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S1.  Polymerization conditions and feedstock characteristics 
 

Three feedstocks have been synthesized in silico. For this two polymerization temperatures are 

formally chosen. Feedstock A and B are  modeled at a lower temperature and feedstock C at a higher 

temperature. All three feedstocks are simulated with an initial initiator to monomer ratio of 0.0025 

up to a monomer conversion of 0.2, according to the model of De smit et al. [1] but assuming intrinsic 

kinetics. 

Table S1: Rate coefficients used for modelling the polymer feedstock A, B and C in Figure 2 of the 
main text; for simplicity no chain transfer to monomer. 

Reaction Equation A B C units 

Initiator decomposition I2 2I* 1.2 ×10-4 1.2 ×10-4 3.8 ×10-7 s-1 

Chain initiation  I* + M  R1* 2.0 ×103 2.0 ×103 5.0 ×102 L mol-1 s-1 

Propagation  Ri* + M  Ri+1* 2.0 ×103 2.0 ×103 5.0 ×102 L mol-1 s-1 

Termination – 
Combination 

Ri* + Rj* Pi+j 1.0 ×109 3.0 ×108 3.0 ×107 L mol-1 s-1 

Termination – 
Disproportionation 

Ri* + Rj*Pi + Pj 0 7.0 ×108 7.0 ×107 L mol-1 s-1 

 

To confirm convergence was obtained at the chosen simulation volume for the polymerization of 

feedstock A, B and C an addition simulation was performed with a five times larger simulation volume. 



This meant for feedstock A and B a ∑ 𝑖. 𝑋௉೔𝒊  of 5 x109 and for feedstock C 5 x1010. In Figure S1 a 

convergence of the polymerization results is shown for the three feedstocks for both simulation 

volumes (subplot a: conversion and subplot b number CLD). 

 

Figure S1: Convergence check of feedstock A, B and C at simulation volume 1 and 2 regarding 
monomer conversion (a) and CLD (b). 

S2. Simulation times and volume  

Table S2: Simulation duration of the thermochemical degradation of the three feedstocks at the 
defined cases in the main text (95% carbon-based conversion) 

Case ෍𝒊.𝑿𝑷𝒊𝒊  Feedstock A 
[min] 

Feedstock B 
[min] 

Feedstock C 
[min] 

1 1.0 x105 2.30 2.45 2.34 

2 1.0 x106 2.40 2.32 3.12 

3 1.0 x107 3.05 3.91 3.80 

4 5.0 x107 3.24 6.71 3.49 

5 1.0 x108 3.48 6.91 3.45 

6 5.0 x108 5.35 23.90 7.65 

7 1.0 x109 10.01 76.89 8.29 

8 5.0 x109 - - 45.47 

9 1.0 x1010 - - 95.89 

 



Table S3: Simulation duration of the thermochemical degradation of the three feedstocks at the 
defined cases in the main text (50% carbon-based conversion) 

Case ෍𝒊.𝑿𝑷𝒊𝒊  Feedstock A 
[min] 

Feedstock B 
[min] 

Feedstock C 
[min] 

1 1.0 x105 1.70 1.78 2.30 

2 1.0 x106 2.17 1.97 2.48 

3 1.0 x107 2.52 2.02 2.28 

4 5.0 x107 1.90 2.25 2.34 

5 1.0 x108 2.55 2.80 2.58 

6 5.0 x108 2.68 8.34 5.10 

7 1.0 x109 5.20 22.58 7.22 

8 5.0 x109 - - 36.15 

9 1.0 x1010 - - 81.27 

 

 

 

Figure S2: Evolution of the simulation volume as a f function of carbon-based conversion for case 1 
to 5 on the left (a) and case 5 to 9 on the right (b)  for feedstock C. 

  

  



S3. Simulation results for Feedstock C  

 

Figure S3: Effect of the MC control volume (Table 2) on the simulated carbon-based conversion 
profile for thermal degradation of feedstock C (Figure 1); kinetic parameters in Table 1. 

 

 

Figure S4: Effect of the MC control volume on the concentration of (a) Head-Head linkages during 
thermal degradation of feedstock C and (b) the unsaturated chain-ends expressed in mol.L-1 . 

 

Figure S5: Effect of the MC control volume on the evolution of (a) the number average chain length 
(xn), (b) the mass average chain length (xm) , (c) the z-average chain length (xz) and (d) dispersity (Ð) 
during thermal degradation of Feedstock C (Figure 12); model parameters: Table 1.  



Table S4: Average relative error (%) (eq.7)  for the carbon-based conversion ሺ𝛜𝐜𝐨𝐧𝐯𝐂ሻ the number 
average chain length (𝛜𝐱𝐧   ), mass average chain length (𝛜𝐱𝐦), dispersity (Ð), and z-average chain 
length (𝛜𝐱𝐳) for feedstock C. In italic the starting point to reach the threshold (by default 1% but for 𝝐𝒙𝒛  0.5%). 

Cases ϵconversion (%) 𝝐𝒙𝒏   (%) 𝝐𝒙𝒎   (%) ϵÐ  (%) 𝝐𝒙𝒛   (%) 

1  2 5.35 7.58 17.99 13.71 28.63 

2  3 3.51 5.45 8.44 4.08 17.78 

3  4 0.71 1.31 2.01 1.34 3.73 

4  5 0.46 1.09 0.92 1.41 2.78 

5  6 0.34 0.27 0.55 0.50 2.01 

6  7 0.11 0.31 0.31 0.30 1.09 

7  8 0.09 0.10 0.20 0.18 0.39 

8  9 0.05 0.07 0.14 0.11 0.27 

 

Figure S6: Number chain length distribution (CLD) at a carbon-based conversion of 50% for feedstock 
B for several cases with the CLD corresponding to Case 9 included in all subplots for comparison; (a) 
case 1 and 2, (b) case 3 and 4, (c) case 5 and 6, (c) case 7 and 8. Practically case 7 can be selected as 
converged. 

 



 

S4. Radical concentration  

 

 

Figure S7: Radical concentration during the thermal degradation of feedstock A (cases 1 to 4 on 
the top left and 4 to 7 on the top right), feedstock B (cases 1 to 4 on the center left and 4 to 7 on 
the center right) and feedstock C (cases 1 to 5 on the bottom left) 
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