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Abstract: Five-phase induction motors have the characteristics of high torque density, low torque
ripple, and flexible control, making them suitable for medium- and low-voltage power supply
situations. However, with the expansion of application scenarios, five-phase motors need to cope
with increasingly complex operating conditions. Five-phase motors for propeller propulsion will
face various complex sea conditions during actual use, and five-phase motors for electric vehicles
will also face various complex road conditions and operating requirements during use. Therefore,
as a propulsion motor, its speed control system must have strong robustness and anti-disturbance
performance. The use of traditional PI algorithms has problems, such as poor adaptability and
inability to adapt to various complex working conditions, but the use of an active disturbance
rejection controller (ADRC) can effectively solve these problems. However, due to the significant
coupling between the variables of induction motors and the large number of parameters in the ADRC,
tuning the parameters of the ADRC is complex. Traditional empirical tuning methods can only
obtain a rough range of parameter values and may have significant errors. Therefore, this paper
uses ADRC based on genetic algorithm(GAADRC) to tune the parameters of the control and design
an objective function based on multi-objective optimization. The parameters to be adjusted were
obtained through multiple iterations. The simulation and experimental results indicate that GAADRC
has lower startup overshoot, faster adjustment time, and lower load/unload speed changes compared
to the empirically tuned PI controller and ADRC. Meanwhile, using a genetic algorithm for motor
ADRC parameter tuning can obtain optimal control parameters while the control parameter range is
completely uncertain; therefore, the method proposed in this paper has strong practical value.

Keywords: five-phase induction motor; active disturbance rejection controller; genetic algorithms;
parameter setting

1. Introduction

The ADRC was first proposed by Han Jingqing in 1990s, which is a kind of exploration
based on a PID controller and a nonlinear controller for uncertain systems [1]. An ADRC can
estimate and compensate external interference and parameter changes, so it does not need
an accurately controlled object model, which means that the design of an ADRC system is
inherently independent from the controlled system model and its parameters [2,3]. In the
development process of ADRC technology, the scholar Gao Zhiqiang tried to linearize and
discretize nonlinear controllers [4], which solved the difficult problem of proving controller
stability and simplified the process of controller parameter tuning. Since an ADRC was
proposed, several fields have started to make beneficial attempts to utilize it, and ADRCs
have gradually been applied in many fields, including for a boiler combustion system,
generator excitation system, magnetic levitation system, platform stability system, aircraft
attitude control system, DC power transmission system, and motor control system [5–10].

However, compared with the traditional PI controller, the ADRC has more parameters,
a more complex algorithm structure, and greater coupling degree. In order to solve this
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problem, there are many studies on how to adjust the parameters of an ADRC. At present,
there are roughly two ways to set ADRC parameters. One is to use the traditional empirical
setting method, whose objects are mostly simplified linear ADRCs or simply improved
controllers based on it. The other is to automatically obtain the parameters of the controller
by means of various intelligent optimization algorithms. This method is more universal. It
can not only adjust the parameters of a linear ADRC but also solve the complex coupling
problem between various improved nonlinear ADRC parameters.

The empirical setting method is mainly based on the transfer function of the controller
and the controlled object. For a linear ADRC, the transfer function of the controller can be
written directly in most cases. By analyzing the characteristics of the transfer function, the
parameters required by the controller can be obtained directly.

Meanwhile, there are various types of intelligent optimization algorithms. As they
do not require specific physical meanings, most of them only consider the actual output
of the system based on certain inputs, and do not pay attention to the specific coupling
relationship between various parameters [11]. Therefore, the steps of deriving and sim-
plifying complex system transfer functions are omitted, which saves the time required to
adjust controller parameters and has great universality. In recent years, many intelligent
optimization algorithms have been applied to controller parameter settings, including
genetic algorithms, the ant colony algorithm, chaotic whale algorithm, simulated annealing
algorithm, immune algorithm, and differential evolution algorithm [12–21].

