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Abstract: It is essential to use highly antigenic epitope areas, since the development of peptide
vaccines heavily relies on the precise design of epitope regions that can elicit a strong immune
response. Choosing epitope regions experimentally for the production of the SARS-CoV-2 vaccine can
be time-consuming, costly, and labor-intensive. Scientists have created in silico prediction techniques
based on machine learning to find these regions, to cut down the number of candidate epitopes
that might be tested in experiments, and, as a result, to lessen the time-consuming process of their
mapping. However, the tools and approaches involved continue to have low accuracy. In this work,
we propose a hybrid deep learning model based on a convolutional neural network (CNN) and long
short-term memory (LSTM) for the classification of peptides into epitopes or non-epitopes. Numerous
transfer learning strategies were utilized, and the fine-tuned method gave the best result, with an
AUC of 0.979, an f1 score of 0.902, and 95.1% accuracy, which was far better than the performance of
the model trained from scratch. The experimental results obtained show that this model has superior
performance when compared to other methods trained on IEDB datasets. Using bioinformatics
tools such as ToxinPred, VaxiJen, and AllerTop2.0, the toxicities, antigenicities, and allergenicities,
respectively, of the predicted epitopes were determined. In silico cloning and codon optimization
were used to successfully express the vaccine in E. coli. This work will help scientists choose the
best epitope for the development of the COVID-19 vaccine, reducing cost and labor and thereby
accelerating vaccine production.
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1. Introduction

The contagious disease called coronavirus disease 2019 (COVID-19) is brought on by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. The virus, which was
first discovered in Wuhan in December 2019, has since spread around the world, causing
the deaths of millions and having catastrophic effects on the economy and society. The
necessity for effective vaccinations is therefore extremely important [2]. Several strategies
have been put up by researchers to create SARS-CoV-2 vaccines [3,4]. Growing pathogens
is the basis of the conventional vaccine development method, which makes it exceedingly
time-consuming to isolate, inactivate, and inject the disease-causing virus [5]. This method
typically takes over a year to produce effective vaccinations, and as a result, it does very
little to stop the disease’s spread [6,7].
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The current COVID-19 control measures, which do not yet include a single particular
antiviral drug for SARS-CoV-2, include early diagnosis, reporting, isolation, and supportive
therapies [8]. Elderly persons and those with weakened immune systems tend to have
more severe illnesses and are more likely to perish because their cells’ ability to resist
infection and repair themselves is decreased by a compromised immune system [9]. The
immune system has two distinct response mechanisms: innate and adaptive. Innate
immunity swiftly intervenes and initiates early immune responses when it comes into
contact with pathogens [10]. On the other hand, adaptive immunity may be developed
in several ways, including through disease exposure or externally delivered serum and
vaccinations. Adaptive immune systems contain memories that allow them to recall
previous infections; as such, antigen-specific responses are produced by adaptive immune
systems [11]. Adaptive immune responses come in both humoral and cellular forms. A
humoral response utilizes B-cells to produce antibodies that can target an antigen when
exposed to it. To create a vaccine, the highly immunogenic portions of the protein of a
pathogenic organism must first be identified. These areas are referred to as B- and T-cell
epitopes and are in charge of triggering immune responses [12,13].

SARS-CoV-2 has a large 26–32 kb RNA genome that encodes several structural and
non-structural proteins, such as Spike (S), Envelope (E), Membrane (M), and Nucleocapsid
(N), which are crucial for triggering immunological responses [14–17]. Therefore, an
epitope peptide vaccine made of viral proteins S, M, N, and E is highly required to control
disease spread and another SARS virus in the future. B-cell epitopes can be linear or
conformational. While conformational epitopes are made up of amino acids that are
connected during the folding of a protein, linear epitopes are produced by a sequence of
the amino acids of the protein [13,18]. One study [19] identified the best epitopes for an
epitopic vaccination to prevent SARS-CoV-2 infection. To identify and describe potential
B and T-cell epitopes for the creation of the epitopic vaccine, immunoinformatics were
used. The SARS-CoV-2 spike glycoprotein was selected as the target because it creates the
virus’ distinctive crown and protrudes from the viral membrane. Multiple servers and
pieces of software built on the immunoinformatic platform were used to explore the spike
glycoprotein’s protein sequence. The focus of this study is on linear epitope prediction
due to the limited number of available datasets for conformational epitopes. Conventional
approaches for creating vaccines against deadly diseases have proven to be exceedingly
time- and money-consuming. Using in silico techniques, vaccine candidates for earlier
viruses (Zika, Ebola, HPV, and MERS) have been successfully designed [20,21].

