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Abstract: Path planning and tracking control are essential parts of autonomous vehicle research.
Regarding path planning, the Rapid Exploration Random Tree Star (RRT*) algorithm has attracted
much attention due to its completeness. However, the algorithm still suffers from slow convergence
and high randomness. Regarding path tracking, the Linear Quadratic Regulator (LQR) algorithm is
widely used in various control applications due to its efficient stability and ease of implementation.
However, the relatively empirical selection of its weight matrix can affect the control effect. This
study suggests a path planning and tracking control framework for autonomous vehicles based on an
upgraded RRT* and Particle Swarm Optimization Linear Quadratic Regulator (PSO-LQR) to address
the abovementioned issues. Firstly, according to the driving characteristics of autonomous vehicles,
a variable sampling area is used to limit the generation of random sampling points, significantly
reducing the number of iterations. At the same time, an improved Artificial Potential Field (APF)
method was introduced into the RRT* algorithm, which improved the convergence speed of the
algorithm. Utilizing path pruning based on the maximum steering angle constraint of the vehicle
and the cubic B-spline algorithm to achieve path optimization, a continuous curvature path that
conforms to the precise tracking of the vehicle was obtained. In addition, optimizing the weight
matrix of LQR using POS improved path-tracking accuracy. Finally, this article’s improved RRT*
algorithm was simulated and compared with the RRT*, target bias RRT*, and P-RRT*. At the same
time, on the Simulink–Carsim joint simulation platform, the PSO-LQR is used to track the planned
path at different vehicle speeds. The results show that the improved RRT* algorithm optimizes the
path search speed by 34.40% and the iteration number by 33.97%, respectively, and the generated
paths are curvature continuous. The tracking accuracy of the PSO-LQR was improved by about 59%
compared to LQR, and its stability was higher. The position error and heading error were controlled
within 0.06 m and 0.05 rad, respectively, verifying the effectiveness and feasibility of the proposed
path planning and tracking control framework.

Keywords: autonomous vehicle; path planning; tracking control; RRT*; linear quadratic regulator;
particle swarm optimization

1. Introduction

In recent years, the rapid development of artificial intelligence has driven the tech-
nological progress of self-driving vehicles and intelligent transportation systems. Au-
tonomous vehicles are one of the core components of intelligent transportation systems
with increasing safety and reliability requirements [1–4]. Path planning and tracking control
are two core issues in the autonomous driving system. The main goal of path planning
is to efficiently find a collision-free and feasible path from the starting point to the target
point in the workspace, while path tracking control solves the problem of how to control
the vehicle to move along the pre-planned path [5,6]. The planned path’s quality directly
affects the vehicle’s driving performance during autonomous driving. In contrast, the
ability to accurately and stably track the planned path directly affects the vehicle’s driving
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safety. Therefore, path planning and tracking performance are significant for autonomous
driving vehicles.

Scholars have proposed many practical algorithms and methods to address the chal-
lenges and difficulties in path planning for autonomous vehicles. Path planning algorithms
can be divided into five types based on their principles: graph search methods, sampling
methods, intelligent bio-inspired methods, numerical optimization methods, and artificial
potential field methods [7,8]. Among them, the Rapidly-Exploring Random Tree (RRT), a
sampling-based path planning method, is widely used in autonomous vehicle path plan-
ning due to its advantages, such as probability completeness, efficiency, scalability, and
robustness [9]. However, the traditional RRT algorithm has limitations regarding long
path search time and slow algorithm convergence speed. To address the limitations of the
traditional RRT algorithm, scholars have proposed many improved RRT methods. A path
planning technique based on Goal-Biased RRT [10] has been developed to increase the
planning efficiency while also increasing the search efficiency of the algorithm by adding a
probability element to the random sampling to create a non-random sampling extension
mode. Additionally, some scholars have proposed the RRT-Connect algorithm [11], which
generates random trees separately from the starting and target nodes, reducing the search
space and improving search speed. To address the shortcomings of the RRT algorithm in
ensuring asymptotic optimality, the RRT* algorithm changes the search mode by reselecting
the parent node and rewiring, thus generating paths with the best or approximate best
length [12].

In order to improve the convergence performance and feasibility of the RRT* algorithm,
scholars have proposed the Informed-RRT* [13], which uses heuristic methods to reduce
the planning problem to a subset of the original domain, thus improving the algorithm’s
search speed. However, its performance is sensitive to the initial solution. Other researchers
have attempted to introduce additional algorithmic features to improve RRT and enhance
the efficiency of path planning. Qureshi et al. [14] proposed P-RRT*, which uses potential
artificial fields to obtain new nodes and reduce the time required to expand to the goal.
Chen et al. [15] proposed a VPF-RRT* algorithm for path planning, which introduces virtual
potential fields into the RRT* algorithm to adjust the positions of path nodes and solve the
problem of excessive randomness in the RRT algorithm. Fan et al. [16] proposed a trajectory
planning method based on the target-biased bidirectional APF-RRT* algorithm, which
integrates the Artificial Potential Field (APF) method with the Bi-RRT* algorithm that has a
target-bias strategy, significantly reducing redundant points. Ayawli et al. [17] proposed an
improved heuristic RRT-A* algorithm, in which the A-Star (A*) cost function is introduced
into the RRT algorithm to optimize performance. Meanwhile, several metric functions are
used as heuristic information functions to measure the performance of different metric
functions, optimizing the planning path and reducing computational costs. However,
although these algorithms have made significant improvements compared to the traditional
RRT, they have yet to consider the steering constraints of the wheels, which means that
they have not been directly applied to path planning for autonomous vehicles. Therefore,
Ghosh et al. [18] proposed a kinematic constraint Bi-RRT (KB-RRT) algorithm, which
limits the number of generated nodes without affecting accuracy and combines kinematic
constraints to generate smooth trajectories. Peng et al. [19] proposed a path planning
algorithm based on a kinematic constraint RRT integrated with the trajectory parameter
space (TP space), introducing a new method to select candidate nodes for tree expansion
and integrating RRT with TP space to meet kinematic constraints and improve performance
through narrow passages. Liao et al. [20] proposed the Stack-RRT*, which can be combined
with smoothing schemes based on different parameter curves to generate feasible paths
with different continuity. These algorithms have significantly improved planning efficiency,
reduced computational cost, and met kinematic constraints. However, further research and
improvements are still needed to achieve more efficient, precise, and safe path planning for
autonomous vehicles.
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In addition to research on path planning techniques, tracking and control technology
are also essential in autonomous vehicles. Generally, there are two types of autonomous ve-
hicle path-tracking control methods: geometric-based methods and model-based methods.
Geometric-based methods include the pure pursuit [21] and Stanley methods [22], which
are widely used for handling vehicle or robot path tracking problems due to their simplicity
and good performance. However, geometric methods are only suitable for vehicles that
ignore their dynamic characteristics. In contrast, the model-based path-tracking method
is more suitable for autonomous vehicles in real driving scenarios. Model-based tracking
methods can be divided into methods based on the kinematics model and methods based
on the dynamic model. The control method based on a dynamic model improves the
safety and reliability of vehicles under complex working conditions [23]. There are many
control methods based on dynamic models, such as Proportional–Integral–Differential
(PID) control [24], Fuzzy Logic control [25], Sliding Mode control [26], Model Predictive
control [27], and Linear Quadratic Regulator (LQR) control [28]. LQR controllers are widely
used in autonomous vehicle path tracking due to their high-precision tracking performance,
algorithmic simplicity, applicability to nonlinear systems, and ability to consider dynamic
constraints. However, while LQR methods can stabilize the system, they do not consider
disturbance terms and can lead to system errors. Therefore, Kapania et al. [29] proposed
a feedback + feedforward steering controller to maintain vehicle stability under extreme
maneuvering conditions while minimizing the path deviation. However, at high speeds,
the steady-state path deviation significantly increases. Xu et al. [30] added path curvature
feedforward control to LQR feedback control to reduce the steady-state error of the con-
troller. Yang et al. [31] proposed a feedforward + predictive LQR Lateral control method,
which suits intelligent vehicles’ lateral tracking control problem under complex working
conditions. Although research based on the LQR control methods has been widely applied
to autonomous vehicles, problems, such as input instability in solving LQR, can affect the
controller’s performance. Therefore, many researchers have improved control effects by
adding optimization algorithms to optimize LQR. Lu et al. [32] proposed an adaptive LQR
Path-Tracking controller, which uses a genetic algorithm to optimize the parameters of LQR
and applies a fitness function that considers tracking accuracy and vehicle stability. The
results show the effectiveness of the controller in improving tracking accuracy and vehicle
stability. Wang et al. [33] proposed a lateral path control strategy based on an improved
LQR algorithm, which uses fuzzy control to adjust the weight coefficients of LQR in real
time according to the vehicle state, improving tracking accuracy, steering stability, and
computational efficiency. The improvements made to the LQR algorithm in these studies
have shown promising results, but there is still room for further improvement in control
accuracy and stability.