The general principles of various parameter tuning methods are similar. Firstly,
consider the tuned parameters as inputs and select multiple sets of initialization parameters
within a certain range to initialize the input parameters. Secondly, considering the actual
needs of the control system, appropriate objective functions are formulated to input various
initialization parameters into the system to generate output results. Finally, perform
backtracking calculations based on the values of the objective function obtained from
different initialization parameters to obtain new input parameters. Repeat the iteration to a
fixed algebra or until the algorithm converges to a smaller value to achieve the expected
output effect.

A genetic algorithm is a kind of intelligent optimization algorithm which is widely
used. It is a computational model simulating natural selection and genetic mechanisms
in Darwinian biological evolution. It has been previously used for setting parameters
of active disturbance rejection controllers in motors. In order to realize the maximum
power tracking of a photovoltaic generating set, N Elmouhi et al. [14] used an ADRC to
control a PWM rectifier on the output side of doubly-fed induction generator. In order
to achieve better tracking performance, a genetic algorithm was used to adjust ADRC
parameters. Yang Zebin’s team [15] proposed an improved genetic algorithm based on
a particle swarm optimization algorithm to solve the problem that ADRC parameters
of bearingless induction motor are difficult to set, which improved the speed regulation
performance of the motor during starting, loading, and unloading. Compared with other
intelligent optimization algorithms, the principle of a genetic algorithm is simple and easy
to implement. Because there is no need to design complex neural networks, the genetic
algorithm does not require much computing power and can obtain the optimization results
in a short time.

It can be seen that ADRCs have been widely used in all fields and have been extensively
studied in the field of motor control. In addition, in order to solve various practical problems
in the process of motor operation, a variety of new ADRC structures have appeared, but
each new control structure has a certain range of application. Solving some of the most
prominent problems also creates other problems.

There are many parameters to be set in an ADRC, and the parameter setting based on
experience not only costs a lot of time but also cannot guarantee the optimal parameters. In
order to solve the problem that too many parameters are difficult to set in an ADRC, there
are a variety of off-line parameter-setting algorithms, among which a genetic algorithm is a
more widely used one, and its principle is simple and easy to implement. However, there
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is a lack of application in the control field of five-phase motor ADRC. Therefore, this paper
proposes using a genetic algorithm to tune the parameters of a five-phase-motor ADRC.
Compared with other optimization algorithms in [14,15], the genetic algorithm proposed in
this paper has the characteristics of clear tuning objectives and accurate tuning parameters,
and the adjusted ADRC has strong robustness. The algorithm proposed in this article not
only saves time in parameter tuning but also obtains the optimal control parameters, which
has great application scenarios and practical value.

2. Analysis of ADRC for Five-Phase Induction Motor
2.1. Principle of Five-Phase Motor

By performing a Clark transformation on the voltage and flux equations in the basic
subspace of a five-phase induction motor, the voltage and flux equations in the stationary
coordinate system of the five-phase induction motor can be obtained, as shown below.

usα

usβ

urα

urβ

 =


Rs 0 0 0
0 Rs 0 0
0 0 Rr 0
0 0 0 Rr




isα
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irα
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+
d
dt


ψsα

ψsβ

ψrα

ψrβ

+


0
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isα

isβ

irα

irβ

 (2)

where Rs and Rr represent the stator and rotor resistance, respectively, Lsd and Lrd de-
note the equivalent self-inductance of the stator winding and rotor winding, respectively,
and Lmd denotes the equivalent mutual inductance of the stator and rotor windings.
usα, isα, and ψsα represent stator α-axis voltage, current, and flux linkage, respectively,
and usβ, isβ, and ψsβ represent stator β-axis voltage, current, and flux linkage, respectively.

The mechanical equation of the five-phase motor is shown below.

Te = npLmd
(
isβirα − isαirβ

)
(3)

where np represents the number of motor poles, and Te represents motor electromagnetic
torque.