In a study, immunoinformatics-based techniques were used to find possible immun-
odominant SARS-CoV-2 epitopes, which may be relevant to creating COVID-19 vaccines.
In total, 25 epitopes that were 100% similar to experimentally verified SARS-CoV epi-
topes and 15 putative immunogenic areas from three SARS-CoV-2 proteins were found.
Analysis was carried out to test the suitability of the epitopes as a vaccine [22]. Similarly,
immunoinformatics tools were used to create a multi-epitope vaccine that could be em-
ployed for COVID-19 prevention as well as treatment. B-cell, CTL, and HTL epitopes
were combined to create this multi-epitope vaccine. Using online tools, additional research
was done to predict and evaluate the vaccine structure and efficacy [23]. To provide a
list of possibly immunogenic and antigenic peptide epitopes that might aid in vaccine
creation, several immunoinformatics methods were integrated. Spike proteins’ S1 and S2
domains were examined, and two vaccine constructions, with T- and B-cell epitopes, were
given priority. Using linkers and adjuvants, prioritized epitopes were then modeled, and
corresponding 3D models were built to assess their physiochemical characteristics and
potential interactions with ACE2 and HLA superfamily alleles [24].

Machine learning algorithms’ architecture automatically identifies patterns in data,
which is perfect for data-driven sciences, such as genomics [25,26]. The usage of DL
frameworks in medical imaging has been widespread [27–31]. To create computer models
that can more accurately predict the existence of linear B-cell epitopes from an amino acid
sequence for vaccine production against a pathogenic organism, in silico techniques have
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been frequently employed [32]. There are several programs available and cited in the
literature that employ machine learning methods to predict linear B-cell epitopes, including
BepiPred-2.0 [33], BCPred [34], EpiDope [35], ABCPred [36], and SVMTrip [37]. In addition,
the Lbtope tool and SVM, K-nearest neighbor models [38], and genetic algorithms [39]
have been used in vaccine design for B-cell or T-cell epitopes. Most of these machine
learning models rely on features related to amino acid sequences; therefore, the portrayed
effectiveness of such models is ineffective.

The web server BepiPred-2.0 is used to predict B-cell epitopes from antigen sequences.
The data utilized had 11,834 positive and 18,722 negative epitopes, and it was taken from
the immune epitope database (IEDB) [40]. Since epitopes are rarely found outside of
peptides consisting of five to twenty-five amino acids, the peptides within this range were
eliminated. The random forest (RF) regression technique with fivefold cross-validation was
utilized as the training approach; the method was reported to have an AUC of 0.62 on test
datasets [33]. BCPred, another method to predict linear B-cell epitopes, employed SVM that
utilized a radial-based kernel with five kernel modifications and fivefold cross-validation.
The proposed technique eventually achieved an AUC of around 0.76 [34]. In another study,
deep neural networks were used by the application EpiDope to locate B-cell epitopes in
specific protein sequences composed of ELMo DNN and biLSTM. Each of the 30,556 protein
sequences in the dataset, which was taken from the IEDB, had experimentally validated
epitopes or non-epitopes. A bidirectional LSTM (long short-term memory) layer was linked
to a vector of length 10 that was used to encode each amino acid in the ELMo DNN branch.
Tenfold cross-validation was employed for validation, achieving an AUC of 0.67 [35].
ABCPred employed a recurrent neural network (RNN) to predict linear B-cell epitopes. For
each residue, sliding windows containing 10 to 20 amino acids were employed to determine
its attributes. Fivefold cross-validation was utilized for these tests, yielding an accuracy of
66% [36]. The SVMTriP approach, which combines SVM with tri-peptide similarity and
propensity scores, is used to predict linear antigenic B-cell epitopes. Our dataset was taken
from the IEDB and consisted of 65,456 positive epitopes [40]. Using fivefold cross-validation,
it obtained an AUC value of 0.702. The authors of [41] created a strategy for predicting B-cell
linear epitopes that was based on the design of a fuzzy-ARTMAP neural network. This was
trained on 15 attributes, including an amino acid ratio scale and a set of 14 physicochemical
scales, using a linear averaging approach. Fivefold cross-validation procedures were
employed with datasets taken from the IEDB to train and validate the knowledge of models
and were shown to achieve an AUC of 0.7831 on test data, which is a good performance. To
take into account the properties of a whole antigen protein in combination with the target
sequence, [42] presents a deep learning approach based on short-term memory with an
attention mechanism. In experimental epitope location prediction with data taken from the
immune epitope database, the suggested technique outperformed the standard method,
with an AUC of 0.822. The SMOTE technique produced more accurate predictions than
other methods when evaluated for the datasets balanced using it. It was shown that once
the SARS-CoV and B-cell datasets used for training were balanced, the epitope prediction
success of the models generally rose, with an accuracy of 0.914.

There are very few deep learning methods available for forecasting B-cell epitopes,
and even though some of the models are good at predicting linear B-cell epitopes, based on
their performances, they still have some difficulties with making good predictions, which
makes it necessary to develop better models. This research suggests a novel and effective
hybrid transfer learning strategy, for forecasting SARS-CoV-2 epitopes, that integrates data
preprocessing of physiochemical characteristics and sequence-based features. This study’s
goal is to provide a better method of identifying the epitope areas that could be candidates
for vaccines. The list of abbreviations is presented in Table 1. The contributions made by
this study are as follows:

• We proposed CNN-LSTM, a hybrid architecture that combines a CNN with bidirec-
tional LSTM (BiLSTM), to predict B-cell epitopes given a peptide sequence that may
be employed for vaccine development. The idea behind this hybrid architecture is to
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employ the CNN for feature extraction and LSTM for modeling feature relationships
in order of appearance.