The literature review above provides an overview of various research achievements
on path planning and tracking control strategies for autonomous vehicles, with numerous
studies conducted by scholars in this field. However, the performance of path planning and
tracking control for autonomous driving still needs to be improved, and a comprehensive
framework is needed to cope with different driving scenarios. This paper proposes a novel
framework that combines path planning and tracking control. The framework utilizes an
improved RRT* algorithm for path planning, considering the actual operating environment
of the vehicle and whether the planned path can meet the requirements for vehicle tracking.
Additionally, a PSO-LQR controller is designed for path-tracking testing to form a closed
loop, and the feasibility of the proposed planning approach is verified.

The main contributions of this paper:

(1) For the driving intention of autonomous driving and the urban road scenario in which
it is located, this study changes the sampling range of random points from the original
complete state space sampling to adaptive Gaussian sampling around the nearest
node, which reduces the invalid execution in the sampling process, decreases the
number of algorithm iterations, and shortens the computation time.



Processes 2023, 11, 1841 4 of 27

(2) This study introduces an improved artificial potential field method into the RRT*
algorithm. For the nearest nodes, the target point and random sampling point are
set to have different attractive forces on them, and the concept of road boundary
repulsion is introduced to make the obstacles and road boundary repel the nearest
nodes. The combined direction of gravitational and repulsive forces is used as the
extension direction of the new node to control the growth of the random tree toward
the target point, reduce randomness, and speed up the path search. This study also
uses path pruning based on the maximum steering angle constraint of the vehicle and
the thrice B-spline algorithm to optimize the sampled generated paths to obtain paths
that match the actual tracking of the vehicle.

(3) In this study, a PSO-LQR controller with feedforward control is designed to eliminate
the external disturbances caused by the target path. Meanwhile, an objective function
considering both tracking accuracy and vehicle stability is established to maintain
vehicle stability and achieve higher tracking accuracy. The performance of the PSO-
LQR controller is verified in this study by conducting simulation experiments on
the LQR controller before and after optimization. Moreover, tracking experiments
are conducted for planned paths at different speeds using the PSO-LQR controller
to verify the feasibility of the improved RRT* algorithm for path planning and the
effectiveness of the tracking control performance.

The organization of this paper is as follows: Section 2 introduces the improved RRT*
algorithm, Section 3 introduces the PSO-LQR path tracking method, and Section 4 conducts
experiments and analysis. Finally, in Section 5, this paper summarizes its contributions and
proposes future research directions.

2. Path Planning Algorithm
2.1. Vehicle Kinematic Model

In vehicle path planning, it is necessary to consider the kinematic characteristics of
the vehicle itself to ensure that the planned path meets the kinematic constraint conditions
of the vehicle. This ensures that the planned path can meet the vehicle’s steering motion
characteristics, thereby ensuring the stability and safety of the driving process. The vehicle
kinematic model established in this paper is shown in Figure 1.
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Figure 1. Vehicle kinematic model. Figure 1. Vehicle kinematic model.

In the state space shown in Figure 1, the state of the vehicle can be represented by the
variable q = (x, y, θ, δ f ), where (x, y) represents the coordinate position of the rear axle
of the vehicle, θ represents the angle between the longitudinal axis of the vehicle and the
X-axis, and δ f represents the steering angle of the front wheel. It is necessary to satisfy
|δ f | ≤ δ f max and l as the wheelbase, and R as the turning radius.
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Under the constraint of the front wheel steering angle, the vehicle cannot reach any
position in the state space. Assuming that the vehicle moves at a constant speed v parallel
to the ground, the vehicle can be simplified as a two-degree-of-freedom bicycle model
represented by Equation (1). 

.
x
.
y
.
θ

 = v·

cos(θ)
sin(θ)
tan δ f

l

. (1)

The relationship between the front wheel steering angle, wheelbase, turning radius,
and curvature can be obtained.

ρmax =
1

Rmin
=

tan δ f max

l
(2)

where Rmin represents the minimum turning radius, ρmax represents the maximum curva-
ture, and δ f max represents the maximum steering angle of the front wheels.