The expression for the mechanical motion of the motor is shown below.

Te − TL =
J

np

dωr

dt
(4)

where TL represent motor load torque, J represents the motor rotational inertia, and ωr
represents motor angular velocity.

Based on the above Equations (1) to (4), the mathematical model of a five-phase motor
can be constructed, and the motor parameters are shown in Table 1.

Table 1. Parameters of five-phase motor.

Parameters Value Parameters Value

Rs 1.60 Ω Rr 1.35 Ω
Lmd 0.7802 H Lsd 0.7871 H
Lrd 0.7871 H J 0.01986 kg·m2

np 1
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2.2. Principle of Linear ADRC

The basic schematic diagram of a linear ADRC system is shown in Figure 1. It can be
seen that an ADRC mainly consists of a tracking differentiator (TD) and an extended state
observer (ESO).
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As the most important part of an ADRC, an ESO is mainly responsible for filtering the
output value of the system and observing the disturbance quantity in it [22]. Its input has
two time-varying parameters, including the output of the controlled object and the output
of the controller. The block diagram of the structure is shown in Figure 1, and the basic
expression of a linear ESO is shown below.

e = sout − z1
z1(k + 1) = z1(k) + h(z2(k) + b0u + β1e)
z2(k + 1) = z2(k) + hβ2e

(5)

where z1 is the observed value of sout, z2 is the perturbation observation quantity of sout,
e is the error between the observed value output by the system and the real value, u is
the output value of ESO, h is the discrete time constant, and b0, β1, β2 are proportional
constants.

Since the motor speed is a slowly rising quantity and cannot change in the actual
system, the design of the ADRCs motor speed loop needs to consider a suitable given curve.
With the goal of setting the speed value vs, the design of the TD is shown below:

e = z1 − v∗

f h = f han(e, z2, r0, h)
z1(k + 1) = z1(k) + hz2(k)
z2(k + 1) = z2(k) + h · f h

(6)

where v∗ represents motor output speed, and f han(e, z2, r0, h) is called the most rapid
control synthesis function, whose algorithm expression is shown below:

d = r0h
d0 = hd
y = e + hz2

a0 =
√

d2 + 8r0|y|

a =

 z2 +
a0 − d

2
sign(y), |y| > d0

z2 +
y
h

, |y| ≤ d0

f han = −
{

r0sign(a), |a| > d
r0

a
d

, |a| ≤ d

(7)

The structure block diagram of a five-phase induction motor vector control system
based on an ADRC is shown in Figure 2.
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3. ADRC Parameter Optimization Based on GA
3.1. Basic Principles of Genetic Algorithm

The basic flowchart of a genetic algorithm is shown in Figure 3.
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(1) Initialize design parameters

In a linear ADRC, there are eight parameters to be set, including the current loop and
speed loop parameters β1, β2, β11, and b0. The first step is to initialize the parameters to
be determined by using random parameter initialization to generate the initial generation
parameters.

In order to facilitate the following steps of crossover and mutation, it is necessary to
use binary encoding to generate random numbers r. Suppose the length of a single random
number string is L, and the string digit from low to high is Ki, and its value is 0 or 1, as
shown in Figure 4, then the random number generated is as follows:

r =

L
∑

i=1
2i−1Ki

2L (8)
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Then, the initialized random matrix is generated as follows:

Rini =


r1,1 r1,2 . . . r1,8
r2,1 r2,2 . . . r2,8

...
...

. . .
...

rG,1 rG,2 . . . rG,8

 (9)

where G represents population size.
The selection of population size is not as large as possible. A larger population size

means that the scale of computation is larger, and the time required to run the algorithm
increases. However, a smaller population size may cause the optimal value interval to
be missed, especially in the face of multivariate optimization, making the system more
likely to miss the best combination. In addition to determining the population size, it is
also necessary to set the maximum evolutionary algebra, and the purpose of designing
the maximum evolutionary algebra is to prevent the system from being unable to stop
running because it has never converged, so that the system automatically stops running
after running to a certain algebra without relying on whether the objective function is
within the constraints.

