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Abstract: A dynamic reconfiguration method based on the improved multi-objective dung beetle
optimizer (IMODBO) is proposed to reduce the operating cost of the distribution network with
distributed generation (DG) and ensure the quality of the power supply, while also minimizing
the number of switch operations during dynamic reconfiguration. First, a multi-objective model
of distribution network dynamic reconfiguration with the optimization goal of minimizing active
power loss and voltage deviation is established. Secondly, the K-means++ clustering algorithm is
used to divide the daily load of the distribution network into periods. Finally, using the IMODBO
algorithm, the distribution network is reconstructed into a single period. The IMODBO algorithm
uses the chaotic tent map to initialize the population, which increases the ergodicity of the initial
population and solves the problem of insufficient search space. The algorithm introduces an adaptive
weight factor to solve the problem of the algorithm easily falling into a locally optimal solution in the
early stage with weak searchability in the later stage. Levy flight is introduced in the perturbation
strategy, and a variable spiral search strategy improves the search range and convergence accuracy of
the dung beetle optimizer. Reconfiguration experiments on the proposed method were conducted
using a standard distribution network system with distributed power generation. Multiple sets of
comparative experiments were carried out on the IEEE 33-nodes and PG&E 69-nodes. The results
demonstrated the effectiveness of the proposed method in addressing the multi-objective distribution
network dynamic reconfiguration problem.

Keywords: IMODBO; K-means++; network reconfiguration; renewable energy sources; voltage
fluctuations

1. Introduction
1.1. Motivation

The prevalence of low-carbon power system networks is a trend that conforms to the
development of new energy technologies. Such systems also represent a meaningful way to
promote the high-quality development of clean energy [1–3]. Owing to the accessibility of
distributed renewable energy [4], instability is associated with a number of non-traditional
safety problems in the stable operation of the distribution network systems. By manipulating
section switches and tie switches, distribution network reconfiguration can alter the network
topology and optimize power transmission within the distribution network system.

1.2. Literature Review

Domestic and foreign scholars have been devoted to researching algorithms to solve the
distribution network reconfiguration problem. Existing algorithms are classified into three
categories: traditional mathematical optimization algorithms [5,6], heuristic algorithms [7,8],
and intelligent optimization algorithms [9–11]. A reconfiguration model needs to be estab-
lished for the distribution network before solving the problem using traditional mathematical
optimization algorithms that only solve single-objective models. Given the increasing com-
plexity of distribution network systems in recent years, the data involved in the distribution
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network have become more extensive, resulting in long computing times and difficulty in
solving the distribution network reconfiguration problem. Heuristic algorithms establish
some effective rules to solve the distribution network reconfiguration problem by analyzing
the situation. These algorithms include branch exchange algorithms, optimal flow algorithms,
etc. However, the optimization abilities of heuristic algorithms are poor.

Various optimization methods have been proposed to solve the distribution network
reconfiguration problem. Li et al. [12] proposed a dynamic reconfiguration integrated
optimization method based on a multi-objective sparrow search algorithm, optimizing
multiple objectives, including power quality, economic efficiency, and energy loss, and
comparing various algorithms, has achieved good results. Wang et al. [13] proposed a dis-
tribution network reconfiguration method that considers the network’s reliability, economy,
and environmental friendliness based on a parallel slime mold algorithm. When solving
multi-objective optimization problems, using a weighted method to transform multiple
objectives into a single objective may result in the inability to obtain the actual optimal
value in a complex system. This is because the weights are preset. Gao et al. [14] proposed a
multi-objective optimization method that effectively finds the optimal energy configuration
scheme for intelligent communities using Levy flight and an improved chicken swarm
algorithm, which enhances the algorithm’s global and local search abilities. In addition, a
comprehensive set of scenario simulations was conducted to test the model. The results
demonstrate that the improved algorithm effectively overcomes the issue of being trapped
in local optima. Mahdad et al. [15] proposed an optimal reconfiguration and reactive
power planning method based on a fractal search algorithm, which can simultaneously
consider multiple indicators and has high search efficiency and optimization accuracy.
Kefayat et al. [16] proposed a hybrid approach that combines ant colony optimization and
an artificial bee colony algorithm to optimize the placement and sizing of distributed energy
resources with probabilistic constraints. The system dynamically switches between the
two algorithms through an adaptive strategy to achieve better optimization performance.
Jafari et al. [17] proposed a parallel implementation of the exchange market algorithm
(EMA) and wild goats algorithm (WGA), which improved the computational speed and
accuracy. However, their study on distribution network systems did not consider the
presence of distributed energy resources. Parizad et al. [18] proposed a novel algorithm
based on particle swarm optimization (PSO) for distribution feeder reconfiguration (DFR).
The algorithm aims to minimize short-circuit levels in power distribution systems and
is validated using the IEEE 83 bus power distribution system model, demonstrating its
effectiveness. These optimization methods demonstrate the diverse strategies used to solve
distribution network reconfiguration problems, and each method has its strengths and
limitations depending on the problem being addressed.

Numerous researchers have proposed intelligent optimization algorithms by ana-
lyzing the habits and physical phenomena of various biological populations. Algorithm
technology is a continuously evolving field that undergoes frequent updates and itera-
tions. In 2022, Jiankai Xue introduced a new swarm intelligence optimization algorithm
called the dung beetle optimizer (DBO) [19]. The DBO algorithm employs multiple search
strategies and can perform local and global searches, demonstrating a fast convergence
speed and high solution accuracy. The DBO algorithm has vast potential for application in
various fields. The development of this algorithm represents a significant contribution to
the advancement of optimization algorithms.

1.3. Contributions

In this study, we propose a dynamic reconfiguration method for distributed generation
and distribution networks using the improved multi-objective dung beetle optimizer
(IMODBO). This method establishes a multi-objective model with active power loss and
voltage deviation as objective functions. According to the characteristics of the problem,
the K-means++ clustering algorithm is used to divide the daily load into periods, and
the IMODBO algorithm is used to transform the single-period distribution network. The
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IMODBO algorithm uses a tent chaotic map in the population initialization process to
improve the quality and ergodicity of the initial population. The adaptive weight factor
solves the problem of early convergence and weak searchability of the algorithm. Levy
flight perturbation and variable spiral strategy enhance the global search ability of the
algorithm. The validity of the proposed method was verified by a reconstruction experiment
on the IEEE 33-node and the PG&E 69-node power distribution system. Against previous
studies, the main contributions are summarized below.