Based on the kinematic model and the analysis of the maximum front wheel turning
angle, it is known that the curvature of the planned path should satisfy the constraint of the
maximum front wheel turning angle. However, the RRT* algorithm does not consider the
constraints of the vehicle kinematic model, and the planned path does not fit the kinematic
characteristics of the vehicle. Therefore, the path planning of the vehicle can be constrained
based on the maximum front wheel turning angle and path curvature to meet the actual
driving path requirements of the autonomous vehicle.

2.2. RRT* Algorithm

Some researchers have proposed the RRT* algorithm. Before introducing the RRT*
algorithm, this paper first presents the RRT algorithm proposed by other researchers as
a basis. The RRT algorithm uses a random sampling method to expand the tree from the
initial point to the target point. During each iteration, the RRT algorithm randomly selects a
point qrand in the state space. If the point falls within a non-obstacle interval, it will traverse
the random expansion tree to find the nearest node qnearest to the random point. If the line
between qrand and qnearest does not collide with obstacles and the distance between them is
less than the expansion step size, qrand is added to the random tree as a new node qnew. If
the distance between qrand and qnearest is greater than the expansion step size, a point on
the line between qrand and qnearest, at a distance of the expansion step size from qnearest, is
intercepted as qnew and added to the random expansion tree. The nearest node to qnew is
then considered the parent node of qnew. Repeat this iteration process until a feasible path
is found from the initial point to the target point.

In contrast, the RRT* algorithm introduces two improvements: reselecting parent
nodes and rewiring. Reselecting the parent nodes means that after the RRT algorithm
finds a new node, the nearest node to the new node among all nodes within a predefined
radius r is selected as the parent node of the new node. Rewiring refers to reorganizing all
nodes in the tree near the newly selected parent node after selecting a new parent node,
with the principle of minimizing the cost of all nodes to the starting point. These two
processes complement each other, with reselecting the parent nodes minimizing the cost of
the newly generated node’s path as much as possible, and rewiring reducing redundant
paths in the random tree after generating a new node, thereby reducing path costs. These
improvements significantly reduce the path cost of the RRT algorithm.

To improve the search efficiency of the RRT* algorithm, researchers have proposed a
goal-biased RRT* algorithm, which, given a target-biased probability factor ptarget, and a
random probability value p is obtained between 0 and 1. When p > ptarget, a random state
named qrand is obtained in the search space, otherwise qrand is equal to qgoal . This algorithm
maintains the characteristics of the original algorithm and accelerates the convergence
speed to the target node.



Processes 2023, 11, 1841 6 of 27

2.3. Improved RRT* Algorithm

The flow chart of the improved RRT* algorithm in this paper is shown in Figure 2.
Firstly, the algorithm is initialized, and relevant parameters are set. Then the variable
sampling area method is used to restrict the generation of random sampling points. After
generating the random sampling point qrand, find its nearest node qnearest, use the improved
APF method to calculate the generation direction of the new node, and finally generate a
new node qnew in that direction. If there is no collision with the obstacle, the new node will
be added to the random tree and determine whether it reaches the target point. If there is
a collision or the target point is not reached, the initialization is returned to continue the
cycle until the target point is reached. Then the final curvature continuous path is obtained
by the path optimization method. The new improvements of the algorithm are explained
in detail below.
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2.3.1. Variable Sampling Area

In traditional RRT* and Goal-Bias RRT* algorithms, the random sampling of nodes is
based on the entire state space. However, in structured road scenarios where autonomous
vehicles operate, the vehicle’s movement is constrained by traffic rules. Therefore, random
sampling based on the entire state space will produce many invalid plans. The variable
sampling area method adaptively samples within a range around the current nearest
node using Gaussian sampling. This method dynamically adjusts the sampling interval
according to the characteristics of the current state space, which helps improve the efficiency
and accuracy of the algorithm.

As shown in the coordinate system in Figure 3, vehicles need to move in the direction
of the lane markings while avoiding obstacles represented by the black box. Depending
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on the driving intent of the vehicle, the RRT* algorithm should focus more on sampling in
front of the vehicle during random sampling. Therefore, the Gaussian sampling will be
more consistent with actual driving behavior. Using the state space information around the
current nearest node, the sampling area of the new random node is limited to an adaptive
fan-shaped range along the X-axis direction of the nearest node, as shown in Equation (3):

Φ = {x, y|x = xo + r cos η, y = yo + r sin η} (3)

{
r = σrrrand + ro
η = σηηrand + ηo

,

{
ro = ερ(q, qobs)

ηo =
π
2 − arctan

(
ρx(q,qgoal)

ρy(q,qgoal)

) (4)

where Φ is the dynamic sampling area, q(xo, yo) is the nearest node on the random tree
during the sampling process, (x, y) is the coordinate of the new sampling point, (r, η) is the
Gaussian parameter obtained from Equation (4), (ro, ηo) is the mean of the Gaussian dis-
tribution relative to (xo, yo), (σr, ση) is the standard deviation of the Gaussian distribution
in the radial and circumferential directions, (rrand, ηrand) is a random variable that follows
a standard Gaussian distribution. ρ(q, qobs) represents the Euclidean distance between
the nearest node and the center of the obstacle, ε is a constant, ρx(q, qgoal) and ρy(q, qgoal)
represent the Euclidean distances between the nearest node and the target point in the X
and Y directions, respectively.
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2.3.2. Improved APF-RRT* Algorithm

Based on the RRT* algorithm, adding an improved artificial potential field can improve
the direction of new node generation and speed up the search efficiency of the random
tree. The traditional APF algorithm is first introduced to pave the way for introducing the
improved strategy. q(xo, yo) is the nearest node in the random tree during the sampling
process, which generates an attractive field function Uatt(q) according to Equation (5) and a
repulsive field function Urep(q) according to Equation (6). The total potential field Utotal(q)
is the sum of these two fields, as shown in Equation (7):

Uatt(q) =
1
2

kagρ2(q, qgoal) (5)

Urep(q) =

 1
2 kr

(
1

ρ(q,qobs)
− 1

ρ0

)
ρ(q, qobs) ≤ ρ0

0 ρ(q, qobs) ≥ ρ0

(6)

Utotal(q) = Urep(q) + Uatt(q) (7)

where kag is the attraction gain factor of the target point to the nearest node is taken as 1.5
in this paper, kr is the repulsion gain factor of the obstacle is taken as 2 in this paper, ρ0
is the maximum distance at which the repulsion force acts, and ρ(q, qgoal) represents the
Euclidean distance between the nearest node and the target point. The magnitudes of the
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attraction and repulsion forces are the negative gradients of the attraction field function
and the repulsion field function, respectively. Therefore, the attraction function is defined
as shown in Equation (8). Similarly, the repulsion function is shown in Equation (9).