(2) Objective function determination

The most important thing in the optimization of motor controller parameters using
genetic algorithms is to determine the objective function. In the field of motor control,
the pursuit is stable and fast control performance. “Stability” is reflected in whether the
response curve can eventually converge, “accurate” is reflected in whether the final stable
value of the response curve reaches a given, and “fast” is reflected in the rise time and
adjustment time. To determine the objective function of motor control, the most important
thing is to find the appropriate expression that reflects the performance of motor control.

In the operating condition of a no-load start of the motor, the dynamic response time
and overshoot of the system need to be considered. When the motor is running under the
operating condition of sudden load reduction, it is necessary to consider the maximum
increase and decrease in the speed and the adjustment time required when the motor speed
returns to the steady state.

In addition, it is also necessary to consider the operating conditions of motor diver-
gence, and if the motor operation is unstable or even divergent, the individual’s fitness can
be reduced to 0 by setting a penalty factor, and the individual is not selected in the process
of producing parents in the next step.

(3) Selection crossing and mutation

Using tournament selection, single-point crossing, and uniform mutation as setting
mode. On the basis of the uniform mutation, the following improvements have been
made. In the early stage of iteration, due to the existence of multiple sets of initialization
parameters, the early stage of the mutation has probability to maintain a relatively low
value. In the later stage of the iteration, the parameters gradually converge. In order
to ensure that the parameters jump out of the local optimal limit, set the later variation
probability to a larger value, and the mutation probability pm is expressed in the form of a
piecewise function as follows:

pm =


5% N < 20

10% 20 < N < 30
20% 30 < N < 40
35% 40 < N < 50
50% 50 < N < 60

(10)

where N represents iterations.



Processes 2023, 11, 1712 7 of 16

According to the above algorithm, the flowchart of ADRC parameter settings based
on genetic algorithm can be obtained as shown in Figure 5.
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3.2. Parameter Setting Process Based on Genetic Algorithm

The optimization process of ADRC parameters based on genetic algorithms is divided
into three steps:

(1) The control parameters of the current-loop ADRC and the speed-loop ADRC are
roughly adjusted based on the dynamic energy of the speed.

(2) Keep the ADRC parameters of the speed loop obtained in the first step unchanged,
take the dynamic tracking performance of the current loop as the optimization objec-
tive, and obtain the optimized ADRC parameters of the current loop.

(3) Keep the ADRC parameters of the current loop obtained in step 2 unchanged, and
then obtain the optimized ADRC parameters of the speed loop by taking the speed
dynamic energy as the optimization objective.

The first step is to set the control parameters of the current loop and the speed loop at
the same time, and the design objective function is shown as follows:

fg1 = p1

0.72
∑

t=0.7
(st−1000)

2000 + p2(maxst − 1000) + p3

2.02
∑

t=2
(st−1000)

2000

+p4[maxst −minst]
t=1.8
t=1.4 + p5

3.6
∑

t=3.5
(st−800)

10000

(11)

where st represents the motor speed at time t, and p1 ∼ p5, respectively, represent the
reference weights of five target values: no-load start time, no-load start overshooting,
loading adjustment time, loading speed drop, and on-load speed regulation time.

The simulation step is set to 10 us, so the number of data points within 0.02 s is 2000.
After running the iterative algorithm 60 times, the parameter optimization curve and the
change curve of the objective function value are obtained, as shown in Figure 6. It can be
seen from the figure that the objective function value of the system tends to be stable after
the iteration reaches 22 generations, and the stable value is 0.3335.
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The second step is to keep the parameters of the speed-loop ADRC unchanged and
only set the parameters of the current-loop ADRC. The design objective function is shown
as follows.

fg2 = p1

4

∑
t=0

(
i∗sm_t − ism_t

)
+ p2

4

∑
t=0

(
i∗st_t − ist_t

)
(12)

where i∗sm_t and i∗st_t represent the excitation current and torque current set at time t, respec-
tively, and ism_t and ist_t represent the excitation current and torque current set at time t,
respectively.