• The dynamic distribution network model with distributed power generation was
established, aiming to minimize the active power loss and voltage deviation.

• In response to the multi-objective optimization problem of distribution network re-
configuration, a improved multi-objective dung beetle optimizer (IMODBO) is pro-
posed. Compared with various state-of-the-art single-objective and multi-objective
algorithms, IMODBO demonstrates superior convergence speed and exploration
capability.

• The distribution network reconfiguration problem is solved using IMODBO combined
with the K-means++ clustering algorithm. By comparing with existing algorithms and
conducting multiple scenario tests on the IEEE 33-node and PG&E 69-node standard
distribution network systems, significant improvements are achieved.

• The experimental results demonstrate that the proposed method effectively reduces
active power losses, stabilizes node voltage distribution, and significantly reduces the
number of reconfigurations required.

The organization of this study is as follows: Section 2 introduces the dynamic recon-
figuration optimization model for power distribution systems, including the constraints of
distributed power generation. Section 3 presents the application of the K-means++ clus-
tering algorithm, the improvement measures of IMODBO, and the optimization process
for solving the distribution network. Section 4 validates the effectiveness of the improved
algorithm through various test functions and verifies the proposed method in the different
scenarios of two distribution network systems. Section 5 concludes the findings of this study,
analyzes the limitations of the proposed method, and presents future research directions.

2. Problem Formulation

The proposed research methodology utilizes the IMODBO to optimize the active power
loss and voltage deviation in distribution network systems. The algorithm is applied to deter-
mine the optimal configuration of the distribution network. The effectiveness of the proposed
algorithm is validated using the IEEE 33-node system and the PG&E 69-node system.

2.1. Objective Function

To improve the transmission efficiency of the distribution network, the active network
loss of the reconstructed distribution network is optimized to reduce the distribution
network’s power cost and enhance its reliability and stability. The minimum active power
loss of the distribution network after reconstruction can be expressed as follows [20]:

F1 = min
T

∑
t=1

G

∑
l=1

kt,l Rl
P2

t,l + Q2
t,l

U2
t,l

(1)

where T represents the reconfiguration interval; G represents the total number of branches
in the distribution network system; kt,l represents the first state at the l-th branch during
the t-th period, where kt,l = 1 means that the l-th branch during the t-th period is closed,
and kt,l = 0 means that the l-th branch during the t-th period is disconnected; Pt,l and Qt,l
represent the active power and reactive power at the l-th branch during the t-th period,
respectively; Rl is the resistance of the l-th branch; and Ut,l represents the node voltage at
the end of the l-th branch during the t-th period.
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A voltage offset model of the system is established to balance the voltage distribution
of each node in the distribution network. Reducing the voltage offset can improve the
stability and reliability of the distribution network, reduce energy waste, and reduce the
incidence of equipment failure. The minimum voltage deviation of the distribution network
after reconfiguration can be expressed as [21]

F2 = min
T

∑
t=1

N

∑
i=1

∣∣∣Ut,i −U∗t,i
∣∣∣

U∗i
(2)

where Ut,i represents the actual voltage value at the i-th node during the t-th period, N
represents the total number of nodes in the model, and U∗i represents the rated voltage of
the i-th node.

2.2. Constraint Conditions

In order to demonstrate the feasibility of the reconfiguration, the process must adhere
to certain constraints, including power flow, nodal voltage, branch current, and distributed
generation power.

(1) Equality constraint of the power flow equation [22]
Pt,i + Pt,DGi = Pt,loadi + Ut,i

N

∑
j=1

Ut,j(Gij cos δt,ij + Bij sin δt,ij)

Qt,i + Qt,DGi = Qt,loadi + Ut,i

N

∑
j=1

Ut,j(Gij cos δt,ij − Bij sin δt,ij)

(3)

where i and j represent the start and end nodes of the branch, respectively; Pt,i, Pt,DGi, and
Pt,loadi represent the power injected into the network, the distributed power output, and the
active power at the i-th node during the t-th period, respectively; Qt,i, Qt,DGi, and Qt,loadi
represent the network injected power, distributed power output, and reactive power at the
i-th node during the t-th period, respectively; Ut,i and Ut,j represent the voltage of the i-th
and j-th node during the t-th period, respectively; and δt,ij, Gij, and Bij represent the phase
angle difference, susceptance, and conductance between nodes i, j, respectively.

(2) Node voltage constraint [23]

Ui,min ≤ Ut,i ≤ Ui,max (4)

where Ui,min and Ui,max represent the lower and upper limits of the allowable voltage at
the i-th node, respectively, and Umin

i and Umax
i take 0.9Ut,i and 1.05Ut,i, respectively.

(3) Branch current constraints [24]

Il ≤ Il,max (5)

where Il and Il,max represent the maximum value of the current flowing through the l-th
branch.

(4) Distributed power generation constraint [25]{
PDGi,min ≤ Pt,DGi ≤ PDGi,max

QDGi,min ≤ Qt,DGi ≤ QDGi,max
(6)

where Pt,DGi and Qt,DGi represent the active and reactive power injected by DG at the i-th
node during the t-th period, respectively; PDGi,max and PDGi,min represent the upper and
lower limits of the active power that the DG can supply to the i-th node, respectively; and
QDGi,max and QDGi,min represent the upper and lower limits of the reactive power that the
DG can supply to the i-th node, respectively.
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2.3. Distributed Power Generation Model

(1) Wind Power Output
The wind power generation model is established according to [26], and the relationship

between wind speed and output power at different times is shown in Equation (7).

Pw(vt) =


0 (vt < vci) ∪ (vt > vco)

Pr
vr−vci

(vt − vci) (vci ≤ vt ≤ vr)

Pr (vr < vt ≤ vco)

(7)

where Pr is the rated active power of the generator, vt is the actual wind speed on site, vci is
the minimum wind speed of the wind turbine, vco is the maximum wind speed of the wind
turbine, and vr is the rated wind speed of the wind turbine.

