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Abstract: The scaling of oil pipelines over time leads to issues including diminished flow rates, wasted
energy, and decreased efficiency. To take appropriate action promptly and avoid the aforementioned
issues, it is crucial to determine the precise value of the scale within the pipe. Non-invasive gamma
attenuation systems are one of the most accurate detection methods. To accomplish this goal, the
Monte Carlo N Particle (MCNP) algorithm was used to simulate a scale thickness measurement
system, which included two sodium iodide detectors, a dual-energy gamma source (241 Am and
133 Ba radioisotopes), and a test pipe. Water, gas, and oil were all used to mimic a three-phase
flow in the test pipe, with the volume percentages ranging from 10% to 80%. Moreover, a scale
ranging in thickness from 0 to 3 cm was inserted into the pipe, gamma rays were shone on the
pipe, and on the opposite side of the pipe, photon intensity was measured by detectors. There were
252 simulations run. Fifteen time and frequency characteristics were derived from the signals collected
by the detectors. The ant colony optimisation (ACO)-based approach is used to pick the ideal inputs
from among the extracted characteristics for determining the thickness of the scale within the pipe.
This technique led to the introduction of thirteen features that represented the ideal combination.
The features introduced by ACO were introduced as inputs to a multi-layer perceptron (MLP) neural
network to predict the scale thickness inside the oil pipe in centimetres. The maximum error found in
calculating scale thickness was 0.017 as RMSE, which is a minor error compared to earlier studies.
The accuracy of the present study in detecting scale thickness has been greatly improved by using the
ACO to choose the optimal features.

Keywords: ant colony optimization; high-accuracy instrument; MLP neural network; scale thickness
detection; three-phase flow