• To address the issue of limited sample sizes and enhance model performance, we put
forth a transfer learning technique. In particular, we first pre-trained the proposed
CNN-LSTM using the B-cell dataset. The pre-trained CNN-LSTM was then adjusted
to predict epitopes using SARS-CoV datasets.

• To forecast epitopes from the SARS-CoV-2 datasets, we looked into three transfer
learning strategies—fine-tuned, frozen CNN, and frozen LSTM—using information
learnt from the previous model.

• With the use of the bioinformatics tools AllerTop, VaxiJen, ToxinPred, Jcat, and Snap-
gene, we investigated epitopes discovered with transfer learning techniques.

Table 1. List of abbreviations.

Abbreviation Meaning

AUC Area under the curve
CAI Codon optimization index

CNN Convolutional neural network
COVID-19 Coronavirus disease 2019

DL Deep learning
IEDB Immune epitope database

IgM and IgG Immunoglobulins IgM and IgG
IFN-γ Interferon
JCat Java Codon Adaptation Tool

LSTM Long short-term memory
ReLU Rectified Linear Unit

RF Random forest
RNN Recurrent neural network
ROC Receiver operating characteristic

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
Tc Cytotoxic T lymphocytes
Th Helper T lymphocytes

2. Materials and Methods
2.1. Datasets

The Kaggle database provided the datasets utilized in this study, which were made
available to the general public (https://www.kaggle.com/datasets/futurecorporation/
epitope-prediction, accessed on 13 March 2023). This database includes SARS-CoV, B-
cell, and SARS-CoV-2 datasets. The B-cell datasets consisted of 14,387 samples, of which
10,485 were non-epitopes (negative) and 3902 were epitopes (positive). The SARS-CoV
dataset consisted of 520 samples; 380 were non-epitopes and 140 were epitopes. The data
consisted of ten features, both structural and chemical. The protein sequences and peptide
sequences were in categorical form but were later converted to numerical form using
their sequence lengths so that each protein sequence or peptide sequence would have a
value that corresponded to the number of its categorical letters, while chou_fasman (beta
turn), kolaskar_tongaonkar (antigenicity), Parker (hydrophobicity), Emini (relative surface
accessibility), stability, isoelectric_point, aromaticity, and hydrophobicity were numerical,
as previously described in [43]; see Figure 1 for the data distribution. The SARS-CoV-2
dataset lacked label information and comprised 20,312 peptides isolated from the virus’
spike protein. The SARS-CoV-2 dataset served as a test set because it was unlabeled, and
it consisted of 20,312 samples. The fine-tuned model was utilized to predict the B-cell
epitopes in the SARS-CoV-2 datasets.

https://www.kaggle.com/datasets/futurecorporation/epitope-prediction
https://www.kaggle.com/datasets/futurecorporation/epitope-prediction
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Figure 1. Data distribution of features in the datasets showing different variables.

2.2. Models
Overview of the Method Proposed

The presented approach combined a CNN and LSTM. To identify sequence patterns,
the convolutional module stage scanned the sequence using a set of 1D convolutional
filters. The next RNN step was used to learn intricate high-level correlations by taking the
orientations and spatial interactions between the motifs into account. The B-cell datasets
were used to train this model, which was then enhanced using transfer learning strategies
with SARS-CoV datasets. The improved model was then used to forecast epitopes from
the SARS-CoV-2 datasets that may be exploited for vaccine development. The toxicologies,
allergenicities, and antigenicities of the anticipated epitopes were examined. The whole
process of the study is presented in Figure 2.

A deep, feed-forward artificial neural network known as a convolutional neural
network (CNN) can record hierarchical spatial representations without the need for time-
consuming human feature engineering [44]. In addition, deep neural network variants
include recurrent neural networks (RNNs) [45]. The internal state of an RNN is updated
as it scans an input sequence, unlike a CNN, which is not. RNN is frequently used in
the field of NLP because of its internal memory, which enables it to record interactions
between elements along a sequence [46]. Information that has to be preserved for a long
period can be sent by a memory cell without being discarded. RNN architecture [47] can
be applied to handle series data. In light of the problem of vanishing gradients, which
occur when backpropagation occurs in training and causes the gradient to become smaller,
the RNN is not suited to long-range series data. An RNN model called LSTM [48] will
handle long-range range series data by employing memory cells and gates. In this work,
bi-directional LSTM [49], which combines forward and backward LSTM models, was used
to merge the data acquired from the series in correspondence to opposite contexts.
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First, the input features are fed into the input layer, and an embedding layer is followed
to map the input features in a higher dimensional space. The weight matrix that makes
up the embedding layer is modified during training to reduce error, since it is manually
tweaked along with the model’s hyperparameters. This method results in superior model
performance, since the weight matrix may be adjusted to enhance model performance. This
differs from conventional encoding, which maintains the numerical values for encoded
features during training.