Fatt(q) = kagρ(q, qgoal) (8)

Frep(q) =

kr

(
1

ρ(q,qobs)
− 1

ρ0

)
ρ(q, qobs) ≤ ρ0

0 ρ(q, qobs) ≥ ρ0

(9)

To increase the exploratory nature of the algorithm and enable better exploration of
the unknown regions, this paper proposes an improvement to the attraction field as follows.
Firstly, the attraction field generated by the target point and the randomly sampled point
are defined as Uattg(q) and Uattr(q), respectively, and their sum is the new attraction field
function U

′
att(q), as shown in Equation (10). This produces a new attraction function F

′
att(q),

as shown in Equation (11).

U
′
att(q) = Uattg(q) + Uattr(q) =

1
2
(kagρ2(q, qgoal) + karρ2(q, qrand)) (10)

F
′
att(q) = Fattg(q) + Fattr(q) = kagρ(q, qgoal) + karρ(q, qrand) (11)

where kar is the gain coefficient for the attraction field produced by the sampled point
towards the nearest node is taken as 1.5 in this paper, ρ(q, qrand) is the Euclidean distance
between the nearest node and the sampled point, Fattg(q) and Fattr(q) are the attractions gen-
erated by the target point, and the random sample towards the nearest node, respectively.

In the primary APF method, when the car reaches the target point, the attractive
force becomes zero while the repulsive force remains non-zero, leading to the problem
of the elusive target. Moreover, when the resultant direction of all the repulsive forces
from obstacles is the same as the direction of the attractive force, and the car has not yet
reached the target point, it is possible to get stuck in a local optimum where the repulsive
and attractive forces are equal. To solve these problems, the traditional repulsive field of
the local optimal improvement method proposed by other researchers is improved in this
paper by introducing a modulation factor ρn(q, qgoal) in the repulsive field function, which

produces a new repulsive field function U
′
rep(q) as shown in Equation (12), which ensures

that the repulsive and attractive forces only reduce to zero simultaneously when the car
reaches the target point, thus solving the problems of local optima and elusive targets.

U
′
rep(q) =

 1
2 kr

(
1

ρ(q,qobs)
− 1

ρ0

)2
ρn(q, qgoal) ρ(q, qobs) ≤ ρ0

0 ρ(q, qobs) > ρ0

(12)

F
′
rep(q) = kr

(
1

ρ(q,qobs)
− 1

ρ0

)
ρn(q,qgoal)

ρ2(q,qobs)
∇ρ(q, qobs)

− n
2 kr

(
1

ρ(q,qobs)
− 1

ρ0

)2
ρn−1(q, qgoal)∇ρ(q, qgoal)

(13)

where F
′
rep(q) is the new obstacle repulsion function, ∇ρ(q, qobs) and ∇ρ(q, qgoal) are the

unit vectors of the nearest node and obstacle and the direction of the target point, respec-
tively, n is an arbitrary constant, and n = 2 is taken here after many tests.

However, vehicles are different from robots when they travel on roads. They are
not only constrained by obstacles but also by the road itself. According to the driving
experience, the boundary area of the road is the most dangerous, followed by the centerline
area, and the lane centerline area is the least dangerous. The force exerted on the vehicle by
the road boundary is shown in Figure 4.
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Figure 4. Schematic diagram of road boundary constraints.

According to the distribution of road danger levels mentioned above, the potential
field function of the road boundary needs to be considered in segments. When the vehicle is
in the area between the centerlines of two lanes, it is in a relatively safe zone. The influence
of the potential field changes slowly with position, so a function with a relatively gentle
change trend is used. In other areas where the danger level is higher, the influence of the
potential field changes quickly with position, so a function with a more extensive change
trend is used. Taking a dual carriageway as an example, considering the above factors, the
potential field function of the road boundary established is shown as Equation (14), and
the boundary potential field generated by the road boundary produces the road boundary
repulsive force shown as Equation (15), pushing the vehicle away from illegal areas on the
road boundary and ensuring the safety of the path.

Uroad(q) =


kroad1

(
e−|yo−yl | − 1

)
, yo ≤ L

4

kroad2 sin
(

2(yo−yl)
L

)
, L

4 < yo <
3L
4

kroad3

(
e|yo−yr | − 1

)
, yo ≥ 3L

4

(14)

Froad(q) =


kroad1e−|yo−yl |, yo ≤ L

4

kroad2 cos
(

2(yo−yl)
L

)
, L

4 < yo <
3L
4

kroad1e|yo−yr |, yo ≥ 3L
4

(15)

where kroad1 and kroad2 are the potential energy gain coefficients of the road boundary; yl
and yr is the horizontal position of the centerline of the inner and outer lanes; L is the width
of the road.

Based on the Goal Biased RRT*, an improved APF method is combined, where both
the target point and random sampling point exert attraction on the nearest node, and
obstacles exert a repulsive force on it. At the same time, considering the road environment
where the autonomous driving vehicle is located, the road boundary repulsive force is
introduced. The force diagram of the nearest node q(xo, yo) is shown in Figure 5, and the
direction of the resultant force F

′
total is drawn using the parallelogram rule, as shown in

Equation (16). Its direction serves as the extension direction for new nodes, controlling the
growth of the random tree towards the target point to reduce randomness and accelerate
path search speed.

F
′
total(q) = F

′
att(q) + F

′
rep(q) + Froad(q) (16)
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Figure 5. Force analysis diagram of the nearest node.

Then the resultant force F
′
total is decomposed into Fx and Fy, corresponding to the

components of the x-axis and y-axis, respectively, then in the case of the expansion step λ,
the position of the new node is qnew(xnew, ynew), as shown in Equation (17): xnew = xo + λ Fx

Fx+Fy

ynew = yo + λ
Fy

Fx+Fy

(17)

The path planning for autonomous vehicles in road scenarios was achieved by fusing
the RRT* algorithm and the improved APF method. The algorithm introduces the concepts
of attraction field and repulsion field to control the growth direction of the RRT* algorithm
towards the target point as much as possible in the tree expansion direction. After defining
the attraction field and repulsion field functions, their resultant force direction can be used
as the expansion direction of new nodes for node expansion. In this way, the tree growth
towards the target point can be controlled during the path planning process to reduce
randomness and improve path search speed.