1. Introduction

The buildup of scale in oil-transport pipes has resulted in a variety of issues in oil
fields across the world. When scale builds up in a pipeline, the effective cross-sectional
area becomes smaller. This makes it harder for petroleum products to move through the
pipeline. Because of this part, pumps and other machines cannot work properly. Downtime
catastrophes, damaged oil gear, higher maintenance costs, and decreased efficiency may
result from an increase in the amount of scale in the pipeline if it is not identified in a
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timely manner. To go forward while scale is present, it is important to utilise a control
system with features such as scale thickness detection. For calculating the many features of
a two-phase flow, gamma-ray attenuation systems are widely regarded as the benchmark
by scientists [1–8]. The apparatus employed by the researchers in [1] consisted of a cesium
source, a test pipe, and two sodium iodide detectors. The RBF neural network was fed the
counts from two detectors to predict a two-phase flow property with three regimes: bubbly,
stratified, and annular. By tallying up these numbers, they were able to make educated
guesses about the volume fractions and classify the flow patterns. One alternative neural
network paradigm is the polynomial neural network, often known as the group method of
data handling (GMDH). The GMDH approach uses an inductive self-organizing technique
to estimate black box models with unknown relationships between variables. Artificial
neural networks of the GMDH type were utilised by Roshni et al. [2] to identify the volume
percentages and flow regimes by training on the unbalanced data. The impressive precision
of the technology was used to justify the massive computing costs. The flow regime and vol-
umetric percentage were previously detected by Roshani et al. [3], using a cobalt-60 source
and a NaI detector, but the parameters were not precisely measured due to the erroneous
characteristics being extracted. Researchers in 2019 used the Jaya optimisation algorithm
to provide predictions about the volumetric percentages [4]. Sattari and colleagues set up
a system for precise volume percentage calculation and flow regime categorization using
2 NaI detectors, a 137Cs radioisotope, and a tube [5]. In subsequent research, they looked
into the viability of using GMDH neural networks to detect distinct flow regimes and
forecast volume fractions [6]. This research accurately calculated the volume percentage;
however, it paid little attention to the quantity of scale in the pipe. Ba-133 and Cs-137 are
used to measure the thickness of the scale in the oil pipe [7]. An RBF neural network was
trained using data obtained from a simulation of the two-phase flow in various regimes,
including information on detector properties for both transmission and scattering detectors.
The RMSE for their predicted scale thickness was less than 0.22; therefore, their hard work
paid off. 133 Ba and 241 Am were used to analyze the scale layer in an oil pipe in recent
research. It was proposed that the photopeaks of 133 Ba and 241 Am from two detectors be
used as inputs to the RBF neural network after modelling the three-phase flow in annular
regimes. Eventually, they achieved an RMSE of less than 0.09 when estimating the thickness
of scales [8]. Always-on, radioisotope-based energy sources have drawbacks, including the
necessity for personnel to wear protective clothing and transportation constraints. Hence,
X-ray tube research into measuring multiphase flow properties has gained traction in recent
years [9–12]. X-rays and a NaI detector were used to determine the flow regime and volume
fraction of two-phase flows in [9]. Two multilayer perceptron networks were trained using
the detector’s signal timing properties. Models of a homogeneous flow, an annular flow,
and a stratified flow were used to examine three-phase flows at varying volume fractions
in [10]. Moreover, three RBF networks were trained using the input signals’ rather exact
frequency characteristics. In [11], the MCNP method was used to model the X-ray tube’s
core as it passed through a mixture of four petroleum products blended in pairs of varying
concentrations. Three multilayer perceptron neural networks were fed the recorded signals,
and their output was a prediction of the volume distribution of the three products. The
fourth product’s volume ratio was easily determined after the volume ratios of the previous
three were known. The presented method foresaw the objects’ types and quantities, but
it lacked feature extraction techniques and therefore could not be very precise. Balubaid
et al. [12] looked at the use of wavelet transformations as a method of feature extraction
to expand previous studies [11]. The computing load was optimised, and accuracy was
enhanced as a result of this effort. Large-scale combinatorial issues and nonlinear problems
are beyond the capabilities of traditional optimisation techniques. Therefore, optimisation
techniques based on metaheuristics have been presented. The nine categories used to
assess general-purpose metaheuristic methodologies are as follows: biological, physical,
social, musical, chemical, athletic, mathematical, swarm, and hybrid. Recent studies on
plants have shown that they are capable of complex behaviours indicative of intelligence.
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Therefore, it is postulated that plants have some kind of neurological system. Algorithms
and software programmes related to plant intelligence were compiled and analysed in [13].
These algorithms include the Flower Pollination Algorithm, Invasive Weed optimisation,
Paddy Field Algorithm, Root Mass optimisation Algorithm, Artificial Plant optimisation
Algorithm, Sapling Growing Up Algorithm, Photosynthetic Algorithm, Plant Growth Opti-
misation, Root Growth, Strawberry Algorithm as Plant Propagation Algorithm, Runner
Root Algorithm, Path Planning Algorithm, and Rooted Tree optimisation. Due to the atti-
tude of always seeking the best and the lack of the most efficient algorithm for all sorts of
issues, new techniques or new versions of current methods are offered to test their ability to
handle very complicated optimisation challenges. Recent work has presented two methods
that seem to be light-based intelligent optimisation algorithms; these are ray optimisation
and optics-inspired optimisation [14]. The principles of light refraction and reflection serve
as inspiration for modern intelligent search and optimisation algorithms.

Most of the research described above has a big problem: it does not employ feature
extraction and feature selection techniques that could be used to improve the performance
of an artificial neural network. In order to solve this problem, a technique for extracting time-
domain and frequency-domain characteristics and choosing the most useful characteristic
using ant colony optimisation (ACO) has been presented in this study. Major contributions
of current research are listed below.

1. Examining the time and frequency characteristics simultaneously in order to deter-
mine the thickness of the scale layer.

2. Using feature selection techniques based on the ACO algorithm to determine effective
features.

3. Significant increase in the accuracy of the detection system by using appropriate
specifications.

4. Reducing the amount of computation applied to the neural network by selecting the
appropriate features in a manual process.

Figure 1 shows the general implementation process of the current research. The
organization of this article is that first the detection system is simulated using MCNP code.
Different thicknesses of the scale layer are investigated in this simulation. The detector
signals are collected and labelled. In the next step, the received signals were analyzed
and several time and frequency characteristics were extracted from the collected signals.
In the next section, using the feature selection method based on the ACO algorithm, a
combination of features that can determine the thickness of the scale with high accuracy is
introduced. In the next section, the introduced features are applied as inputs to the MLP
neural network, and a neural network is trained that can predict the scale thickness with
high accuracy. In the last two parts, the results and conclusions of the current research will
be presented.
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Figure 1. The general implementation process of the current research.