(2) Photovoltaic Power Output
According to reference [27], the power output of photovoltaic cells is mainly related to

the intensity of solar irradiance, the area of solar photovoltaic panels, and the photoelectric
conversion efficiency. As the solar irradiance intensity follows a Beta distribution, its
probability density function can be described as:

f (pt) =
Γ(ε + β)

Γ(ε)Γ(β)

(
pt

Pmax

)ε−1(
1− pt

Pmax

)β−1
(8)

where pt represents the light intensity during period t, Pmax represents the upper limit of
the power output capacity of the most comprehensive PV array in a given system, and ε
and β represent parameters conforming to the Beta distribution.

The photovoltaic output power can be expressed as

PPV,t = pt

U

∑
u=1

Auηu (9)

where U is the total number of photovoltaic panels, Au represents the u-th cell the area of
the plate, and ηu represents the conversion efficiency of the battery plate.

3. Proposed Methodology
3.1. Time Division Method Based on the K-Means++ Clustering Algorithm

To address the issue of frequent reconfigurations in dynamic distribution networks, we
employs the K-means++ [28,29] clustering algorithm to divide the daily load into periods,
effectively reducing the active power loss and voltage offset and minimizing the number of
reconfigurations.

Since the load status of each node in the distribution network changes dynamically
with time, the load within 24 h is considered a dataset, with each dimension correspond-
ing to the total number of nodes in the system. Using 1 h as a period, the node load
of each period is treated as a sample set (O) for cluster analysis, O = {O1, O2, . . . , O24},
Ot = {Ot1, Ot2, . . . , OtN}, representing the apparent power of each node in the distribution
network system within that period. During dynamic reconfiguration optimization, recon-
figuration is carried out continuously, and interperiod reconfigurations must meet actual
needs. Thus, distance segment constraints need to be added to cluster analysis, which is
achieved as follows:

Step 1: Determine the collection dataset (O) using the elbow method to determine the
optimal range of clustering, i.e., the K value.

Step 2: Randomly select a value from the sample dataset (O) as the initial value center
and set the initial value of K to 1.

Step 3: Compute the Euclidean distance from each data object to the center of K. Using
the roulette method, select the next cluster center.

Step 4: Repeat Step 3 until K initial value centers are generated.
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Step 5: Divide the 24 moments in the sample dataset (O) into the nearest initial value
center to form a cluster. Calculate the mean value of each dataset as the new initial value
center.

Step 6: Repeat Step 5 until the sum of the squares of the distances from each data point
to the corresponding cluster remains unchanged. Then, output the period in each group.

3.2. Dung Beetle Optimizer

The dung beetle optimizer takes inspiration from the biological behavior of dung
beetles. The optimal solution is achieved by continuously updating the position updating
formulas of four dung beetles, each with its position renewal formula, as follows:

The dung beetles that roll balls are updated and can be expressed as

xi
t+1 = xi

t + α× k1 × xi
t−1 + k2 × ∆x (10)

Encountering obstacles, being unable to move forward, and repositioned dancing can
be expressed as

xi
t+1 = xt

t + tan θ
∣∣∣xi

t − xi
t−1
∣∣∣ (11)

The position-updating formulas for female dung beetles can be expressed as:

xi
t+1 = X∗ + b1 × (xi

t − Lb∗) + b2 × (xi
t −Ub∗) (12)

The position-updating formulas for small dung beetles can be expressed as:

xi
t+1 = xi(t) + C1 × (xi

t − Lbb) + C2 × (xi
t −Ubb) (13)

The position-updating formulas for thief dung beetles can be expressed as:

xi
t+1 = Xb + S× g× (

∣∣xi
t − X∗

∣∣+ ∣∣∣xi
t − Xb

∣∣∣) (14)

The values of k1 and k2 are fixed, with k1 set to 0.1 and k2 set to 0.3. The flexure angle
(tan θ) belongs to the interval [0, π] and is used in the position-updating formulas of the
four dung beetles, where X∗ and Xb represent the current best position and the global best
position, respectively. The oviposition and reproduction areas have upper and lower limits
represented by Ub∗, Lb∗, Ubb, and Lbb. The constants b1 and b2 represent independent
random vectors of size 1× dim. The variable C1 is a random number drawn from a normal
distribution, while C2 is a random vector with values ranging from 0 to 1. Additionally,
a random vector of size 1× dim that follows a normal distribution is represented by g,
and S represents a constant value. The four dung beetle position-updating formulas are
constantly updated until the optimal solution is found.

3.3. IMODBO Based on Mixed Strategy

After partitioning the data into time intervals, IMODBO is used to solve the distribu-
tion network reconstruction problem for each interval.

3.3.1. Population Initialization Based on a Tent Map

The standard dung beetle optimizer uses random initialization, which cannot guarantee
the diversity of the population, affecting the quality of the global optimal solution. Using
chaotic mapping to generate individuals randomly, the algorithm can effectively improve
the speed and accuracy of the search for the optimal solution. As mentioned in [30], through
many comparative experiments, chaotic tent mapping has better bias adaptation. The itera-
tion equation of chaotic tent mapping is expressed as follows:

f (yi) =

{
yi/s yi ∈ (0, s)
(1− yi)/(1− s) yi ∈ (s, 1)

0 < s < 1 (15)
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Equation (15) shows that the chaotic tent mapping equation has fewer parameters, making the
application convenient and straightforward. The population size is set to 500, the population
dimension is to 2, and the parameter s is set to 0.5. The initial population distribution
generated by chaotic tent mapping in the interval [−100, 100] is shown in Figure 1. The initial
population generated by chaotic tent mapping is distributed uniformly in space. Using these
chaotic sequences, the initial population pop of the dung beetle algorithm can be obtained
according to Equation (16).

pop = lb + (ub− lb)× f (yi) (16)

In Equation (16), ub and lb are the upper and lower limits of the population.

Figure 1. Initialization of the population using a chaos tent sequence.