2.3.3. Path Optimization Algorithms

Due to the random sampling nature of the RRT* algorithm during path searching, if
the path is directly generated from the goal point back to the starting point, the resulting
path will inevitably be more tortuous. It may not meet the maximum curvature constraints
required for vehicle steering, as well as resulting in redundant nodes, leading to an unneces-
sary increase in path cost. Therefore, this paper proposes a path-pruning method based on
the maximum steering angle constraint of the vehicle. As shown in Figure 6, starting from
the goal node qgoal , it is connected to the starting node qstart, and the intersection between
the line segment and obstacles is checked. If there is no intersection, the nodes between the
two path nodes are pruned, and the line connecting them is considered as the optimal path.
If there is an intersection, node q2 is connected to the goal node qgoal , and the intersection
check is repeated while also checking whether the angle formed by the two adjacent path
segments generated by nodes qstart, q2, and qgoal satisfies the maximum steering angle
constraint of the vehicle. If it does not satisfy one of the judgment criteria, it will continue
to connect to q3 and qgoal , and repeat the above judgment. If both judgment criteria are met,
it will be considered as the next path point of qstart, and the above operation is repeated
until the final path that does not intersect with obstacles and meets the maximum steering
angle constraint of the vehicle is obtained. This ensures that the path curvature does not
exceed the maximum curvature when using B-spline curves for smooth paths and outputs
the path. The path after pruning optimization is shown as a solid line in Figure 6.
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After the above path clipping, the path still has the problem of discontinuous curvature.
Therefore, a cubic B-spline curve is used to smooth the path and make the curvature of the
planned path continuous. If there are n + 1 control points in total, the K-th order B-spline
curve is defined as:

P(t) = [p0, p1, . . . , pn]


B0,K(t)
B1,K(t)

. . .
Bn,K(t)

 =
n

∑
i=0

PiBi,K(t) (18)

where P(t) are control points; Bi,K(t) is the basis function of cubic B-splines, recursively
obtained according to the DeBoor-Cox formula:

Bi,0(t)

{
1 ti ≤ t ≤ ti+1

0 Otherwise
K = 1

Bi,3(t) =
(t−ti)Bi,2(t)

ti+3−ti
+

(ti+4−t)Bi+1,2(t)
ti+4−ti+1

K ≥ 2

(19)

In this study, three uniform B-splines were selected to smooth the planned path, and
the repeatability of the nodes at both ends was set to 3. Then the basis function can be
expressed as: 

B0,3(t) = 1
6 (1− t)3

B1,3(t) = 1
6
(
3t3 − 6t2 + 4

)
B2,3(t) = 1

6
(
−3t3 + 3t2 ++3t + 1

)
B3,3(t) = 1

6 t3

(20)

Here, the vector interval of parameter nodes is set to [0, 1]. By substituting Equation (20)
into Equation (18), the expression of the third-order quasi-uniform B-spline curve can
be obtained:

P(t) =P0B0,3(t) + P1B1,3(t) + P2B2,3(t) + P3B3,3(t), t ∈ [0, 1]. (21)

3. Path Tracking Controller
3.1. Establishment of Path Tracking Model
3.1.1. Vehicle Dynamic Model

The path tracking control of autonomous driving vehicles mainly studies the lateral
dynamic characteristics of the vehicle, involving the vehicle’s lateral and yawing move-
ments. To simplify the calculations, it is assumed that the vehicle’s coaxial wheels have
the same lateral stiffness and turning angle, and thus, the coaxial wheels can be merged.
This simplifies the vehicle’s dynamic model to a two-degree-of-freedom lateral dynamic
model [34,35], as shown in Figure 7.
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Assuming the vehicle is driving at a constant speed and under the condition where
the front wheel steering angle δ f and the front and rear wheel slip angles α f and αr are
small, lateral load transfer can be ignored. According to the magic formula tire model [36],
the vehicle’s dynamic Equation can be expressed as:

may = Fy f + Fyr = C f α f + Crαr = C f

( .
ϕa+vy

vx
− δ f

)
+ Cr

(
vy−

.
ϕb

vx

)
Iz

..
ϕ = aFy f − bFyr = aC f α f − bCrαr = aC f

( .
ϕa+vy

vx
− δ f

)
− bCr

(
vy−

.
ϕb

vx

) (22)

where m is the mass of the entire vehicle; Fy f and Fyr are the lateral forces of the front and
rear wheels, respectively; Iz is the rotational inertia of the vehicle around the Z-axis;

.
ϕ is

the vehicle’s yaw rate; a and b are the distances from the center of mass of the vehicle to
the front and rear axles, respectively, C f and Cr are the lateral stiffness of the front and rear
wheels, respectively; vx is the longitudinal speed of the vehicle; vy is the lateral velocity of
the vehicle.

Define
.
y = vy to get the vehicle dynamics model:

( ..
y
..
ϕ

)
=

 C f +Cr
mvx

aC f−bCr
mvx

− vx

aC f−bCr
Izvx

a2C f +b2Cr
Izvx

( .
y
.
ϕ

)
+

−C f
m

− aC f
Iz

δ f (23)

3.1.2. Path Tracking Error Model

When an autonomous vehicle is tracking a reference path, it will mainly experience
lateral error and heading angle error. As shown in Figure 8, the shortest distance between
the vehicle’s center of mass and the reference path projection point is defined as the lateral
error ed. The difference between the vehicle’s actual heading angle θ and the reference
heading angle θr is defined as the heading angle error eθ . For convenience of calculation, it
is assumed that the vehicle’s center of mass has a lateral deviation angle β = 0, and the
vehicle’s heading angle error is eϕ = ϕ− θr. In actual control, the controller is required to
eliminate these two errors in real time to enable the vehicle to track the planned path in
real time. Based on the lateral error and heading angle error, the first-order derivatives of
lateral error

.
ed and heading angle error

.
eϕ can be calculated.

.
ed = vxeϕ + vy (24)

.
eϕ =

.
ϕ− .

ϕr (25)
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the front and rear wheels, respectively; xv  is the longitudinal speed of the vehicle; yv  is 
the lateral velocity of the vehicle. 
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3.1.2. Path Tracking Error Model 
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Combining Equation (23), the second-order derivative of the lateral error
..
ed and the

second-order derivative of the heading angle error
..
eϕ can be obtained.
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Further transformations on the above formula result in the following state-space Equa-
tions for the lateral and heading errors in the steering process of autonomous driving vehicles:
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(28)

Then the state space Equation about the tracking error of vehicle dynamics can
be obtained: .

X = AX + BU + C
.
θr. (29)

In practical applications, we frequently work with discrete data, and the path gen-
erated by the path planning algorithm described earlier consists of a series of reference
points rather than a continuous path. Hence, we opt for discrete LQR control. To design a
discrete LQR controller, we discretize Equation (31) by ignoring the impact of the C

.
θr term,

resulting in the state space Equation for discrete vehicle tracking errors.