2. Simulation Setup

Up to 1 TeV/nucleon, the MCNP (Monte Carlo N-Particle) code might be used to
transport neutrons, photons, electrons, ions, and many other fundamental particles. Parti-
cles are moved through a three-dimensional model of a material, and the user chooses the
surfaces at the first, second, and fourth levels of detail. Another option is to build complex
geometry by putting a mesh inside a constructive solid geometry cell. This could be used
with external structured and unstructured meshes to describe the geometry of the problem
in a way that is a mix of the two. Models of physics and tables of nuclear and atomic data
are used to simulate the physics of each encounter while the ship is in transit. Nuclear and
atomic data tabulated for this energy range is often used to predict the effects of low-energy
interactions between projectile particles (such as neutrons, photons, and light ions) and
target nuclei. Academics have shown an ongoing fascination with modelling X-ray or
gamma-radiation-using structures using the MCNP method [15–18]. The methodology
presented in the current research was simulated using the MCNP code [19]. The framework
proposed by the research revolves around the radioactive isotopes 241 Am and 133 Ba. Two
detectors at each end of a steel flow pipe collect photons from the aforementioned dual
energy source. Its highest and lowest photon energies, respectively, are 59 and 356 keV.
These 2 NaI detectors are situated at an angle of 0 and 7 degrees to the fictional horizon line.
Nonetheless, a three-phase flow is simulated in the test pipe under a stratified flow pattern.
The abovementioned pipe has a thickness of 0.5 centimetres and an interior diameter of
10 centimetres. A BaSO4 thickness scale of varying widths is placed within this pipe. The
pipe is lined with a scale with a density of 4.5 grammes per cubic centimetre, and the scale’s
thickness may range from 0 to 3 centimetres. Water, oil, and gas all flow through the scale.
In this model, the density of water is 1, the density of gas is 0.00125 g/cm3, and the density
of oil is 0.826 g/cm3. MCNP was utilised to implement the framework in this research. It is
important to note that previous studies [1] have confirmed the accuracy of the simulations
used in this analysis. Several experimental setups were built in this investigation and
compared to information gleaned from the MCNP program. The MCNP algorithm’s Tally
output was translated to units per source particle to enable a direct comparison between
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experimental and simulated results. A 2.2% relative error was found between the simu-
lation and the experimental arrangement. Using the 36 possible volume percentages for
each of the 7 values of the scale thickness, a total of 252 simulations could be generated.
The whole of the required construction is shown in Figure 2. Figures 3 and 4 provide a
visual representation of the signals that were captured by the first and second detectors at
different scale thicknesses. In order to explain the attenuation of a narrow beam of gamma
rays, LamberteBeer’s law states:

I = I0e−µρx (1)
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Figure 2. The architecture of the simulated detecting system.

Primary photon intensity (I) and uncollided photon intensity (I0) are denoted here.
The absorber density, represented by ρ, and the mass attenuation coefficient, denoted by µ.
x represents the total distance a beam travels through an absorber. This formula predicts
that the detector will record a range of intensities as a result of photons hitting with different
materials. When a three-phase flow travels through the pipeline, this change in measured
intensity can be used to determine the scale thickness. In this research, all the simulations
have been carried out under the equal conditions, with the difference of the volumetric
percentages and of the thickness of the scale layer inside the pipe. It is necessary to mention
that using Pulse Height Tally F8 in the MCNPX code, we were able to determine how many
particles were detected by the transmission detector for every one that originated from
the source. When the count was as precise as needed, the STOP card was used to stop the
process. The STOP card was used to limit relative errors in all simulations to less than 0.005,
therefore all Monte-Carlo findings are accurate to within this range.
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3. Feature Extraction

The phrase “feature extraction” refers to the process of transforming unstructured
data into a set of observable features that may be analysed independently of the original
data without sacrificing any of its validity. Compared to applying machine learning to the
raw data, the results are far better. The initial step in the manual feature extraction process
is to identify the most relevant features for a given scenario. It is generally beneficial to
know the domain or context when making feature decisions. The best characteristics may
be chosen with the help of optimisation strategies. This study, which drew its motivation
from other studies [5,6,9,10,12], analysed the signals received in two different temporal and
frequency domains.
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3.1. Time-Domain Feature Extraction

The following formulas have been used to derive 10 temporal features from these signals:
average value:

m =
1
N

N

∑
n=1

x(n) (2)

variance:

σ2 =
1
N

N

∑
n=1

(xn −m)2 (3)

4th order moment:

m4 =
1
N

N

∑
n=1

[x(n)−m]4 (4)

root mean square:
RMS =

√
m2 + σ2 (5)

skewness:

g1 =
m3

σ3 , m3 =
1
N

N

∑
n=1

[xn −m]3 (6)

kurtosis:
g2 =

m4

σ4 (7)

waveform length (WL):

WL =
N−1

∑
n=0
|xn+1 − xn| (8)

absolute value of the summation of square root (ASS):

ASS =

∣∣∣∣∣ N

∑
n=1

(xn)
0.5

∣∣∣∣∣ (9)

mean value of the square root (MSR):

MSR =
1
N

N

∑
n=1

(xn)
0.5 (10)

absolute value of the summation of the exp th root (ASM):

ASM =

∣∣∣∣∣∑N
n=1(xn)

exp

N

∣∣∣∣∣, exp =

{
0.05 i f (n > 0.25·N and n < 0.75·N)
0.75 otherwise

(11)

where n is the number of data sets, N is the total number of observations, and xn is the
main time-domain signal.

3.2. Frequency-Domain Feature Extraction

The FTT (Equation (12) [20]) was used to change the received signal into the frequency
domain so that frequency characteristics could be taken out. The amplitudes of frequency-
domain signals at the first, second, third, fourth, and fifth dominant frequencies (AFDF,
ASDF, ATDF, AFODF, and AFIDF, respectively) were separated out.

Y(k) =
n

∑
J=1

x(J)w(y−1)(k−1)
n (12)

where wn = e(−2πi)/n is one of n roots of unity, and Y(k) = FFT(X).
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4. Ant Colony Optimization

Innovative algorithms are being created around the clock using new methods and
tools to meet the demands of high-performance computing. Natural laws may serve as a
source of inspiration for algorithms, leading to some very novel and exciting outcomes. It
is in this category of algorithms that you’ll find evolutionary ones. These algorithms were
developed to simulate some of the characteristics and behaviours seen in human evolution.
In addition, the natural behaviour of animals might serve as a source of inspiration for
such algorithmic design rather than only people. The primary goal of developing such
approaches is to address issues that have not been adequately addressed by existing
methods at an affordable cost. The Ant Colony Optimisation (ACO) method, developed by
Marco Dorigo [21], takes its cues from the foraging activities of ant colonies. The behavior
of ants in finding a way to find food was illustrated in Figure 5. The ant’s social nature
means that it is better off as part of a colony than on its own. They communicate with
one another using pheromones, touch, and sound. Organic chemical substances called
pheromones are released by ants to encourage interaction between members of the same
species. These are molecules that may influence the behaviour of other people by acting
like hormones outside of the body of the person secreting them. Most ant colonies are
ground-based, so it makes sense that pheromone trails would be laid out on the soil’s
surface and tracked (smelled) by other ants. The core premise of ACO is based on the
observation of ants as they leave their communal nests in search of food via the most direct
route. At first, ants wander aimlessly about their nests in quest for food. This method
of searching randomly provides many potential pathways to the food source from the
nest. Now, ants take a bite out of the meal and bring it back with them, concentrating on
the pheromones they will need along the way. These pheromone tests would determine
the likelihood that subsequent ants would choose a certain route to the food source. This
chance obviously depends on the pheromone’s concentration and its rate of evaporation.
As the pheromone’s evaporation rate is also a determining factor, the length of each route
may be calculated with relative ease.
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Figure 5. The behavior of ants in finding a way to find food.

For the sake of clarity, only two routes between the food source and the anthill have
been shown in the preceding diagram. The steps can be broken down as follows:

First, the ants have returned to their nest. The atmosphere is devoid of any pheromones.
(In algorithm development, the number of residual pheromones need not be ignored).

In Phase 2, the ants spread out over all possible routes with the same probability
(half). The time it would take for the ants to travel the curved path to the food source is
obviously longer.
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Third, the ants who took the quickest route to the food source got there first. Clearly,
they are back in the same situation they were in before, but this time, the pheromone trail
down the shorter path that is already there makes it more likely that they will be chosen.

