 2016.

The potential environmental gains in the replacement of primary lead ingot with
secondary lead ingot contribute the biggest share in the environmental impact for the
midpoint indicator categories. In the 18 midpoint indicators, 15 indicators exceed 95%,
except GWP (71.9%), FDP (61.9%), and ODP (32.2%). Moreover, lead ingot substitution
also shows a large contribution to the values of the endpoint impact indicators HH (83.3%),
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RE (74.7%), and Total (77.5%). This could be due to the large consumption of energy and
volume of materials in producing conventional lead ingot, particularly in the smelting
process, in which large amounts of natural gas and oxygen are consumed; at the same time,
a large amount of carbon dioxide is produced in the crude lead-making procedure.

Recycled plastics contribute the greatest share to the value of the midpoint indicator
ODP (67.8%) and contribute the second highest share to the values of the endpoint indica-
tors EQ (39.5%), RE (21.3%), and Total (19.4%). Moreover, environmental savings of these
secondary substitutions take second place in the values of midpoint indicators FDP (37.6%)
and GWP (28.0%). The environmental benefits gained are due to avoiding the use of crude
petroleum for fabricating virgin plastics.

From Figure 4, using recovered lead ingot and recycled plastics to replace their primary
counterparts could bring obvious environmental gains to many indicators. However, the
environmental benefits are negligible for the substitution of sulfuric acid, sodium sulfate,
recycled clapboards, and ferrous oxide.

From Figures 3a and 4a, which show the combined contributions of the dismantled
WPB disposal processes and the contributions of the secondary product substitutions, the
iterative process in terms of the environmental impact of the midpoint indicators was
obtained, as shown in Figure 5.
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From Figure 5, considering secondary product substitutions, the procedures such as
refining, recycling, and waste electrolyte treatment can bring noticeable environmental
savings to multiple indicators. The environmental impact of the total of all disposal
procedures display benefits, with GWP and MDP having the most significance of all the
midpoint indicators. This could be ascribed to the fact that both high energy consumption
and high material consumption are required in producing conventional lead ingot. Metal
depletion could be markedly mitigated by using recovered materials as substitutes for their
primary counterparts.

3.4. Results of Scenario Analysis

The current situation is that the electricity consumed in waste battery treatment
comes from the market group for electricity, which is considered as the base scenario.
Subsequently, a few scenarios have been constructed according to the different types
of energy supply situation including hard coal power, natural gas, wind power, and
photovoltaic power. Therefore, the values of all the midpoint indicators can be compared
by ratio of every energy type and basic energy source type (grid energy). After the scenario
analysis, it can be concluded that the environmental impact of different forms of energy
varies considerably in terms of sensitivity to midpoint indicators. Therefore, the battery
factory can prioritize the main factors that are sensitive to environmental impact to achieve
maximum environmental benefits.

The potential environmental effects of the dismantling treatment of one ton of WPBs
were evaluated and are shown in Figure 6 under the different types of energy supply, where
the values of all midpoint indicators are compared with those in the base scenario (market
group for electricity).
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Figure 6. Environmental effects for disposing of one ton of WPBs under different types of
energy supply.