Xk+1 = AXk + BUk (30)

where: A =
(

I− Adt
2

)−1(
I + Adt

2

)
; B = Bdt.
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3.2. Design of LQR Path Tracking Controller Based on Particle Swarm Optimization

The overall structure of the path-tracking controller is shown in Figure 9. Firstly, based
on the path tracking error model, an LQR controller is designed as the central part of the
path-tracking controller so that the vehicle can travel along the reference path; on this basis,
the particle swarm optimization algorithm is used to optimize the weight matrices Q and
R of the LQR controller to improve its performance, and a feedforward control method is
used as the steering angle compensation to eliminate the steady-state error of the system
and further optimize the path tracking effect.
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3.2.1. LQR Controller Design

LQR is an optimization problem that minimizes the performance objective function
under given constraints and obtains the optimal feedback control by solving the correspond-
ing algebraic Riccati Equation [37]. Its advantage in autonomous driving path tracking
control is that when the system state deviates from the steady state due to obstacles or
unexpected events, it can ensure that the vehicle tracking control system approaches the
ideal path without causing too much computational workload. The LQR control problem
of the vehicle lateral path tracking controller can be expressed as:

minJ =
∞

∑
k=0

(
XT

k QXk + UT
k RUk

)
(31)

Q = diag[q1, q2, q3, q4] (32)

R = [q5] (33)

where X denotes the system’s state variable, while U represents its control variable. The
weighted matrix Q indicates the level of emphasis placed on the corresponding control
target in terms of state error representation. The weight matrix of the control variable is
denoted by R. The weight coefficients for lateral error, the lateral error rate of change,
heading error, and the heading error rate of change are, respectively, represented by
q1, q2, q3, q4. The weight coefficient of the front wheel steering angle is given by q5. These
weight coefficients reflect the relative importance of the variables. Larger values correspond
to faster convergence of the related state variable towards the target value.

Then, the Lagrange multiplier method is used to construct the constrained optimiza-
tion problem for solving extreme values. The cost function under constraint conditions is:

J =
n−1

∑
k=0

[
XT

k QXk + UT
k RUk + λT

k+1
(
AXk + BUk

)
− λT

k+1Xk+1

]
+ XT

n QXn. (34)

The constructed Hamiltonian function Hk = XT
k QXk + UT

k RUk + λT
k+1
(
AXk + BUk

)
,

Equation (34) can be simplified as:
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J =
n−1

∑
k=0

(Hk − λT
k Xk ) + XT

n QXn − λT
n Xn. (35)

The control quantity of LQR obtained by solving the extreme value of Equation (35) is:

Uk = − (R + BTPB )−1BTPAXk (36)

where P is obtained by calculating Riccati Equation Pk−1 = Q+ATPk (I + BR−1BTPk )
−1A.

Equation (36) can be simplified as:

Uk = −kXk (37)

where k = [k1, k2, k3, k4] is the result of the LQR controller and also the feedback coefficient
of the front wheel angle.

3.2.2. Feedforward Control

By bringing Equation (37) into Equation (29), it can be obtained that:

.
X = (A− Bk)X + C

.
θr (38)

At this point, no matter what value k takes,
.
X cannot be zero. If only LQR feedback

control is used, there will be a constant steady-state error; Therefore, we remove the
influence of the C

.
θr term by introducing a feedforward control variable δ f f , and the system

control variable after adding feedforward control is:

U = −kX + δ f f (39)

When
.
X = 0, the expression for the state variable of the system without steady-state

error is:
X = −(A− Bk)−1A

(
Bδ f f + C

.
θr

)
(40)

From Equation (40), it can be concluded that in order to achieve the optimal control
effect, it is necessary to calculate the appropriate δ f f , so that the steady-state error of
the system is 0. Based on Equation (28), the steady-state error Equation of the system is
calculated as follows:


ed.
ed
eϕ.
eϕ

 =


1
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{
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.
θr
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[
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x
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(
b

C f
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Cr
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)]
0

−
.
θr
vx

(
b + a

a+b
mv2

x
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 (41)

According to Equation (41), it can be seen that:

eϕ = −
.
θr

vx

(
b +

a
a + b

mv2
x

Cr

)
= −β. (42)

In the previous text, for the convenience of calculation, assuming that the lateral
deviation angle of the vehicle’s center of mass is β = 0, the heading angle error of the
vehicle is eϕ = ϕ − θr but eθ = ϕ + β − θr = 0, so the heading error can be directly
eliminated. If you want the lateral error ed = 0, the feedforward control quantity δ f f is:

δ f f = ρ

[
a + b− bk3 −

mv2
x

a + b

(
b

C f
+

a
Cr

k3 −
a

Cr

)]
(43)
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where ρ =
.
θr
vx

is the path curvature.

3.3. Optimization of LQR Controller Based on Particle Swarm Optimization Algorithm

PSO (particle swarm optimization) is widely used in parameter optimization prob-
lems because of its simplicity and fast convergence [38–40]. In the PSO algorithm, the
optimization problem is transformed into a search problem for the optimal solution, which
is easy to implement and has global search ability. The PSO algorithm finds the optimal
LQR weight matrix by conducting a global search in the search space, further improving
the control system’s performance. Figure 10 shows the algorithm flowchart of applying
PSO to optimize the LQR weight matrix.
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Firstly, the parameters required for the LQR algorithm need to be configured, followed
by the initialization of the position and velocity of particles, including the initial value
of the LQR weight matrix, which should be randomly generated within a feasible range.
Then, the control quantity of LQR is calculated using the generated weight matrix Q and
R, and the Simulink model is called to calculate relevant parameters. The fitness function
of each particle is obtained by calculating the fitness function based on the parameters
obtained from running the model. The fitness function is a vital component of the particle
swarm algorithm. Taking into account the characteristics of autonomous driving vehicles
and driving scenarios and considering the relationship between the frequency domain and
time domain, this study designed a fitness function F based on the sum of the integral
time multiplied by the absolute error (ITAE) of lateral error ed, heading error eϕ, roll angle
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velocity
.
ϕ, and lateral acceleration ay, to simultaneously consider path tracking accuracy

and vehicle stability.

minF =
∫ T

0
t|ed(t)|dt +

∫ T

0
t
∣∣eϕ(t)

∣∣dt +
∫ T

0
t
∣∣ .
ϕ(t)

∣∣dt +
∫ T

0
t
∣∣ay(t)

∣∣dt (44)

Then, for each particle, find its best solution: the position and weight matrix with
the smallest fitness value. Find the current global best solution, which is the position and
weight matrix with the smallest fitness value among all particles, and update the velocity
and position of each particle based on Equation (45):{

Vi(t + 1) = ωV(t)i + c1r1(pbest_i − Xi(t)) + c2r2(gbest − Xi(t))

Xi(t + 1) = Xi(t) + Vi(t + 1)
(45)

where Vi(t) and Xi(t) are the velocity and position of the i-th particle in the t-th iteration,
pbest_i is the personal optimal solution of the i-th particle, gbest is the current global optimal
solution, ω is the inertia factor, c1 and c2 are learning factors, r1 and r2 are random numbers
between [0, 1].