In the fourth phase, more ants use the shortcut to return, raising pheromone levels.
In addition, as a result of evaporation, the concentration of pheromones along the longer
journey decreases, making their selection less likely in later stages. As a result, it is more
likely that the entire colony will adopt the shorter route over time. Hence, the optimum
route is found.

4.1. Algorithmic Design

Based on the ants’ observed behaviour, we may now devise a suitable algorithm. For
the sake of simplification, only a single food supply and a single ant colony with only two
alternative routes have been studied. Weighted networks, with the ant colony and the
food source as vertices (or nodes), the pathways as edges, and the pheromone levels as
weights, can represent the entire scenario. Let the edges and vertices of the graph be V
and E, respectively, and write the graph as G = (V, E). In our model, the vertices are the
ant colony (Vs) and the food supply (Vd), the edges are E1 and E2, and the lengths of the
edges are L1 and L2, respectively. For the vertices E1 and E2, we can assume the related
pheromone values (which indicate their strength) to be R1 and R2, respectively. Hence,
the initial probability of path selection (between E1 and E2) for each ant can be written as
follows [21]:

Pi =
Ri

R1 + R2
i = 1, 2 (13)

It stands to reason that if R1 > R2, then the odds of picking E1 are greater, and vice
versa. Now, on the way back by the shortest path, say Ei, the pheromone value is updated
for the associated route. Pheromone evaporation rates and route lengths are taken into
account for this revision. This means that the upgrade can be implemented in stages.

4.2. In Accordance to Path Length

The below modification uses the model parameter “K,” with values of I equal to one
and two [21]. In addition, the upgrade is path-dependent. The more concentrated the
pheromone, the shorter the path.

Ri ← Ri +
K
Li

(14)

According to the pheromone’s rate of dissipation [21].

Ri ← (1− v) ∗ Ri (15)

A parameter controls pheromone evaporation with a range of (0, 1) called v. Moreover,
I = 1, 2, etc. All the ants have relocated to the source vertex vs. at each cycle (ant colony).
Once step 1 is completed, ants travel from vs. to Vd (the food source). The second phase
is when all the ants go back to their original trail and reinforce it. Due to the high power
of this algorithm, it can be used to solve many different problems, including feature
selection problems.

4.3. ACO-Based Feature Selection

In order to use this algorithm as a feature selection method, a cost function must first
be defined. In this research, we designed an MLP neural network with one hidden layer
and fifteen neurons in the hidden layer. The inputs of this network were initially selected
randomly, and the neural network will be implemented to predict the target output (in this
research, the target output was the scale thickness value). The mean square error (MSE)
value between the target and neural network outputs will be defined as a cost function of
the ACO. At first, one input was applied to this neural network. It was expected that in
the first case, the value of the cost function would be high. In the next step, the number
of inputs increases, and the ACO determines the appropriate combination of two features
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to reduce the cost function. In the same way, the number of selection entries increases,
and the best combination of features is saved. The value of the cost function calculated
by ACO according to the number of features (NF) can be seen in Figure 6. In this way, by
comparing the cost function for the best combinations from one feature to thirty features, it
was determined that the selection of thirteen features will have the lowest cost function with
a value of 0.86. For this reason, the selection of thirteen features out of thirty features was
introduced as the optimal mode. Table 1 shows the parameter values of the implemented
ACO algorithm. In the beginning, taking into consideration the nature of the available data,
the power of the available processor, and the load of calculations applied to the processor,
these parameters were taken as an initial value, and their optimal value was selected in a
repetitive train-test process.
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Table 1. the parameters of the ACO algorithm.

Parameter Value

Number of selected features 1–30

Cost function of the best mode 0.86

Maximum Number of Iterations 20

Number of Ants (Population Size) 15

Initial Pheromone 1

Pheromone Exponential Weight 1

Heuristic Exponential Weight 1

Evaporation Rate 0.05

5. MLP Neural Network

These days, engineers are using all sorts of computational techniques to solve their
research challenges [22–51]. The objective of this research was to determine the accuracy
of an ANN method for estimating the thickness of scale deposits in oil pipes. Multi-layer
perceptron (MLP) models, the most common kind of ANN, are used in a wide variety of
contexts. Nonlinear functions and the various nonlinear decision surfaces are learned to
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be mapped to one another. These equations show how to get neurons to fire in the output
layer: [52,53]:

nl =
u

∑
i=1

xiwik + b k = 1, 2, · · · , m (16)

uj = f

(
u

∑
i=1

xiwik + b

)
k = 1, 2, · · · , m (17)

output =
j

∑
n=1

(unwn) + b (18)