For the CNN model, two levels of convolution layers were used. The first layer was
made up of a 1D convolution layer (conv 1) that used 256 convolution kernels of size 9
to extract the important local characteristics from the gRNA sequence. To the output of
each convolution layer, a Rectified Linear Unit (ReLU) with an activation function was
applied [50]. After that, a pooling layer received the output to conduct average pooling. A
128-dimensional LSTM layer was the third layer. This LSTM layer was added because it
is effective at strengthening the relevance between sequence feature attributes. To create
our final feature representation, which contained both forward and backward information,
the outputs of two concurrent LSTMs were combined. The collected features were then
dropped from the model at the rate of 0.3 for regularization to prevent overfitting [51].
Lastly, to forecast the epitopes, the outputs of the features were then passed into a dense
layer for classification with softmax. The batch normalization layer was incorporated into
the model before the CNN layer to improve the model’s performance. To overcome the
gradient vanishing problem and further speed up training, batch normalization forcefully
changes the values of the input of every neuron into a normal distribution with a mean of 0
and a variance equal to 1. This ensures that the input value of each layer of the network is
distributed uniformly. Similarly, to prevent overfitting, apart from adding a dropout layer,
early stopping was used with a patience of 3, which implies that the model should stop
training when the loss or accuracy does not improve after 3 epochs.

Different models were trained by changing some layers to obtain varieties of architec-
ture to select the best model. For instance, we tried the CNN alone, with one and two CNN
layers (Cnn_1 and Cnn_2), then the single LSTM, the LSTM with Cnn_1, and the LSTM
with Cnn_2. Hyperparameter tuning was carried out first to select the models utilized
in this work. We first used different epoch amounts, 10, 100, and 1000, and decided to
work with 100 epochs. Other hyperparameters included batch normalization and dropout.
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Models with and without batch normalization were trained, and better performance was
obtained after batch normalization. Similarly, the addition of the dropout layer in the model
gave better performance.

Finally, after selecting the best model for this task, we performed transfer learning
using the best model, which was the CNN-LSTM. Since the CNN-LSTM model was already
trained using the B-cell dataset, the architecture and weights of this model were utilized for
the following steps: For the transfer learning models, we tried different methods, such as
freezing the CNN and in some cases freezing the LSTM or fine-tuning the pre-trained model.
This was carried out to improve the model’s performance, especially when dealing with a
small size of data. The final pre-trained model was utilized to forecast whether the targets
in the SARS-CoV-2 datasets were epitopes or not. The recognized epitopes were further
analyzed using the necessary bioinformatics tools: ToxinPred [52] for verifying toxicity;
AllerTOP2.0 [53], a tool for checking for possible allergens in epitopes; and VaxiJen [54] to
check the ability to recognize antigens from the epitopes predicted.

2.3. Evaluation Metrics

In order to assess the model’s performance, accuracy was used. This important
model performance indicator measures the proportion of accurate predictions to all data
samples. Therefore, with accuracy, we can see how well the model was able to make correct
predictions in the entire dataset. In addition, the F1 score was utilized to evaluate the model
because it could also be used to check the model’s accuracy. The difference is that accuracy
is based on correct predictions in the entire dataset while the F1 score is based on accuracy
in each class, which is why the F1 score combined the means of recall and precision [55,56].

The performance of the model could be ascertained by measuring the accuracy, the
area under the ROC curve (AUC), and the F1 score. Accuracy determines how well a model
can make correct predictions [57]. It is given as:

Accuracy =
No. o f correct predictions
Total number o f samples

(1)

The F1 score [58] provides a score within the range of (0, 1), meaning that if a model is
well-trained, it will give a score that is close to 1. It is used to try to find a balance between
precision and recall. The F1 score can be calculated using:

F1 score =
2(Recall × Precision)

Recall + Precision
(2)

The AUC [59] is the area under the plot of the false positive rate and the sensitivity,
known as the receiver operating characteristics (ROCs). It is widely used to determine the
correctness of predictions in test data. It gives a value within (0, 1), and the best models
will have AUCs close to 1.

3. Results
3.1. Performance Comparison between Different Architectures Developed with the B-Cell Datasets

First, we looked at convolutional models without LSTM, that is, Cnn_1 and Cnn_2.
The Cnn_1 model, having one layer of convolution, showed average performance, but there
was a small increase in performance with Cnn_2, which had two layers of convolution,
as shown in Figure 3. Next, the LSTM alone gave a better performance, with an accuracy
of 0.77 and an AUC of 0.78, than Cnn_1, which had an accuracy of 0.73 and an AUC of
0.76, and Cnn_2, with an accuracy of 0.74 and an AUC of 0.762; this might be because
LSTM is good for understanding sequence dependencies that CNNs do not. Since CNNs
are good for feature extraction when combined with LSTM, we obtained far better model
performance. In addition, we tried LSTM with Cnn_1 and Cnn_2 and observed that the
LSTM with Cnn_2 gave the best performance, with a 0.779 accuracy and an AUC of 0.81,
while the LSTM with Cnn_1 had an accuracy of 0.764 and an AUC of 0.785. Detailed results
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are presented in Table 2. The training accuracy for all the models is included to show the
ability of each model to make good generalizations in the test sets.
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Table 2. Model performance comparison for various architectures.