3.3.2. Adaptive Weight Factor

According to the position-updating formula of the standard dung beetle optimizer,
the four dung beetles strongly depend on the best position in the position-updating phase.
Therefore, an adaptive weight factor is introduced in during the position updating, the
formula of which is expressed as follows [31]:

W = Wmax − (Wmax −Wmin)× (t∗/Tmax) (17)

where Wmax is the maximum value of the adaptive weight, Wmin is the minimum value of
the adaptive weight, Tmax represents the maximum number of iterations of the algorithm,
and t∗ indicates the current iteration number. After testing, the best algorithm performance
is achieved when Wmax = 0.9 and Wmin = 0.4. As the number of iterations increases, the
adaptive weight decreases from 0.9 to 0.4. At the beginning of the iteration, a more consid-
erable adaptive weight improves the exploration ability of the algorithm. As the number of
iterations increases, a smaller adaptive weight in the later stage improves the searchability
of the algorithm. This prevents falling into a local optimum early, and the convergence in
the last stage can gradually approach the optimal value. The position-updating equations
are obtained by adding adaptive weighting factors into Equations (10)–(14), which can be
expressed as follows:

The dung beetles that roll balls are updated and can be expressed as:

xi
t+1 = W × xi

t + α× k1 × xi
t−1 + k2 × ∆x (18)

xi
t+1 = W × xt

t + tan θ
∣∣∣xi

t − xi
t−1
∣∣∣ (19)
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The position-updating formulas for female dung beetles can be expressed as:

xi
t+1 = W × X∗ + b1 × (xi

t − Lb∗) + b2 × (xi
t −Ub∗) (20)

The position-updating formulas for small dung beetles are expressed as follows:

xi
t+1 = W × xi(t) + C1 × (xi

t − Lbb) + C2 × (xi
t −Ubb) (21)

The position-updating formulas for thief dung beetles are expressed as follows:

xi
t+1 = W × Xb + S× g× (

∣∣xi
t − X∗

∣∣+ ∣∣∣xi
t − Xb

∣∣∣) (22)

3.3.3. Levy Flight Disturbance Strategy and Variable Spiral Search Strategy

According to the characteristics of the ball-rolling dung beetle algorithm, the ball-
rolling dung beetles can expand their search range by “dancing”. However, the search range
of the three remaining dung beetles is relatively simple, so the Levy flight perturbation
strategy and the variable spiral search strategy should be introduced to increase the global
optimal search range. The Levy flight perturbation strategy is introduced, which enables
the algorithm to search randomly at different distances, maximizes the diversification of the
search domain, and enhances the optimal global searchability. Levy flight not only satisfies
the small-scale refined search, ensuring that each target can be searched, but also satisfies
the large-scale rough search, avoiding the limitations of local search. The distribution
density function of the Levy flight step size change is expressed as [32]:

L( f ) ∼ | f |−1−∂, 0 < ∂ ≤ 2 (23)

where f is the motion step of Levy flight, which can be expressed by Equation (24)

Lv =
µ

|ν|1/∂
(24)

where µ and v are random numbers that conform to a normal distribution, and σµ and σr
are obtained by Equation (25):σµ =

(
Γ(1 + ∂) sin(π∂/2)

Γ[(1 + ∂)/2]∂2(∂−1)/2

)1/∂

σν = 1

(25)

where the value range of parameter ∂ is 0 < ∂ < 2, and generally, ∂ = 1.5.
The variable helical search strategy allows for the development of various position-

updating search paths, balancing the global and local searches of the algorithm. In the
position-updating process, the parameter z is designed as an adaptive variable to solve
the monotony of the spiral parameter in the search method in case of falling into a locally
optimal solution. It is used to dynamically adjust the spiral shape of the three dung beetle
searches, thereby broadening the ability of three dung beetles to explore unknown areas and
improving the algorithm’s search efficiency and global search performance. The formula
for the variable helical search strategy is as follows [33]:

Q = ezh × cos(2πh) (26)

where Q is the spiral factor, and h is the random number of (−1, 1), where z = ek·cos((t∗/Tmax)·π),
and k = 5.

In summary, the position updates of the four improved dung beetles are expressed as
follows:

The position-updating formulas for the dung beetles that roll balls are updated and
can be expressed as:
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xi
t+1 = W × xi

t + α× k1 × xi
t−1 + k2 × ∆x (27)

xi
t+1 = W × xt

t + tan θ
∣∣∣xi

t − xi
t−1
∣∣∣ (28)

The position-updating formulas for female dung beetles can be expressed as:

xi
t+1 = W × X∗ + Q× [b1 × (xi

t − Lb∗) + b2 × (xi
t −Ub∗)] (29)

The position-updating formulas for small dung beetles are expressed as follows:

xi
t+1 = W × xi(t) + Q× [C1 × (xi

t − Lbb) + C2 × (xi
t −Ubb)] (30)

The position-updating formulas for thief dung beetles are expressed as follows:

xi
t+1 = Lv ×W × Xb + S× g× (

∣∣xi
t − X∗

∣∣+ ∣∣∣xi
t − Xb

∣∣∣) (31)

3.4. Pareto Dominance Theory

The traditional dung beetle optimizer selection strategy is suitable for single-objective
optimization problems but not for multi-objective distribution network optimization and
reconstruction problems. Therefore, in this paper, we use the Pareto dominance theory to
evaluate the solutions generated by the distribution network optimization and reconstruc-
tion problem. Individuals with high degrees of optimization and extensive coverage ranges
are selected to form the population for the next iteration. According to the Pareto theory,
the objective function of this iteration is ranked by non-dominant levels. Every time a
fitness calculation is performed, it is compared with the solution set. The solution with the
highest non-dominant level is stored in the external archive as the current optimal solution,
and solutions with lower non-dominant levels are removed. This process is repeated until
the fitness calculation is completed.

Step 1 involves reading the distribution network data and determining the loop and
the branch switches of each loop participating in the coding.

Step 2 sets the initial parameters, including the number of populations, the maximum
number of iterations (T), the population dimension (dim), and the upper and lower limits
of each dimension component of IMODBO based on the number of branch switches of each
loop participating in the encoding.

Step 3 generates the population using the chaotic tent map according to Equation (16).
Step 4 calculates the fitness of each individual in the population, performs Pareto

screening, selects the solution with the highest non-domination level, and stores it in an
external file.

Step 5 divides the population into four types of dung beetles and updates the positions
of the four dung beetles according to Equations (27)–(31).

Step 6 recalculates the fitness of the updated positions, compares them with the
external file using greedy selection, and updates the external file.

Step 7 checks whether the current iteration number of the algorithm reaches T. If not,
the algorithm proceeds to Step 8; otherwise, it returns to Step 4.