In this equation, x represents the input parameters while w, b, and f represent the
weighting factor, bias term, and activation function of the hidden layers, respectively. The
number of neurons in each hidden layer is given by the index k, while the input is given by
the letter i. In order to fine-tune the network’s weights, modern MLP networks are trained
using the Levenberg-Marquardt approach, which makes use of the gradient and Hessian
derivatives. The training phase employs 178 samples, the validation phase uses 37, and the
testing phase employs 37. By segmenting the data into training, validation, and testing sets,
the dangers of over- and under-training may be reduced. The bulk of the information used
to teach a neural network consists of patterns and samples. The term “validation data” is
used to describe the data used to evaluate the success of the training process. The test data
are used in the last stage of training to fine-tune the neural network. If a neural network
does well on this dataset, it will be robust enough to operate in the real world. Trained
MLP-ANN models are used to predict the scale thickness in this paper. There were several
iterations of ANN structures created and tuned until the error rate was minimised. Several
configurations with varying numbers of neurons and activation functions were examined,
including those with one, two, and three hidden layers. The ANN model was trained with
the help of MATLAB 8.1.0.604 software.

6. Results

In this study, signals from two detectors were used to find fifteen time and frequency
characteristics. There was a total of 30 features that could be used to figure out how thick the
scale was inside the pipe. However, choosing the right feature to determine the parameter
in question was a big challenge, which was solved with the help of ACO. ACO stated that
using thirteen inputs has the lowest cost function. Thus, it was introduced as the optimal
mode. After careful examination, it was found that the names of these thirteen entries
are: 1-kurtosis first detector, 2-kurtosis second detector, 3-ASS first detector, a 4-skewness
second detector, 5-MSR first detector, 6-RMS second detector, 7-AFDF first detector, 8-
AFDF second detector, 9-ASDF first detector, 10-ASDF second detector, 11-AFODF first
detector, 12-AFODF second detector, and 13-AFIDF first detector. These features were
introduced to the inputs of an MLP neural network to predict the target parameter. In a
systematic method, networks with the number of one hidden layer to four hidden layers
and with different numbers of neurons were examined, and it was found that a network
with two hidden layers and a number of hidden neurons of respectively 15 and 10 can
predict the thickness of the scale with a root mean square error (RMSE) of 0.017. The
structure of the designed neural network is shown in Figure 7. The performance of neural
networks is displayed graphically using different methods. Regression diagrams and fitting
diagrams are two very common methods for this purpose. In the regression diagram, the
desired output and the predicted output are shown as a line and a circle, respectively.
The mentioned graphs for three categories of training, validation, and testing data can be
seen in Figure 8. This research provided a very high level of accuracy in determining the
thickness of the scale, which was due to the use of a powerful optimisation algorithm to
determine the appropriate features. The comparison of the present study with previous
studies is shown in Table 2.
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Table 2. A comparison of the suggested detection system’s precision with earlier research.

Ref. Extracted Features Feature Selection
Method

Type of Neural
Network Maximum MSE Maximum

RMSE

[5] Time features Lack of feature
selection GMDH 1.24 1.11

[6] Time features Lack of feature
selection MLP 0.21 0.46

[54] No feature extraction Lack of feature
selection MLP 2.56 1.6
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Table 2. Cont.

Ref. Extracted Features Feature Selection
Method

Type of Neural
Network Maximum MSE Maximum

RMSE

[55] Lack of feature extraction Lack of feature
selection GMDH 7.34 2.71

[56] Frequency features Lack of feature
selection MLP 0.67 0.82

[57] Wavelet features Lack of feature
selection GMDH 0.19 0.44

[58]