After running the iterative algorithm 60 times, the parameter optimization curve and
the change curve of the objective function value are obtained, as shown in Figure 7. It can
be seen from the figure that the objective function value of the system tends to be stable
after iteration reaches 55 generations, and the stable value is 0.02216.

In the third step, the parameters of the current-loop ADRC were kept unchanged, and
only the parameters of the speed-loop ADRC were set. The designed objective function was
consistent with that of the first step, and the parameter optimization curve and the change
curve of the objective function value were obtained, as shown in Figure 8. According to
the change curve of the objective function, the value of the objective function in the first
generation was 0.3597, which is slightly higher than the stable value of the objective function
after the whole setting of the step. It becomes stable at 0.3303 after the 38th generation. The
setting result of step 1 is optimized to achieve a more optimized control objective.
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The parameter changes in the process of motor ADRC system parameter setting
through three steps are shown in Figures 6–8, and the optimized ADRC parameters are
shown in Table 2 below.

Table 2. Parameters of the optimized ADRC.

Parameters β1 β2 β11 b0

Speed loop 4995.61 440,860.8 492.72 259.12
Current loop 9921.81 999,022.5 994.14 35.29

4. Simulation and Experimental Analysis
4.1. Analysis of Simulation Results

To verify the performance of an GAADRC, traditional empirical tuning methods can be
used to obtain the parameters of an ADRC and PI controller [23]. The PI parameters of the
current loop are Kp_cur = 2.221 and Ki_cur = 258.595, respectively, and the PI parameters of
the voltage loop are Kp_vol = 0.229 and Ki_vol = 0.8814, respectively.

A PI controller and ADRCs and GAADRCs were used to simulate and verify the motor
speed regulation performance, and the motor speed regulation performance was analyzed
under no-load acceleration and deceleration, as well as acceleration and deceleration under
load and load reduction.

Firstly, the motor is started at the given speeds of 100 r/min, 500 r/min, and 1000 r/min
and decelerated to 80 r/min, 400 r/min, and 800 r/min, respectively, in the no-load steady
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state. At this time, the comparison of PI, ADRC, and GAADRC speed waveforms is shown
in Figure 9.
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The comparison of overshoot during startup and deceleration in Figure 9 is sum-
marized as shown in Table 3. It can be seen that during startup, the overshoot of the PI
controller and ADRC decreases with the increase in the given speed, but the overshoot
of the ADRC is significantly lower than that of the PI controller, while the overshoot of
the GAADRC decreases on the basis of the ADRC. In the deceleration process, the active
disturbance rejection controller can achieve low speed overshoot, while the PI controller
has large overshoot under different speed control conditions. As can be seen from the
adjustment time shown in the enlarged details, the adjustment time of the GAADRC is
the fastest, followed by the ADRC, and the PI controller is the slowest. In the deceleration
process, when decelerating to 80 r/min, the adjustment time of the PI controller is less
than that of the ADRC and GAADRC; when decelerating to 400 r/min and 800 r/min, the
adjustment time of the PI controller is greater than that of the ADRC and GAADRC. Due to
the influence of TD, the adjustment time of the ADRC and GAADRC in the deceleration
process is not much different.

Table 3. Comparison of speed overshoot during no-load startup and deceleration.