Step 8 outputs the optimal solution from the external file.
In summary, the steps of the improved multi-objective dung beetle algorithm for

solving distribution network optimization and reconstruction problems are shown in the
Figure 2.
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Figure 2. Flow chart of the process for solving the dynamic reconfiguration of the distribution
network with distributed generation based on IMODBO.
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4. Result and Discussion

In this study, we conducted performance testing on the algorithm using both single-
objective and multi-objective test functions. A comparison was made between IMODBO
and existing algorithms. Furthermore, a comparative analysis was performed on two
distribution network systems through multiple experimental comparisons.

4.1. IMODBO Performance Testing

To verify the effectiveness of the IMODBO algorithm, a simulation comparison ex-
periment was carried out on the algorithm, and the algorithm’s performance was tested
using test functions. The population size of each test function was set to 300, and the
maximum number of iterations was set to 50. Function expressions are shown in Table 1.
The following algorithm was used for comparative experiments. Whale optimization al-
gorithm (WOA) [34], gray wolf optimizer (GWO) [35], northern goshawk optimization
(NGO) [36], and improved salp swarm algorithm (ISSA) [37], as well as multi-objective
algorithms non-dominated sorting genetic algorithm II (NSGA-II) [38], multi-objective ant
lion optimizer (MOALO) [39], multi-objective dragonfly algorithm (MODA) [40], multi-
objective slime mold algorithm (MOSMA) [41], multi-objective particle swarm optimization
(MOPSO) [42,43], and the multi-objective whale optimization algorithm (MOWOA) [44].

Table 1. Classic test function.

Name Function Interval

f1(x) ∑n
i=1 x2

i [−100, 100]
f2(x) ∑n

i=1 |xi|+ ∏n
i=1 |xi| [−10, 10]

f3(x) 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos( x√
i
) [−600, 600]

f4(x) maxi{|xi|, 1 ≤ i ≤ n} [−100, 100]

ZTD1


f1 = x1, f2 = g

(
1−

√
x1
g

)
g = 1 + 9

n
∑

i=2
xi/n− 1

[0, 1]

ZTD2


f1 = x1, f2 = g

(
1−

(
x1
g

)2
)

g = 1 + 9
n
∑

i=2
xi/n− 1

[0, 1]

ZTD3


f1 = x1, g = 1 + 9

n
∑

i=2
xi/n− 1

f2 = g
(

1−
√

x1
g −

x1
g sin(10πx1)

) [0, 1]

ZTD4


f1 = x1, f2 = g(1−

√
f1
g )

g = 1 + 10(m− 1) +
m
∑

i=2
(x2

i − 10 cos(4πxi))

[0, 1]

4.1.1. Test Functions and Performance Evaluation

The multi-objective intelligent algorithm was evaluated with three evaluation indices.
The specific calculation methods for each index are as follows:
(1) Inverted Generational Distance Indicator
The inverted generational distance (IGD) indicator is commonly used to evaluate the

convergence and diversity of the non-dominated solutions obtained by the algorithm. It
measures the average Euclidean distance between all solutions in the Pareto front and the
non-dominated solutions. A low IGD value indicates the better convergence and diversity
of the algorithm. The calculation formula of IGD is as follows [45]:

IGD(P, P∗) =
∑

h∈P
d(h, P∗)

|pop| (32)
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where P is the distribution of a real set of points on the Pareto frontier, |pop| represents the
number of set points pop, P∗ for the algorithm to obtain the Pareto optimal solution set,
and d(h, P∗) represents the minimum Euclidean distance from a point in the set.

(2) Hypervolume Indicator
The hypervolume (HV) metric is used to evaluate the quality of the non-dominated

solution set generated by the algorithm concerning a reference point. A high HV value
indicates better comprehensive algorithm performance in developing well-distributed and
diverse non-dominated solutions. The calculation formula of HV is as follows [46]:

HV = λ(U|P
∗ |

i=1 vi) (33)

where λ represents the Lebesgue measure, and vi represents the super volume formed by
the reference point.

(3) Spacing
To evaluate the diversity of the solution set, the standard deviation of the minimum

distance from each solution to the other solutions is calculated, which is commonly referred
to as the spacing metric. A low spacing value indicates a more uniform distribution of
solutions in the objective space. The calculation formula of spacing is as follows [47]:

SP =

√√√√ 1
|pop| − 1

|pop|

∑
i=1

(d− di)2 (34)

where di and d represent the minimum distance from the i-th solution to other solutions
and the average value of di, respectively.

The single-objective test function was calculated, and the results of the experiment are
presented in Table 2. Additionally, the iteration curve is depicted in Figure 3.

Table 2. Test results of six optimization algorithms.

F Index IMODBO DBO ISSA NGO WOA GWO

Worst 0 2.25× 10−71 7.59× 10−23 1.11× 10−50 2.636× 10−49 1.227× 10−17

f1(x) Best 0 4.60× 10−99 2.61× 10−23 2.24× 10−53 3.56× 10−58 1.10× 10−19

Ave 0 7.21× 10−73 4.92× 10−23 1.69× 10−51 1.81× 10−50 1.95× 10−18

Std 0 3.31× 10−72 1.28× 10−23 2.2× 10−51 4.81× 10−50 2.33× 10−18

Worst 2.70× 10−204 4.49× 10−29 3.44× 10−12 1.26× 10−26 2.24× 10−31 4.85× 10−11

f2(x) Best 4.02× 10−268 7.76× 10−56 1.81× 10−512 1.60× 10−27 2.39× 10−40 6.25× 10−12

Ave 5.40× 10−206 1.15× 10−30 2.83× 10−12 5.04× 10−27 1.79× 10−32 2.07× 10−11

Std 0 6.55× 10−30 3.98× 10−13 2.50× 10−27 4.90× 10−32 1.09× 10−11

Worst 0 3.45× 10−2 6.64× 10−1 0 2.53× 10−1 2.73× 10−2

f3(x) Best 0 0 0 0 0 0
Ave 0 1.04× 10−3 4.62× 10−2 0 1.94× 10−2 4.82× 10−3

Std 0 5.41× 10−3 1.41× 10−1 0 5.99× 10−2 8.65× 10−3

Worst 1.42× 10−54 1.66× 10−22 5.03× 10−12 1.50× 10−21 87.3612 7.16× 10−4

f4(x) Best 1.05× 10−257 3.84× 10−49 2.03× 10−12 1.10× 10−22 1.09× 10−2 2.28× 10−2

Ave 4.11× 10−56 3.32× 10−24 3.32× 10−12 4.59× 10−22 47.8064 1.28× 10−4

Std 2.10× 10−55 2.35× 10−23 6.32× 10−13 2.87× 10−22 28.4172 1.17× 10−4
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(a) (b)

(c) (d)

Figure 3. (a) f1(x); (b) f2(x) ; (c) f3(x) ; (d) f4(x).