Model Training Accuracy Test Accuracy AUC F1 Score

Cnn_1 0.746 ± 0.0035 0.732 ± 0.0452 0.762 ± 0.0028 0.517 ± 0.0183

Cnn_2 0.756 ± 0.0014 0.748 ± 0.0148 0.779 ± 0.0021 0.530 ± 0.0113

LSTM 0.774 ± 0.0071 0.765 ± 0.0063 0.780 ± 0.000 0.60 ± 0.000

Cnn_1 + LSTM 0.777 ± 0.0014 0.764 ± 0.0042 0.785 ± 0.0056 0.557 ± 0.0261

Cnn_2 + LSTM 0.787 ± 0.0028 0.779 ± 0.0071 0.815 ± 0.0078 0.598 ± 0.0028

Each result is a mean ± standard deviation. The values highlighted for each evaluation method are the
best results.

3.2. Performances of Different Transfer Learning Architectures

The results obtained using the transferring knowledge strategy were far better than in
the first method, where the models were trained with the B-cell data. This implies that at
first, we used the B-cell data to train methods for the prediction task; then, we transferred
the knowledge that was learnt from those models to the new models. As can be seen in
Figure 3, the models that were fine-tuned after addition of two more dense layers during
re-training gave better performance. Here, we froze the weight of the CNN-LSTM, and two
dense layers were added to train the model with SARS-CoV data. This gave an accuracy of
0.951 and an AUC of 0.979, which was the best performance. In the second scenario, we
froze the weights of Cnn_1 and Cnn_2 and trained the model using the new SARS-CoV
data. It was observed that the performance declined from 0.951 to 0.928 in accuracy, which
means that the presence of convolution in the updated model was significant to model
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performance. Finally, the LSTM was frozen and the weight of the model was updated using
the SARS-CoV for training. Similarly, there was a decrease in performance from 0.951 to
0.943, meaning that the presence of the LSTM in the fine-tuned method highly increased
its performance. In addition, the F1 scores obtained with this technique for all the models
are better than those when the models were built from the beginning using the B-cell data.
Detailed results can be seen in Table 3 and Figure 4; training accuracy for all the models is
included to show the ability of each model to make a good generalization on the test sets.

Table 3. Performances of transfer learning techniques on different model architectures.

Model Training Accuracy Test Accuracy AUC F1 Score

Fine-Tuned CNN-LSTM. 0.960 ± 0.0127 0.951 ± 0.0012 0.979 ± 0.0012 0.902 ± 0.0017

Frozen Cnn_1, Cnn_2 0.938 ± 0.0091 0.928 ± 0.004 0.918 ± 0.0634 0.804 ±0.0155

Frozen LSTM 0.956 ± 0.005 0.943 ± 0.0013 0.963 ± 0.0134 0.839 ± 0.0556

Each result is a mean ± standard deviation. The values highlighted for each evaluation method are the
best results.
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3.3. Prediction of Epitopes in SARS-CoV-2 for Possible Vaccine Development

It is highly time-consuming and expensive to design and test a vaccine using the
conventional method; therefore, the use of epitope prediction methods can lower the cost
and time of developing a vaccine. In this work, we utilized SARS-CoV-2 data for the epitope
forecast. It consisted of 20,312 unlabeled peptide samples that needed to be classified as
either epitopes or not. After training the CNN-LSTM with B-cell data, we applied different
transfer learning solutions to improve the model by updating the learning weights using
the SARS-CoV data, and finally, the best accuracy, of 0.951, was obtained with the fine-
tuned CNN-LSTM for the classification task; therefore, it was utilized to make predictions
of the SARS-CoV-2 data into epitopes or not. According to the model’s forecast, the last
5000 samples consisted of 18 epitopes and 4982 non-epitopes, as shown in the Figure 5.
After the prediction, the last 18 epitope samples were selected for further analysis using the
bioinformatic tools mentioned above; see Table 4 for more details.
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Table 4. The epitopes detected in the samples of the SARS-CoV-2 datasets with fine-tuned
CNN-LSTM.

Peptide Start Position End Position Model Score Epitope Class

YHKNNKSWMESEFRVYS 164 180 0.5601 Epitope

YLYRLFRKSNLKPFERD 470 486 0.5044 Epitope

LDSFKEELDKYFKNHTS 1164 1180 0.5602 Epitope

FKEELDKYFKNHTSPDV 1167 1183 0.5747 Epitope

PEAPRDGQAYVRKDGEW 1249 1265 0.5508 Epitope

NYNYLYRLFRKSNLKPFE 467 484 0.5277 Epitope

QDKNTQEVFAQVKQIYKT 793 810 0.5612 Epitope

NNTVYDPLQPELDSFKEE 1153 1170 0.5603 Epitope

HKNNKSWMESEFRVYSSAN 165 183 0.5602 Epitope

RKSNLKPFERDISTEIYQA 476 494 0.5445 Epitope

DKNTQEVFAQVKQIYKTPP 794 812 0.5612 Epitope

VYDPLQPELDSFKEELDKY 1156 1174 0.5469 Epitope

KEELDKYFKNHTSPDVDLG 1168 1186 0.5508 Epitope

DLQELGKYEQYIKGSGREN 1218 1236 0.5507 Epitope

QELGKYEQYIKGSGRENLY 1220 1238 0.5602 Epitope

NNTVYDPLQPELDSFKEELD 1153 1172 0.5747 Epitope

LDSFKEELDKYFKNHTSPDV 1164 1183 0.5745 Epitope

SFKEELDKYFKNHTSPDVDL 1166 1185 0.5749 Epitope
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Toxicity Determination Using ToxinPred