As can be seen from Figure 6, different energy types cause different variations in
each indicator. This different environmental impact may be interpreted by the inherent
properties of each energy source. Compared with other energy sources, photovoltaic power
has the largest environmental benefits. For all the 18 midpoint indicators, photovoltaic
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power exhibits much better environmental performance than the base scenario. Wind
power shows the second largest environmental benefits; there are 15 midpoint indicators
that exhibit much better results than the base scenario except FETP, METP, and MDP. Wind
power generation could bring pollution to fresh water, and the manufacturing of the whole
machine—as well as the blades, fasteners, converters, wind turbines, etc. required for
the whole machine—consumes a high amount of metal. Natural gas also has obvious
environmental benefits; there are 14 midpoint indicators that exhibit much better results
than the base scenario, except FDP, NLTP, ODP, and TETP. Natural gas exhibits the least
greenhouse gas and SO2 emissions compared with coal. The values of GWP and TAP could
be greatly decreased when replacing natural gas with photovoltaic power. The utilization of
photovoltaic power could offer an attractive opportunity to minimize the global warming
impact from fossil fuel consumption. Using photovoltaic power and wind power instead
of hard coal power and natural gas can largely reduce the environmental effects of FDP.
Replacing electricity and natural gas with photovoltaic power would obtain maximum
gains in terms of MEP, PMFP, POFP, TAP, and WDP, because electricity from photovoltaic
power is environmentally more sustainable than electricity from the grid, which is due to a
higher proportion of fossil fuel generation in the grid [22,23]. For other indicators such as
ODP, HTP, and TETP in the midpoint categories, energy replacements only impart a minor
impact on their values. Therefore, possible environmental impact mainly depends on the
decision of the WPB factory in using different types of energy supply.

3.5. Identification of Uncertainty

In this study, the sources of uncertainty are primarily related to emission factors and
inputs, such as material amounts and electricity and water consumption, which could
contribute to the output variable of the model significantly. Moreover, the uncertainty
associated with the input data and the model structure adds to an overall uncertainty of
LCA outputs. Generally, uncertainty sources come from occasional, epistemic, and other
causes, which are listed in detail in Table 4.

Table 4. Different sources and induced factors that cause uncertainty in LCA for WPB dismantling
treatments.

No. Sources Induced Factors

1 LCI data of electricity Different percentages of renewable energy generation in the electricity grid
will lead to different environmental impacts due to electricity use.

2 Emissions: including SO2, NH3, lead dust Different emission standards and different proposal technologies will lead
to different emissions.

3 Amounts of secondary products, including
plastics, clapboard, etc.

Ingredients of WPBs in different models and the amounts used will affect
the amounts of secondary products.

4 Amounts of sulfuric acid, sodium sulfate,
and lead ingot being made

Different desulfurization and smelting processes will lead to different
types of by-products. Due to the market acceptance of these kinds of
by-products, the WPB treatment plant may choose to manufacture different
types of by-products, which will lead to different environmental impacts.

5 Utilization rate of photovoltaic power Photovoltaic power storage costs and convenience directly affect its
utilization, which will lead to different environmental impacts.

6 Type and quantity of wastewater
treatment chemicals

Different chemicals for wastewater treatment have different
environmental impacts.

7 Diesel oil consumption
The transportation routes, power of the vehicle, and parameters of the
vehicle, such as size and rated power, to collect WPB will affect the fuel
consumption for WPB transportation.

4. Discussion

Results for dismantling treatment were compared with results for remelting treatment
in the WPB plant with the purpose of probing different impact performances for different
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WPB treatments. Referring to the previous literature [24] and GaBi data, the impact data
of WPB dismantling treatment (the current work) and WPB remelting treatment were
compared and are shown in Table 5.

Table 5. Comparison of the environmental impact of dismantling treatment and remelting treatment
for disposal of WPB.

Midpoint Dismantling Remelting

ALOP 13.618 43.585
GWP 528.870 654.089
FDP 296.637 160.553
FETP 14.764 37.788
FEP 0.239 1.053
HTP 3133.760 4195.199
IRP 29.197 42.747