4.1.2. Analysis of Test Results

According to the data in Table 2, the performance of IMODBO on different test func-
tions far exceeds those of other algorithms, and according to Figure 3, IMODBO only
required a small number of iterations to find the optimal solution. The results show that
the introduction of different strategies can greatly improve the optimization accuracy of
the algorithm and improve the performance of the algorithm.

The calculation results of the three indices are shown in Tables 3–5. The Pareto front
solutions of seven different multi-objective algorithms on each test function and the accurate
Pareto front distribution of the test function are shown in Figure 4.

Tables 3–5 show three comprehensive indices of each algorithm under different test
functions.According to the IGD index, IMODBO performs well on all four test functions, with
only slightly inferior performance to that of MOWOA on the ZDT4 function, indicating that
IMODBO has a strong searching ability. According to the HV index, the results obtained by
IMODBO are similar to those obtained by MOGWO and MOSMA but better than the results
obtained by the other algorithms, indicating that IMODBO has a rich solution diversity
and the best all-around performance. From the perspective of the SP index, IMODBO has
the best solution distribution space, widest solution set distribution, and best distribution
performance. Based on the performance indices obtained from the test function, the IMODBO
algorithm has apparent advantages in terms of distribution and convergence.
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(a) (b)

(c) (d)

Figure 4. (a) ZDT1 Pareto solutions; (b) ZDT2 Pareto solutions; (c) ZDT3 Pareto solutions; and
(d) ZDT4 Pareto solutions.

Table 3. IGD calculation result.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4

IMODBO 7.01× 10−3 1.76× 10−1 8.32× 10−3 6.31× 10−3

NSGA-II 1.57× 10−2 2.96× 10−1 1.35× 10−1 2.34
MOALO 3.28× 10−2 2.90× 10−1 2.67× 10−2 4.02× 10−2

MODA 5.23× 10−2 2.86× 10−1 2.57× 10−2 2.84
MOSMA 7.12× 10−3 2.90× 10−1 2.54× 10−2 8.68× 10−3

MOWOA 7.21× 10−3 2.85× 10−1 2.46× 10−2 6.10× 10−3

MOPSO 2.71× 10−2 1.89× 10−1 2.46× 10−2 2.55

Table 4. HD calculation result.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4

IMODBO 7.16× 10−1 4.41× 10−1 3.93× 10−1 3.98× 10−1

NSGA-II 4.02× 10−1 2.14× 10−1 2.97× 10−1 0
MOALO 3.99× 10−1 1.06× 10−1 4.39× 10−1 3.72× 10−1

MODA 3.75× 10−1 9.97× 10−2 3.83× 10−1 0
MOSMA 3.98× 10−1 1.08× 10−1 2.98× 10−1 3.98× 10−1

MOWOA 4.08× 10−1 1.12× 10−1 2.99× 10−1 4.05× 10−1

MOPSO 7.15× 10−1 2.85× 10−1 6.83× 10−1 0
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Table 5. SP calculation result.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4

IMODBO 4.73× 10−3 5.43× 10−3 1.01× 10−2 9.64× 10−3

NSGA-II 9.24× 10−3 1.14× 10−2 1.56× 10−2 2.25× 10−2

MOALO 5.10× 10−3 6.50× 10−3 1.28× 10−2 1.30× 10−2

MODA 2.89× 10−2 1.00× 10−2 3.11× 10−2 3.12× 10−2

MOSMA 1.21× 10−2 9.45× 10−3 1.24× 10−2 8.77× 10−3

MOWOA 1.19× 10−2 6.42× 10−3 2.99× 10−2 6.73× 10−3

MOPSO 1.33× 10−2 2.85× 10−1 2.42× 10−2 1.08× 10−2

4.2. Reconstruction of the IEEE 33 and PG&E 69 Power Distribution Systems

We conducted simulation verification tests using MATLAB R2022a on the IEEE 33 [48]
and PG&E 69 [49] power distribution systems. The proposed method was validated on
the IEEE 33-node power distribution system to demonstrate its effectiveness and was
further applied to the PG&E 69 distribution system to showcase its universality. Two sets of
comparative experiments were conducted on each distribution network system as follows:

• The K-means++ clustering algorithm was employed to divide the distribution net-
work load dataset into different time periods, facilitating comparative analyses under
various scenarios.

• A comprehensive test was conducted during a single time period to compare the
performance of IMODBO with various other algorithms.

4.2.1. IEEE 33-Node System Reconstruction

As shown in Figure 5, the IEEE 33-node system contains five contact switches, 37 branches,
and 33 nodes. Wind power generation was connected to nodes 8 and 18, and photovoltaic
cells were connected to node 32. The load added to DG was calculated according to
Tables 6 and 7.

Table 6. Photovoltaic cell parameters.

Solar Cell A/m2 η pmax/(W/m2)

PV 4500 15 20

Table 7. Wind turbine parameters.

Wind Turbine Set Pr/kW vci/(m/s) vr /(m/s) vco/(m/s)

W1 500 3.5 14.5 20
W2 600 3.0 13.0 19

The dynamic reconfiguration analysis of the distribution network was carried out, and
the load distribution of the distributed power supply was added, as shown in Figure 6. The
load is different at each moment and each node, which includes commercial, residential,
and industrial loads. A load of each period was calculated according to Equation (35) to
simulate the dynamic operation of the distribution network. The daily load variation curve
of the IEEE 33-node distribution network system is shown in Figure 7.

Li,t =
3

∑
h=1

Li maxHi,hCh,t (35)

where i is the node number, t is the time point, h is the load type, Li max is the peak load
of the i-th node, Hi,h is the proportion of the class h load in the i-th node, and Ch,t is the
proportion of the class h load during the t-th period. We take 110% of the standard load
peak value of IEEE 33-nodes. The period was divided using the elbow method and the
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K-means++ clustering algorithm. The inflection point was determined to be 4, and the time
period was divided into four class clusters, as shown in Figure 8.