The determination of the toxicity status of an epitope is required before it can be
chosen for vaccine development. Here, the ToxinPred tool was chosen to analyze the
epitopes selected by our fine-tuned CNN-LSTM. The ToxinPred [52] tool was created using
a support vector machine, and a score of <0.0 is regarded as non-toxic. The ToxinPred
score depends on some physiochemical properties of an epitope, such as molecular weight,
hydrophilic nature, and possible mutations. The results can be seen in Table 5 below. It can
be seen that all the peptide sequences that were shown to be epitopes by our fine-tuned
CNN-LSTM tend to be non-toxic and would not be able to generate any mutation. The
ability to predict a peptide or protein’s toxicity before its synthesis as a vaccine is crucial to
reducing the time and cost spent developing peptide- or protein-based drugs. Similarly, in
Table 6, we utilized ToxinPred to analyze the peptides that were classified as non-epitopes
by our model, and they were predicted to be non-toxic; only one peptide was found to be
toxic, with an SVM score of 0.1.

Table 5. Epitope toxicity analysis using the ToxinPred tool.

Epitope Peptide Sequence Mutation SVM Score Toxicity Hydropathicity Hydrophilicity Mol Weight

YHKNNKSWMESEFRVYS No Mutation −1.93 Non-Toxic −1.56 0.15 2205.67

YLYRLFRKSNLKPFERD No Mutation −1.65 Non-Toxic −1.16 0.38 2245.85

LDSFKEELDKYFKNHTS No Mutation −0.9 Non-Toxic −1.34 0.59 2101.54

FKEELDKYFKNHTSPDV No Mutation −0.52 Non-Toxic −1.36 0.59 2097.55

PEAPRDGQAYVRKDGEW No Mutation −1.47 Non-Toxic −1.69 0.76 1974.35

NYNYLYRLFRKSNLKPFE No Mutation −1.26 Non-Toxic −1.12 −0.08 2365.9

QDKNTQEVFAQVKQIYKT No Mutation −1.21 Non-Toxic −1.19 0.28 2168.71

NNTVYDPLQPELDSFKEE No Mutation −1.03 Non-Toxic −1.29 0.48 2138.53

HKNNKSWMESEFRVYSSAN No Mutation −1.68 Non-Toxic −1.46 0.25 2314.78

RKSNLKPFERDISTEIYQA No Mutation −1.87 Non-Toxic −1.16 0.57 2295.85

DKNTQEVFAQVKQIYKTPP No Mutation −0.75 Non-Toxic −1.11 0.26 2234.82

VYDPLQPELDSFKEELDKY No Mutation −1.3 Non-Toxic −1.08 0.55 2328.83

KEELDKYFKNHTSPDVDLG No Mutation −0.59 Non-Toxic −1.37 0.72 2235.71

DLQELGKYEQYIKGSGREN No Mutation −0.69 Non-Toxic −1.54 0.63 2227.71

QELGKYEQYIKGSGRENLY No Mutation −0.65 Non-Toxic −1.43 0.35 2275.8

NNTVYDPLQPELDSFKEELD No Mutation −1.24 Non-Toxic −1.15 0.49 2366.81

LDSFKEELDKYFKNHTSPDV No Mutation −0.78 Non-Toxic −1.19 0.57 2412.92

SFKEELDKYFKNHTSPDVDL No Mutation −0.55 Non-Toxic −1.19 0.57 2412.92

Table 6. Non-epitope toxicity analysis using the ToxinPred tool.

Non-Epitope Peptide
Sequence Mutation SVM Score Toxicity Hydropathicity Hydrophilicity Mol Weight