METP 12.253 35.228
MEP 0.615 1.479
MDP 15.573 717.858
NLTP 0.076 0.094
ODP 0.000 0.000

PMFP 1.089 4.029
POFP 1.740 4.854
TAP 2.173 14.431

TETP 0.075 0.075
ULOP 7.369 12.087
WDP 1.402 5.833

From Table 5, it can be seen that dismantling treatment has obvious advantages over
remelting treatment in all eighteen indicators except FDP and TETP, which is probably
attributed to the recovery and remanufacturing of some materials in integrated dismantling
treatment. In addition, with dismantling treatment, there are significant savings in energy
consumption and emissions. With the separation process, a large number of raw materials
can be directly sold and used for material substitution. This greatly reduces the environ-
mental effects of the whole process. For example, the recovery of plastics and clapboard
replaces the primary production of those materials to offset the environmental burden. The
manufacturing of sulfuric acid, sodium sulfate, ferrous oxide, and lead provides many
credits for integrated dismantling treatment so that the impact assessment values appear
much more advantageous in most impact categories, as shown in Figure 7.
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For FDP, dismantling treatment is obviously inferior to remelting. The high value of
FDP may be due to the consumption of natural gas and diesel used in the crude lead-making,
refining, and transportation processes. There is no advantage in integrated dismantling
treatment on the TETP. The reason may be that in the use of both sulfuric acid and steam
during the conversion process, the factory studied in this paper uses 359.6 kg of steam per
one FU of WPBs in the preliminary desulfurization procedure.

Figure 7 also implies that dismantling treatment offers more environmental benefits
than the traditional method of remelting. Compared to the average levels in existing
literature, the dismantling mode shows much lower environmental effects in most midpoint
indicators. This could also be attributed to the substitution of plastic and lead ingot.

5. Conclusions

The environmental performances of the dismantled WPB treatment factory were quan-
titatively evaluated for the purpose of revealing the sustainability of remanufacturing,
which could provide some references for employing waste battery treatments. With op-
erational data and interviews with managers in 2021, energy flows and material flows
have been depicted for the studied treatment center. Applying LCA methodology, the
environmental impact has been assessed for specific disposal procedures and processes,
from which the following conclusive marks are derived:

Refining consumes the most electricity power (35.12%) and preliminary desulfuriza-
tion consumes the largest amount of reclaimed water (68.50%) and tap water (66.49%).

Refining, crude lead-making, and preliminary desulfurization belong to the procedures
with the greatest environmental effects due to electricity consumption; crude lead-making
also consumes a high amount of natural gas. Wastewater treatment and dust removal
and desulfurization are the largest contributors to parts of the midpoint indicators for the
utilization of flocculant PAM, sodium hydroxide, and electricity and for the emissions of
SO2, NO2 (NOx), smoke, and lead dust. Transportation also has a large share of the value
of some midpoint indicators, which might be due to the longer average distance from the
WPB recycling points to the WPB treatment plant. Thus, using a new energy truck and
transportation route optimization tends to be feasible and effective in alleviating the related
environmental burden.

Lead, plastics, and sulfuric acid are the top three contributors to the environmental
benefits of material substitutions.

Photovoltaic power usage could reduce the environmental burden in WPB dismantling
treatments.

To promote an environment-friendly society, every consumer needs to have good
environmental awareness. So, consumers should send their used waste batteries to the
battery recycling point and must not discard these waste batteries casually. With the
aim towards a factory operation business, because a lot of electricity is used in waste
battery treatment, it is newly encouraged that reducing the use of grid power by increasing
photovoltaic power, wind power, and natural gas usage can reduce environmental burdens
to a larger extent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr11072119/s1, Figure S1: An aerial view of the selected WPBM
center (marked by the red box) in the city of Horqin Left Rear Banner, Inner Mongolia Province, China,
taken by Google Map. * The red dots represent the waste battery recycling points; Table S1: Data and
assumptions for modeling the processes in the Fragmentized Separation procedure; Table S2: Data
and assumptions for modeling the processes of the subsequent procedures after separation; Table
S3: Wastes generated from the disposal of one FU of WPB; Table S4: Emissions generated from the
disposal of one FU of WPB; Table S5: Data and assumptions for modeling the processes in the waste
disposal procedures; Table S6: Electricity, natural gas and water consumption in the disposal of one
FU of WPB; Table S7: Secondary products derived from the disposal of one FU of the WPB; Table S8:
Data and assumptions for the modeling of the avoided primary materials and energy; Table S9: Top
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three procedures and their contributions to the value of each midpoint category; Table S10: Top three
procedures and their contributions to the value of each endpoint category.
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