Figure 5. IEEE 33-node diagram.

Figure 6. Different distributed power supply loads.

Figure 7. Daily load variation.
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Figure 8. Period division.

Three scenarios were set up for comparative analysis:
Scenario 1: Maintain the original system structure without reconfiguration;
Scenario 2: Use IMODBO to reconfigure once every period;
Scenario 3: Dynamic reconfiguration via IMODBO.
The final operation effect is shown in Table 8.

Table 8. Result comparison after reconfiguration.

Scenario Time Period Disconnect Branch Active Network Loss /kW Voltage Offset /p.u

Scenario 1 24 h 8–4–2–4–4 1492.14 17.3396

0.00–1.00 5–7–21–12–15
1.00–2.00 33–7–35–12–37
2.00–3.00 28–20–35–12–30
3.00–4.00 28–6–11–12–30
4.00–5.00 27–7–10–13–30
5.00–6.00 28–7–9–12–15
6.00–7.00 28–7–11–14–16
7.00–8.00 26–7–21–12–17
8.00–9.00 28–7–9–12–16
9.00–10.00 28–7l–9–14–17

10.00–11.00 28–7–9–12–17
11.00–12.00 28–7–9–13–17

Scenario 2 12.00–13.00 28–7–21–13–15 1105.74 12.3715
13.00–14.00 28–7–9–14–17
14.00–15.00 28–7–11–14–17
15.00–16.00 28–7–9–14–17
16.00–17.00 27–7–35–14–32
17.00–18.00 28–7–9–12–32
18.00–19.00 28–7–9–14–17
19.00–20.00 28–7–9–13–16
20.00–21.00 28–7–10–14–16
21.00–22.00 28–7–11–14–31
22.00–23.00 28–6–11–13–31
23.00–24.00 27–7–11–14–15
24.00–0.00 5–7–21–12–15

0.00–7.00 3–7–9–12–15
Scenario 3 8.00–11.00 28–7–11–14–15 1090.4 12.1026

12.00–18.00 28l–7–9–14–17
19.00–24.00 28–7–9–13–31

By comparing the data in Scenario 1 and Scenario 2 in Table 8, we can see that, if the
distribution network system is not reconfigured and optimized, the overall network loss and
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voltage offset are relatively high. Dynamic reconfiguration using the IMODBO proposed
in this paper can effectively reduce the functional network loss and voltage offset. Before
reconfiguration, the active network loss is 1492.14 kW; after reconfiguration, the active
network loss is 1105.74 kW. The voltage offset before reconfiguration is 17.3396 p.u, and
after reconfiguration, the voltage offset is 12.3715 p.u, which is 30.2% lower than without
reconfiguration. The effect is remarkable. A comparison of Scenario 2 with Scenario 3 shows
that the daily load in Scenario 2 is divided into 24 periods and reconstructed once each
period, leading to a slower reconfiguration speed and more switching actions. In Scenario 3,
the active power network loss is 15.34 kW lower than that in Scenario 2. The voltage offset
decreases by 0.22 p.u from 12.3715 p.u to 12.1026 p.u.

The above results show that the method proposed in this paper reduces the number
of switching actions and ensures calculation accuracy. Figure 9 shows that Scenario 3 can
effectively minimize the work packet loss in most periods. Figures 10–12 show that the
node voltage distribution in Scenario 3 is more uniform.

Figure 9. Active network loss corresponding to each scenario.

Figure 10. Scenario 1 —node voltage distribution.
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Figure 11. Scenario 2— node voltage distribution.

Figure 12. Scenario 3 —node voltage distribution.

4.2.2. PG&E 69-Node System Reconstruction

The PG&E 69-node distribution system is shown in Figure 13. Wind power generation
is connected to nodes 33 and 64, and photovoltaic cells are connected to node 14. The load
of the connected distributed power supply is the same as previously described. The daily
load curve of the PG&E 69-node distribution system is shown in Figure 14.

The time period is divided according to the algorithm described in Section 2, setting
the same scene as the IEEE 33-nodes. Table 9 shows the final running effect.
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Figure 13. PG&E 69-node diagram.

Figure 14. Daily load variation.

According to Table 9, in Scenario 3, compared with Scenario 1 and Scenario 2, the
active power network loss decreases by 1194.37 kW and 13.29 kW, respectively, and the
voltage offset decreases by 12.4101 p.u and 1.343 p.u. After reconfiguration, the effect is
significantly improved. According to the comparison of the network loss distribution of
different scenarios in different periods in Figure 15, Scenario 3 can effectively reduce the
network loss value in most periods compared with Scenario 2 and Scenario 1. Figures 16–18
show that the voltage distribution of each node at each time in Scenario 3 is more uniform
than that in Scenario 1 and Scenario 2.
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Table 9. Result comparison after reconfiguration.

Scenario Time Period Disconnect Branch Active Network Loss /kW Voltage Offset /p.u

Scenario 1 24 h 7–8–24–32–17 2315.17 24.7262

1.00–2.00 7–19–13–50–47
2.00–3.00 10–19–14–50–47
3.00–4.00 10–19–14–50–47
4.00–5.00 8–19–14–50–47
5.00–6.00 10–19–14–52–47
6.00–7.00 63–18–14–53–47
7.00–8.00 10–19–14–52–47
8.00–9.00 8–19–14–51–47
9.00–10.00 69–70–13–53–47

10.00–11.00 10–19–14–52–47
Scenario 2 11.00–12.00 69–19–14–51–47 1134.09 12.6591

12.00–13.00 10–19–14–50–47
13.00–14.00 10–19–14–53–47
14.00l–15.00 10–19–14–53–47
15.00–16.00 10–19–14–51–47
16.00–17.00 10–19–14–53–47
17.00–18.00 10–19–14–53–47
18.00–19.00 9–19–14–50–47
19.00–20.00 10–19–14–51–47
20.00–21.00 63–19–14–50–47
21.00–22.00 10–19–14–50–47
22.00–23.00 10–70–13–50–44
23.00–24.00 10–19–14–52–47

0.00–7.00 7–19–14–50–7
Scenario 3 8.00–11.00 10–19–14–52–47 1120.81 11.3161

12.00–18.00 63–19–14–50–47
19.00–24.00 10–19–14–53–47

Figure 15. Active network loss corresponding to each scenario.
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Figure 16. Scenario 1—node voltage distribution.