Control
Mode

0–100–80 r/min 0–500–400 r/min 0–1000–800 r/min

Starting Deceleration Starting Deceleration Starting Deceleration

PI 22.82% 6.75% 5.16% 4.17% 2.75% 3.99%
ADRC 5.54% 0.102% 0.88% 0.0118% 0.38% 0.0029%

GAADRC 4.90% 0.032% 0.52% 0.0035% 0.06% 0.0011%

Considering the performance of the on-load speed regulation of the motor in different
speed ranges, the motor is set to run with a load of 6 N·m, and the comparison of the PI
controller, ADRC, and GAADRC speed waveforms under on-load speed regulations is
shown in Figure 10. As can be seen from the figure, there is a large overshoot in the PI
controller during acceleration and deceleration while with load. In different speed control
ranges from low speed to high speed, the overshoot in the deceleration process is 6.31%,
4.33%, and 4.36%, respectively, and in the acceleration process, the overshoot is 5.36%,
3.51%, and 2.64%, respectively. There is no obvious overshoot between the ADRC and
GAADRC, and there is little difference in dynamic performance between them due to the
influence of the speed-ring tracking differentiator (TD).
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Figure 10. Comparison of speed waveform under speed regulation with load.

Considering the speed regulation performance of the motor when the load is abruptly
increased and reduced at different steady speeds, when the motor starts with no load
and reaches stability, 6 N·m load is added for 1 s, and the load is removed for 1.5 s.
The comparison of the speed waveform under the condition of abruptly increased and
decreased loads is shown in Figure 11. As can be seen from the figure, under different
steady-state speed conditions, the same load is added and decreased abruptly, and the
amplitude of speed change basically remains unchanged. The PI control speed drop is
8 r/min, the ADRC speed drop is 5.5 r/min, and the GAADRC speed drop is 3.2 r/min.
When the load is abruptly discharged, the PI control speed is raised to 7.5 r/min, the ADRC
speed is raised to 5.2 r/min, and the GAADRC speed is raised to 2.9 r/min. Compared
with the PI controller, the speed overshoot of the ADRC is reduced by 30%. Compared
with the ADRC, the overshoot of the GAADRC speed is smaller, reduced by more than
40%, and the speed regulation process is smoother.
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4.2. Analysis of Experimental Results

The experimental platform for a five-phase motor is shown in Figure 12. The rated
voltage of the motor is 220 V, the rated frequency is 50 Hz, the rated torque is 18.23 N, and
the rated speed is 2880 r/min. The powder brake is used for loading, and its maximum
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loading torque is 100 N·m. A torque and speed sensor is added between the motor and the
powder brake, which is connected to the acquisition instrument and can directly display
real-time torque and speed on the digital display screen.
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Figure 12. Experimental platform of five-phase motor.

PI controller, ADRC, and GAADRC parameters were used for experiments to verify
the speed regulation performance of the motor under no-load acceleration and deceleration,
and acceleration and deceleration under load and load reduction.

The motor was set to start up at 100 r/min and 500 r/min in no-load mode, and after
a period of time the speed was reduced to 80 r/min and 400 r/min, respectively. The
speed waveform of the PI controller, ADRC, and GAADRC was obtained, as shown in
Figure 13. As can be seen from the figure, under no-load condition, at the given speed of
100 r/min, the PI controller, ADRC, and GAADRC speed waveforms do not overshoot,
and the GAADRC reaches the given speed the fastest, followed by the ADRC. When
decelerating to 80 r/min, there is little difference in speed change among the three modes.
When the motor decelerates from 500 r/min to 400 r/min at the given speed, the adjustment
time and overshoot in the process of motor speed regulation are shown in Table 4. As can
be seen from the data in the table, compared with the PI controller, the ADRC can start
without overshoot, but the adjustment time is slightly slower than that of the PI controller
due to small oscillations in the startup process. The GAADRC overcomes the problem of
the slow adjustment time of the ADRC and reduces the adjustment time by 77.27% in the
startup process; however, it produced an overshoot of 1%. In the deceleration process, both
the ADRC and GAADRC have overshoot to some extent, but their dynamic performance is
better than the PI controller.
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Table 4. Adjust time and overshoot during motor startup and deceleration.