Loop until the specified termination criterion is reached, and output the current global
optimal solution and the optimal value of the LQR Weight Matrix, as shown in Table 1.

Table 1. Optimal values of LQR weight matrix.

Longitudinal Velocity (m/s) Q R

10 diag [300 0.01 0.01 4.49] 6.02
15 diag [270.71 0.01 0.01 119.35] 4.91
20 diag [1.23 0.01 99.47 62.88] 1.39

4. Simulation Analysis
4.1. Simulation Analysis of Path Planning

Simulations were performed using Matlab 2020(b) (sourced from MathWorks, a com-
pany located in Natick, MA, United States) on a Windows 10 computer with an Intel Core
i7-12700F CPU and 32 G RAM. This paper compares the simulation results of four algo-
rithms, RRT*, Goal-Biased RRT*, P-RRT*, and Improved-RRT*, for three Map scenarios. The
Improved-RRT* algorithm exhibits fast convergence, short planning time, and high security
of the planned path. The simulated Maps are 2D environments, with Map 1 and 3 having
dimensions of 7 m × 100 m and Map 2 having dimensions of 7 m × 120 m, representing
three different scenarios. As shown in Figure 11, in the simulation, the vehicle starts at the
starting point in rose red and ends at the endpoint in blue. The obstacle vehicles and road
boundaries are represented in dark green, the blue line indicates the sampling process, and
the red line indicates the final generated path. Each method was tried 30 times in each Map
situation to remove the influence of randomness, and the average result was calculated.
The results include the average path length, average path search time, average number
of iterations, and average memory consumption, which are recorded and presented in
Tables 2–4, respectively.

Table 2. Simulation data under Map 1.

Algorithm RRT* Goal-Biased-RRT* P-RRT* Improved-RRT*

Average path length (m) 102.4621 100.9605 100.8112 100.7826
Average running time (s) 14.7644 7.0604 1.8454 1.3079

Average iterations 480.8 310.4 219.3 146.4
Average memory

consumption (MB) 44.3 33.1 26.6 22.4
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search results.

Table 3. Simulation data under Map 2.

Algorithm RRT* Goal-Biased-RRT* P-RRT* Improved-RRT*

Average path length (m) 122.3938 121.5995 121.2425 121.2192
Average running time (s) 16.8818 11.9701 2.8668 1.0641

Average iterations 634.4 401.8 334.1 218.2
Average memory

consumption (MB) 49.7 35.3 32.1 26.2

Table 4. Simulation data under Map 3.

Algorithm RRT* Goal-Biased-RRT* P-RRT* Improved-RRT*

Average path length (m) 102.8306 101.2469 100.7349 100.6376
Average running time (s) 12.4730 8.0140 2.1727 1.4296

Average iterations 518.5 349.7 282.5 177.1
Average memory

consumption (MB) 47.4 34.1 29.3 24.5

Map 1 depicts a two-lane changing scenario where the vehicle must avoid three ob-
stacles on the right lane and switch to the left lane. As shown in Figure 11a, the original
RRT* algorithm employs full-state space random sampling, generating unnecessary sam-
pling processes and resulting in a longer and more tortuous path. Figure 11b displays
the simulation results of the Goal-Biased-RRT* algorithm, which significantly reduces the
sampling process and improves the search efficiency by incorporating a target bias strategy.
Figure 11c shows the simulation results of the P-RRT* algorithm, which enhances search
speed and simplifies redundant nodes by adding attractive field constraints. However,
it still generates redundant nodes around obstacles due to the lack of obstacle exclusion
effect. In contrast, Figure 11d illustrates the Improved-RRT* algorithm, which restricts
the variable sampling area and introduces an improved APF algorithm to enhance search
efficiency. Although the path length of the Improved-RRT* algorithm does not show a
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significant advantage compared to the previous algorithms, the distance between the path
and obstacles has a certain safety margin, thus improving the path safety.

By analyzing the data in Table 2, the path length of the proposed algorithm is 1.67%
shorter than that of the original RRT* algorithm. Compared with the P-RRT* algorithm, the
average running time and iteration times are reduced by 29.13% and 33.24%, respectively,
and reduces memory consumption by about 15.8%. The results demonstrate that the
proposed algorithm can significantly reduce the number of random points, improve the
convergence speed, and ensure algorithm stability.

Map 2 depicts a passing scenario in a double-lane road, where the vehicle needs to pass
a single obstacle on the right lane and also avoid two obstacles on the left lane, requiring
two lane changes to complete the passing maneuver. The simulation results are shown
in Figure 12. It can be seen that for such a complex environment, the advantages of the
proposed algorithm are more evident. Although the reduction in path length compared
to other methods is relatively small, the paths generated by other methods are not good
and too close to the obstacle cars, with a low safety margin. As shown in Figure 12d, the
improved algorithm proposed in this paper plans a smoother path in this scenario, with a
greater distance from the obstacle cars and a higher level of safety. It also reduces the large
number of redundant nodes, shortening the search time. Analyzing the data in Table 3, the
new algorithm reduces the average path length by 0.96% compared to the original RRT*
algorithm. Compared with the P-RRT* algorithm, the average running time is reduced by
39.67%, the average number of iterations is reduced by 34.69%, and the algorithm memory
consumption is reduced by 18.4%. Therefore, the proposed algorithm can significantly
reduce unnecessary sampling processes and iterations, demonstrating its stability.
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The Map 3 scenario is mainly used to verify the effectiveness of the improved algorithm
in this paper under different obstacle sizes and shapes, and the simulation results are shown
in Figure 13. On the same road as Map 1, obstacles of different sizes and shapes appear,
and the proposed improved algorithm is still practical for such a complex environment.
The improved algorithm in this paper can still plan the path with a high safety factor while
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the redundant nodes are significantly reduced, and the path search speed is accelerated.
According to the data analysis in Table 4, the average path length planned by the improved
algorithm is 2.14% less than that of the RRT* algorithm. Compared with the P-RRT*
algorithm, the average running time of the improved algorithm is reduced by 34.56%,
the average number of iterations is reduced by 37.31%, and the memory consumption is
reduced by 16.4%. The proposed algorithm still performs well in the face of obstacles of
different sizes and shapes.
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In the simulations of the three Map scenarios shown in Figures 11–13, although
the improved RRT* algorithm generates the base path, there are problems such as too
many path points, too long path length, and too large path curvature, which do not meet
the driving conditions of autonomous vehicles and are not the required optimal paths.
Therefore, in this study, the path generated by the improved algorithm was optimized
using path pruning based on the maximum steering angle of the vehicle and the third-
order B-spline algorithm. The optimization results are shown in Figure 14. The red path
represents the initially generated path, while the green path represents the trimmed path,
and it can be seen that the redundant points in the path have been reduced. The black path
represents the optimized final, whose curvature is shown in Figure 15. The path curvature
after path optimization in all three Map scenarios is continuous and can meet the vehicle
driving requirements.