YYPDKVFRSSVLHSTQD No Mutation −1.03 Non-Toxic −0.85 0.02 2042.47

YPDKVFRSSVLHSTQDL No Mutation −1.10 Non-Toxic −0.55 0.05 2245.85

PKKSTNLVKNKCVN No Mutation 0.10 Toxic −1.04 0.48 1573.09

SVLHSTQDLFLPFFSNV No Mutation −1.48 Non-Toxic 0.58 −0.74 1951.46

VLHSTQDLFLPFFSNVT No Mutation −1.65 Non-Toxic 0.58 −0.78 1965.49

LHSTQDLFLPFFSNVTW No Mutation −1.50 Non-Toxic 0.28 −0.89 2052.57

3.4. Optimization of Codons and In Silico Cloning

The Java Codon Adaptation Tool (JCat) was used to check the amount of protein
that would be expressed in E. coli. (Strain K12) host to optimize the codon usage for
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the vaccine constructs [60]. The length of the codon sequence that was optimized was
3843 nucleotides. The average GC content of the adapted sequence was 51.73%, and the
projected codon optimization index (CAI) value of 1.0 suggested strong expression in the
E. coli host. Finally, using SnapGene software, the recombinant plasmid sequence was
created by inserting the modified codon sequences into the plasmid carrier, pCC1BAC,
as shown in Figure 6. On the left is the step for the cloning, and the right side shows
the final cloned vector, which was obtained using the Snapgene free trial software (https:
//www.snapgene.com/free-trial/, accessed on 3 March 2023). The vaccine sequence was
inserted between the ApaLI and StuI restriction sites. The black region on the cloned
pCC1BAC shows the vector backbone while the red is the codon sequence of the vaccine
obtained from Jcat. This analysis suggests that our vaccine sequence would be highly
expressed in the host and, as such, would lead to the production of antibodies against
COVID-19. Finally, the instability index, obtained with Expasy, was 31.38, with a half-life of
>10 h in E. coli in vivo and 30 h in mammalian reticulocytes in vitro; this makes the vaccine
sequence stable (https://web.expasy.org/protparam/, accessed on 3 March 2023).
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3.5. Determination of Allergenicity and Antigenicity

Allergenicity determination was important because our target was not to create a
vaccine that humans would be allergic to. In addition, a good vaccine needs to be anti-
genic, meaning it will be able to generate an immune response in humans to fight the
SARS-CoV-2 virus. The allergenicity was determined using AllerTop2.0 [53], and twelve
epitopes were considered non-allergens while four were allergens. The possible vaccine
candidate could therefore be chosen from the 12 non-allergens, shown in Table 7. Out of the
12 non-allergens, one epitope was found to be antigenic and the remaining 11 non-antigenic
using Vaxijen2.0 [54]. The non-epitopes predicted by our model were found to be allergens
and non-antigenic, except for one. This shows that the model was able to correctly predict
the non-epitopes in Table 8, since they would generate allergic reactions and would not be
able to induce the production of antibodies, even though most of them are non-toxic.

https://www.snapgene.com/free-trial/
https://www.snapgene.com/free-trial/
https://web.expasy.org/protparam/
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Table 7. Screening of epitopes for antigenicity and allergenicity.

Epitope AllerTOP 2.0 VaxiJen 2.0 VaxiJen Score

PROBABLE ALLERGEN -

PROBABLE ALLERGEN -

PROBABLE NON-ALLERGEN NON-ANTIGEN −0.9304

PROBABLE NON-ALLERGEN NON-ANTIGEN −0.4328

PROBABLE ALLERGEN -

PROBABLE NON-ALLERGEN NON-ANTIGEN 0.3063

PROBABLE ALLERGEN -

PROBABLE NON-ALLERGEN NON-ANTIGEN 0.1001

PROBABLE ALLERGEN -

PROBABLE NON-ALLERGEN NON-ANTIGEN 0.2683

PROBABLE NON-ALLERGEN NON-ANTIGEN 0.2605

PROBABLE NON-ALLERGEN NON-ANTIGEN −0.5346

PROBABLE NON-ALLERGEN NON-ANTIGEN 0.2252

PROBABLE NON-ALLERGEN ANTIGEN 0.449

PROBABLE ALLERGEN -

PROBABLE NON-ALLERGEN NON-ANTIGEN −0.0066

PROBABLE NON-ALLERGEN NON-ANTIGEN −0.5371

PROBABLE NON-ALLERGEN NON-ANTIGEN −0.1489

Table 8. Screening of non-epitopes for antigenicity and allergenicity.

Non-Epitope AllerTOP 2.0 VaxiJen 2.0 VaxiJen Score

PROBABLE ALLERGEN NON-ANTIGEN 0.4

PROBABLE ALLERGEN NON-ANTIGEN −0.1535

PROBABLE NON-ALLERGEN ANTIGEN 0.7235

PROBABLE ALLERGEN NON-ANTIGEN 0.2065

PROBABLE ALLERGEN NON-ANTIGEN 0.1033

PROBABLE ALLERGEN NON-ANTIGEN 0.2747

3.6. Immune Response Simulation with C-IMMSIM Server

The possible immunological response that the vaccine candidate could cause was
assessed using the C-ImmSim server [61]. We demonstrated, using the immune simulation
study, that the suggested vaccine candidate might potentially elicit an immune response
against the virus. Due to a strong immunological response after vaccination, as shown
in Figure 7A, leading to the production of immunoglobulins IgM and IgG, the active B-
cell population also seemed to be very high (Figure 7D). Helper T lymphocytes (Th) and
cytotoxic T lymphocytes (Tc) both expanded in number in a similar way (Figure 7C,E), and
the number of Tc kept increasing over time. The level of interferon (IFN-γ) was sustained
until the fifteenth day (Figure 7B). IFN-γ controls the immune response to viruses and
bacteria, and is mostly produced following NK and T-cell activation.
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4. Discussion