Control Mode
Startup Process Deceleration Process

Overshoot Adjust Time Overshoot Adjust Time

PI 4.74% 0.603 s 8.65% 0.67 s
ADRC 0% 0.695 s 5.30% 0.35 s

GAADRC 1% 0.158 s 5.95% 0.35 s

In the case of 100 r/min and 500 r/min with load, the motor speed is set to 80 r/min
and 400 r/min, respectively, and then back to 100 r/min and 500 r/min, and the motor
speed waveform is obtained, as shown in Figure 14. As can be seen from the figure, at the
low speed of 100 r/min, both the PI controller and ADRC have a large degree of fluctuation,
and there is a certain overshoot in the speed regulation process, and the overshoot of the
ADRC is slightly larger than that of PI controller. Compared with the ADRC, the GAADRC
has a certain degree of reduction in overshoot and speed fluctuation, and its effect is better
than that of the PI controller. The adjustment time and overshoot at the initial speed of
500 r/min with load are shown in Table 5. It can be seen from the data in the table that the
dynamic performance of the ADRC is better than that of the PI controller in the medium
speed with load speed regulation. Based on the ADRC, the overshoot is smaller and the
adjustment time is increased by about 70%.
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Table 5. Adjust the time and overshoot in the process of motor speed regulation under load.

Control Mode
Deceleration Process Startup Process

Overshoot Adjust Time Overshoot Adjust Time

PI 4.78% 0.816 s 3.72% 0.671 s
ADRC 3.65% 0.645 s 3.20% 0.210 s

GAADRC 2.25% 0.192 s 1.18% 0.062 s

When loading and unloading experiments are carried out, because the magnetic
powder brake cannot suddenly load, the load can only be slowly added, so the speed
waveform of sudden load cannot be obtained. The motor was slowly loaded and suddenly
unloaded at 100 r/min and 500 r/min under a steady state, respectively. The speed
waveforms of the PI controller, ADRC, and GAADRC are shown in Figure 15. The speed
decreases during loading and the speed increases during unloading are shown in Table 6. It
can be seen from the data in the table that, compared with the PI controller, the ADRC has a
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better inhibition effect on the motor loading and unloading and other external disturbances,
and its performance is improved by about 30%. After using a neural network to optimize
the parameters of the GAADRC, the suppression effect is more obvious compared with the
ADRC, and its disturbance rejection performance improved by 60~70%.
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Table 6. Speed drop during motor loading and speed lift during unloading.

Steady Speed
Speed Drops When Slow

Loading (r/min)
Speed Rises When Sudden

Unloading (r/min)

PI ADRC GAADRC PI ADRC GAADRC

100 r/min 26.5 16.1 6.3 59.0 42.5 13.3
500 r/min 16.9 11.7 5.2 49.0 34.0 12.4

According to the comparison of motor speed regulation performance in no-load accel-
eration and deceleration, and acceleration and deceleration with load and load reduction, it
can be seen that the GAADRC optimized based on neural networks has a better optimiza-
tion effect than the ADRC obtained through experience adjustment during motor startup
and load and load reduction, and the dynamic performance of small speed regulation is
not much different from that of the ADRC.

5. Conclusions

This paper mainly focused on the problem of tuning the parameters of the ADRC,
proposed a unique genetic algorithm, and constructed a multi-objective optimization cost
function based on a genetic algorithm to achieve the parameter tuning of the five-phase
motor ADRC. After repeated iterations of the current loop and speed loop, the control
parameters of the ADRC were obtained.

The simulation and experimental results indicate that the GAADRC has lower startup
overshoot, faster adjustment time, and lower load/unload speed changes compared to
the ADRC. Furthermore, the GAADRC can obtain all the parameters to be tuned without
knowing the required parameters of the controller, reducing the time cost required for
ADRC parameter tuning and helping people quickly obtain control parameters that meet
the conditions for analysis and verification, which has strong practical value.
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