4.2. Simulation Analysis of Path Tracking Control

The effectiveness and adaptability of the proposed path planning algorithm and path
tracking control strategy were verified through joint simulation experiments using CarSim
and MATLAB/Simulink. The main parameters of the vehicle are shown in Table 5. To
validate the feasibility of the planned path and the effectiveness of the tracking control
strategy, the planned paths in two different Map scenarios were tested for path tracking.
As the driving environment was a normal urban road with well-dried asphalt surfaces, the
road adhesion coefficient was set to 0.8 in this study.
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The performance of the PSO-optimized LQR path tracking controller was first verified
by using the two paths planned in this paper. Simulation tests were conducted at speeds of
10 m/s and 20 m/s for both LQR and PSO-optimized LQR controllers, and representative
parameters were selected for comparison. The results are shown in Figures 16 and 17.

Figure 16 describes the tracking performance of the LQR controller and the PSO-
optimized LQR controller under the path of Map 1 at speeds of 10 m/s and 20 m/s.
According to parts (a) and (c), the maximum lateral tracking error of the LQR controller can
be controlled to within 0.13 m at different speeds, and the PSO-LQR is reduced by about
54% compared to it. Parts (b) and (d) provide the analysis of the overall vehicle stability.
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When the longitudinal speed is 10 m/s, there is not much difference in the stability of LQR
before and after optimization. However, when the speed is increased to 20 m/s, the overall
vehicle stability under PSO-optimized LQR control is significantly better.

Table 5. Main parameters of the vehicles.

Parameters/Units Value

Vehicle mass/kg 1412
Distance from the center of mass to the front axis/mm 1015
Distance from the center of mass to the rear axis/mm 1895

Moment of inertia/kg·m2 1536.7
Front-wheel cornering stiffness/N/rad −148,970
Rear wheel cornering stiffness/N/rad −82,204

Wheelbase of the front axle/mm 1675
Height of the center of mass/mm 540

Effective radius of wheel/mm 325
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Figure 17 describes the tracking performance of the LQR controller and PSO-optimized
LQR controller under two speeds, 10 m/s, and 20 m/s, on the path of Map 2. Perfect driving
in the double-lane scenario is challenging, and both control algorithms have some errors in
turns with large curvatures. However, the PSO-optimized LQR controller has a more minor
lateral error, and the vehicle can quickly correct the current state when the error is large.
By comparing parts (a) and (c), the maximum lateral tracking error of the LQR controller
at different speeds in both paths can be controlled within 0.14 m. For the PSO-optimized
LQR controller, it is reduced by about 64% to 0.05 m. This indicates that the improved LQR
controller can more effectively reduce errors and keep the vehicle in a safe state when the
tracking error is large. Similarly, at a speed of 20 m/s, parts (b) and (d) show that the whole
vehicle stability under the PSO-optimized LQR controller is higher.

To verify the feasibility of the planned paths and to investigate the accuracy and
stability of the improved LQR controller in terms of speed, two planned paths were
tracked and tested at three different vehicle speeds. The simulation results are shown in
Figures 18 and 19.
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A vehicle speed of 20 m/s was added to the first two simulated speeds to better
validate the tracking performance of the PSO-LQR tracking controller. The simulation
results are presented in Figures 18 and 19. Figures 18a and 19a demonstrate that the
vehicle can effectively follow the planned path at all speeds, indicating the robustness of
the controller. Figures 18b,c and 19c show that the lateral position tracking error increases
with speed; however, the lateral position errors at different paths and speeds can be
controlled within 0.06 m, which is within the acceptable range and performs well. Similarly,
Figures 18d and 19d indicate that the yaw tracking error can be controlled within 0.05 rad
at different speeds, and the differences are insignificant, suggesting that the vehicle’s
tracking process is relatively stable. Figures 18b,e,f, and 19b,e,f, describe that as the speed
increases, the changes in lateral acceleration, front-wheel steering angle, and yaw rate
become greater. Still, the front-wheel angle and lateral acceleration at different speeds do
not have any step changes, and the yaw rate can be controlled within an acceptable range,
indicating that the tracking process is relatively stable. Overall, the PSO-optimized LQR
controller’s robustness, accuracy, and stability are acceptable at speeds that are not too fast.
The planned paths meet the tracking requirements of autonomous vehicles and achieve
good tracking performance at different speeds.

5. Conclusions

To address the slow convergence and randomness of the RRT* algorithm and the rela-
tively empirical selection of the weight matrix of the LQR algorithm. This paper proposes a
framework to improve the RRT* and PSO-LQR algorithms for path planning and tracking
control of self-driving vehicles under ordinary urban road conditions. The framework
employs a variable sampling area to limit the generation of random sampling points. More-
over, an improved artificial potential field method is integrated into the RRT* algorithm to
improve its convergence speed. The path optimization is then performed using path prun-
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ing based on the vehicle’s maximum steering angle constraint and the three-time B-spline
algorithm to obtain curvature-continuous paths. The simulation results of the average three
Map scenarios show that the improved RRT* algorithm optimizes 34.45%, 35.08%, and
16.87% of the path search time, iteration number, and memory consumption, respectively,
compared with P-RRT*, demonstrating the significant advantages of the improved algo-
rithm. In addition, the final path optimized by the path optimization algorithm is smooth
and curvature continuous, which satisfies the path tracking requirements. In the path-
tracking stage, the PSO algorithm optimizes the LQR weight matrix and adds feedforward
control compensation to improve the path-tracking accuracy. According to the simulation
results under two different paths, the path tracking accuracy of the PSO-LQR path tracking
controller is improved by 59% compared with the conventional LQR, and its robustness is
also significantly improved. In addition, by comparing the tracking effects under different
vehicle speeds, the path tracking errors can all be controlled within 0.06 m, which verifies
the effectiveness of the proposed path planning and trajectory tracking framework.

However, further research is required to investigate and address the deployment of the
proposed path planning algorithm and tracking control strategy for accurate vehicle testing.
In future work, the integration of machine learning and intelligent optimization algorithms
into path planning and path tracking control research will be emphasized to develop faster
and safer path planners and more precise and efficient path tracking controllers.
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