In this work, a CNN-LSTM method was pre-trained using a B-cell dataset; the pre-
trained CNN-LSTM was then adjusted using SARS-CoV datasets, and that knowledge was
transferred to a new, fine-tuned CNN-LSTM model. It could be seen that combining the
CNN with LSTM was a good strategy, since there was an increase in performance from
using either the CNN or LSTM alone. The first CNN-LSTM model was trained using the
B-cell dataset. In the second stage of the knowledge transfer technique, the model was fine-
tuned using SARS-CoV datasets. It could be observed that there was an 18% improvement
in the accuracy of the model. There are a limited number of machine learning tools for
epitope determination. Additionally, the accuracy of some methods, when compared to
our CNN-LSTM performance for the epitope prediction task, is low; our method gave a
better performance even when compared to the best method so far. These methods were
recently developed using the same datasets utilized in this study, so they were chosen for
fair comparison in the prediction of SARS-CoV epitopes. The ensemble utilized by [62] was
a layered ensemble, with XGBoost on the outer layer and random forest regression with
gradient boosting at the inner layer, and gave an AUC of 0.923 and an accuracy of 87.79%. In
another study [42], the attention method and LSTM were paired for this task by combining
protein with chemical and structural features, during which they achieved an accuracy of
79% and an AUC of 0.822. In another study, a Bayesian neural network was used for this
task and was able to achieve an accuracy of 85% [63]. It can be seen from Table 9 that the
random forest model developed in [43] was able to make good predictions, although there
is a need for improvement in the model’s performance. In all the methods used previously,
to the best of our knowledge, none have attempted the transfer learning strategy that was
used in this study. This technique was able to significantly improve performance to an
accuracy of 95.1% and an AUC of 0.979, which are better than all the results obtained in
other methods. In this study, the performance of the proposed method was compared with
that of state-of-the-art methods, and it gave outstanding results, with 95.1% accuracy. The
benchmark deep learning model was an attention–LSTM-based model and was able to
achieve 79% accuracy. Therefore, there was about a 16% increase in performance.
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Table 9. Results of other methods compared to the proposed CNN-LSTM.

Method Accuracy AUC

Proposed CNN-LSTM 95.1% 0.979

Attention-LSTM [42] 79% 0.822

Random Forest [43] 91.4% 0.956

Ensemble [62] 87.79% 0.923

Bayesian Neural Network [63] 85% -

In the next stage, we tried to analyze the predicted epitopes to screen the best ones
for vaccine development. Here, tools such as Toxinpred were utilized for determination
of toxicity. When a peptide sequence is provided to the tool, it will return a score, and
when that score is less than 0.0, then the peptide sequence is non-toxic. Other parameters,
such as molecular weight and hydrophilicity, can be seen with the tool. It has been found
that peptides with lower molecular weights tend to be non-toxic [52], and hydrophilicity is
quite important as well, for generating the process of the immune response [64]. A good
vaccine must not cause allergies; hence, the prediction of vaccine allergenicity is crucial. We
used the AllerTOP2.0 service, which assesses peptide allergenicity. Among the predicted
epitopes, twelve were considered non-allergens, while four were allergens, according to
the AllerTOP2.0 [53]. Finally, to choose the best sequence for vaccine development, it is
important to determine antigenicity because antigenic peptides will generate high immune
responses in humans. For this task, the VaxiJen tool was used to predict antigenicity [54].

In order to check the expression of the vaccine sequence, a codon adaptation tool, Jcat,
was used to optimize the codon usage of the designed vaccine. A codon optimization index
(CAI) value of 1.0 was obtained, which means that the vaccine would be highly expressed
in E. coli. It is important to have the vaccine expressed in the host organism in other to
elicit an immune response. It was successfully cloned into the pCC1BAC vector using the
snapgene tool. Further analysis with the Expasy tool revealed that the vaccine would have
a half-life of 30 h in mammalian reticulocytes and would be stable. Finally, the immune
response simulation showed that the vaccine sequence, when injected, would produce high
numbers of B-cells and T-cells as well as a high amount of IFN-γ, which would assist other
immune cells in killing the virus.

Even though fine-tuned CNN-LSTM has enhanced epitope prediction performance
and has been turned into a powerful method, there are still several interesting directions
to explore. Three issues will be the focus of our next approach. First, investigating more
deep-learning-based frameworks and utilizing techniques for the best hyperparameter
search may result in improved performance. Secondly, it is important to consider peptide
sequence information in the feature space apart from the length that was considered in this
work. Finally, we will explore explainable AI to understand the features that are utilized
by this model for decision-making. This study will assist scientists in designing a suitable
vaccine for COVID-19, which can be validated experimentally, in a short period.

5. Conclusions

In this work, we have introduced a transfer learning epitope prediction model with
superior performance. This type of method has not been considered anywhere for this task.
This method has shown that combing a CNN and LSTM into a single architecture will go
a long way in improving model performance. Similarly, to boost performance, especially
when data is very limited, the proposed method is highly efficient. This can be seen from the
results obtained when the CNN-LSTM was fine-tuned using SARS-CoV data, generating
almost an 18% increase in accuracy (95.1% accuracy). The fine-tuned model was utilized
to predict epitopes from SARS-CoV-2 data. When our proposed method was compared
to those available, it was discovered that ours outperformed competing techniques. To
choose the best epitope for vaccine development, other important parameters were checked
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using bioinformatic tools. Allergenicity, toxicity, and antigenicity analyses were carried out;
stability, expression, cloning, and immune simulation also gave insight into the vaccine’s
immune response. Therefore, the findings of this research can help in successful COVID-19
vaccine development, saving time and costs.
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