Figure 17. Scenario 2—node voltage distribution.
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Figure 18. Scenario 3—node voltage distribution.

4.2.3. Comparison Test of Different Algorithms

To verify the effectiveness of the IMODBO in the dynamic reconfiguration of a dis-
tributed power distribution network, the NSGA-II, MOALO, MOPSO algorithms were
used in this study to compare the solution results of the IEEE 33-node and PG69-node
system models and distributed power supply.

Because the real Pareto solution set in the system cannot be known, the four algorithms
were run independently ten times, and their Pareto solution sets were taken for non-
dominated sorting to simulate the natural Pareto frontier of the IEEE 33-node distribution
network. Taking the distribution network load in the eighth hour as an example, the Pareto
solution set obtained after the four-stage algorithm was run, as shown in Figure 19. To
further demonstrate the effectiveness of the approach, the Pareto solution set for the PG&E
69-node distribution network during the fourteenth hour is also presented. Moreover, two
multi-objective performance indicators are calculated, as shown in Table 10, through which
the performances of different algorithms can be judged.

(a) (b)

Figure 19. Pareto frontier distribution; (a) IEEE 33-node Pareto front; and (b) PG&E 69-node Pareto
front.
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Table 10. Multi-objective performance index results.

IEEE 33-Node PG&E 69-Node

Algorithm Type IGD HV IGD HV

IMODBO 0.0492 0.0895 0.4714 0.0702
MOALO 0.4943 0.0504 3.9928 0
NSGA-II 0.5557 0.0399 1.4131 0.0369
MOPSO 0.1604 0.0824 0.9051 0.0562

In terms of the IGD index, IMODBO demonstrates the lowest value among the four
algorithms, indicating its superior convergence and diversity. This signifies that IMODBO
is capable of finding solutions that are closer to the true Pareto front. Additionally, the
HV index also shows that IMODBO achieves the highest values, outperforming the other
algorithms by a significant margin. This confirms the exceptional performance of IMODBO
in generating solutions that cover a wide range of objectives. In summary, the multi-
objective distribution network dynamic reconfiguration method based on the IMODBO
proposed in this paper exhibits significant advantages in terms of convergence and diversity.
It showcases superior performance compared to MOALO, NSGA-II, and MOPSO.

5. Conclusions

This study proposes an optimization method based on the improved multi-objective
dung beetle optimizer (IMODBO) to address the dynamic reconfiguration optimization
problem in distribution networks with distributed power sources. The IMODBO method,
in conjunction with the K-means++ clustering algorithm, is proposed and validated for this
problem. Furthermore, multiple scenarios are designed in standard distribution network
systems to verify the effectiveness of the proposed method. The main contributions of this
study are as follows:

• Through testing on both single-objective and multi-objective test functions, the IMODBO
algorithm outperforms other optimization algorithms such as DBO, ISSA, NGO, WOA,
and GWO in terms of convergence rate, convergence accuracy, and overall perfor-
mance in single-objective optimization. In multi-objective optimization, the IMODBO
algorithm exhibits better performance than MOALO, NSGA-II, MODA, MOSMA,
MOPSO, and MOWOA in terms of convergence, solution set distribution, and com-
prehensive performance.

• An optimization scheme is proposed for dynamic reconfiguration in distribution
networks with distributed power sources, utilizing the IMODBO algorithm and
K-means++ clustering algorithm. The objective is to reduce the active power loss,
stabilize node voltages, and minimize switch operations.

• In the IEEE-33 nodes and PG69 nodes test systems, the proposed method achieves
the minimum active power loss and voltage deviation among multiple scenarios. In a
single-period comparison experiment, the Pareto solutions obtained by the IMODBO
algorithm dominate over the solutions obtained by NSGA-II, MOALO, and MOPSO
algorithms. The proposed method also exhibits good performance in terms of multi-
objective performance metrics. The Pareto solutions obtained by the IMODBO algo-
rithm have the minimum IGD and maximum HV values in both test systems. This
indicates that the proposed method can simultaneously seek solutions that are close
to the optimal Pareto front and provide diverse options for decision makers.

This study has significant implications for achieving sustainable energy goals. The
proposed IMODBO method demonstrates superior optimization performance and provides
an effective solution to reduce energy loss and improve power quality in distribution
networks. However, there are limitations to this study. For instance, it does not consider the
randomness of photovoltaic power generation and wind power generation. Future research
should take into account more factors to make the results more applicable to real-world
projects. Additionally, testing in larger and more complex systems with a wider range
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of distributed power sources can be conducted to further increase the penetration rate of
renewable energy and achieve carbon reduction and neutrality goals.
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Nomenclature
DBO Dung beetle optimizer
DFR Distribution feeder reconfiguration
DG Distributed generation
EMA Exchange market algorithm
GWO Gray wolf optimizer
HV Hypervolume
IGD Inverted generational distance
IMODBO Improved multi-objective dung beetle optimizer
ISSA Improved salp swarm algorithm
MODA Multi-objective dragonfly algorithm
MOPSO Multi-objective particle swarm optimization
MOSMA Multi-objective slime mold algorithm
MOALO Multi-objective ant lion optimizer
MOWOA Multi-objective whale optimization algorithm
NGO Northern goshawk optimization
NSGA-II Non-dominated sorting genetic algorithm II
PSO Particle swarm optimization
WGA Wild goats algorithm
WOA Whale optimization algorithm

Notations
A Single photovoltaic panel area
B Conductance
δ Phase angle difference
F1 Objective function 1
F2 Objective function 2
G Susceptance
kt,l First state at the l-th branch during the t-th period
Lv Levy flight
N Total number of nodes in the model
O Collection dataset
P Active power (kW)
PDG DG active power output (kW)
Pload Residential load active power (kW)
PPV Photovoltaic panel active power (kW)
Pr Rated active power of the wind turbine (kW)
Pw Active power of the wind turbine (kW)
pop Population size
Q Reactive power (KVar)



Processes 2023, 11, 1827 26 of 28

QDG DG reactive power output (kVar)
Qload Living load reactive power (kVar)
T Reconfiguration interval
U Voltage (kV)
U∗ Rated voltage (kV)
v Wind speed
W Adaptive weight factor
η Conversion efficiency of the battery
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