Full energy peak
(transmission count),

photon counts of Compton
edge in the transmission

detector and total count in
the scattering detector

Lack of feature
selection MLP 1.08 1.04

[59] Frequency and wavelet
features

PSO-based feature
selection MLP 0.13 0.36

[60] Time, wavelet, and
frequency features

PSO-based feature
selection GMDH 0.09 0.30

[current
study] Time and frequency features ACO-based feature

selection MLP 0.0002 0.017

As can be seen from this table, the lack of feature extraction from the signals received
by the detectors was a big gap that caused the error of the proposed system to be very
high in the research [54–56]. In these studies, different neural networks were investigated,
but the lack of proper inputs to the neural networks decreased their accuracy. In their
next research, the researchers investigated the time, frequency, and wavelet transform
characteristics to determine the parameters of the oil field. However, it seemed that
the lack of using a proper feature selection method to select the most effective features
was the main fault of these studies. The use of the extracted characteristics as neural
network inputs without monitoring and checking them caused the neural networks to not
be successful in determining their target parameters with such high accuracy [5,6,57,58].
Recently, researchers investigated the PSO algorithm to introduce effective characteristics
to determine the parameters of the oil field and were able to significantly increase the
accuracy of the detection systems [59,60]. By comparing the error of the systems presented
in research [59,60] with other research, we will understand the importance of using feature
selection methods to increase the accuracy of detection systems. For this reason, we decided
to test the performance of another feature selection method in order to increase the accuracy
of the detection system. In this research, the performance of the feature selection method
based on the ACO algorithm was investigated on time and frequency characteristics, and
it was found that the use of this algorithm and the characteristics introduced by this
algorithm could significantly improve the accuracy of previous research. This is considered
a great achievement in the design of diagnostic systems in the oil field. Considering the
importance of extracting and selecting features in determining the parameters of the oil
field, it is strongly recommended to the researchers of this field to pay special attention to
the investigation of other characteristics of the received signals and the examination of the
extracted characteristics with other optimization methods. In addition, investigating the
performance of other neural networks in this field can be a suitable topic for future research.
The main limitation of the current research is the use of radiation sources in the structure
of the detection system. Due to the negative effects of radiation on people’s bodies, it is
necessary to use special clothes when working with these devices. On the other hand, it is
very difficult to transport these devices due to the inability to turn off the source, and it
requires special radiation-limiting devices. In this research, the performance of the feature
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selection method based on the ACO algorithm was investigated on time and frequency
characteristics, and it was found that the use of this algorithm and the characteristics
introduced by this algorithm could significantly improve the accuracy of previous research.
This is considered a great achievement in the design of diagnostic systems in the oil field.
Reducing the number of computations being applied to the system is one of the benefits
of this study. Using the helpful features of the incoming signals to create neural networks
reduces the number of computations. The following computer setup was used to do the
computations necessary for feature extraction, feature selection, and the configuration of
neural networks, and the processing time was less than three minutes. Processor: Intel(R)
Core i7-10750H CPU, RAM: 16 GB, GPU: GeForce GTX 1650 ti. This system, which is
implemented in the simulation space, can be designed and built in the operational space as
well, and by using the features, the neural network and the methodology introduced in
this research, the accuracy of diagnosis can be significantly increased.

7. Conclusions

This study introduces a quick, easy-to-use, and accurate method for measuring the
thickness of the scale within oil pipelines. In this research, gamma-ray attenuation was used
to develop an efficient method for detecting the scale thickness of homogeneously flowing
three-phase condensates. The detection system, which consists of a dual-energy gamma
generator and two NaI detectors placed on opposite sides of the pipe, is modelled using
the MCNP algorithm. A three-phase fluid was modelled at various volumetric fractions
while exploring different scale values. The change in the intensity of transmitted photons
from the source in the collision with a pipe that has a scale layer with different thicknesses
is an important parameter in the design of a high-precision scale detection system. The
signals received by the detector have a very non-linear relationship with the change in the
thickness of the scale layer, so it is very important to use the methods of signal processing,
feature extraction and feature selection. The number of extracted features is high, and it
will increase the volume of calculations applied to the system, therefore, in order to select
the effective features, the technique based on the ACO algorithm was used. The data from
each detector was analysed to derive 15 time and frequency characteristics that would be
used as inputs to the ACO algorithm. The result of using a feature selection algorithm
based on ACO showed that the use of 13 features with the names of kurtosis first detector,
kurtosis second detector, ASS first detector, skewness second detector, MSR first detector,
RMS second detector, AFDF first detector, AFDF second detector, ASDF first detector, ASDF
second detector, AFODF first detector, AFODF second detector, and AFIDF first detector
are enough to achieve high accuracy. The aforementioned features were used as inputs
for an MLP neural network, which then produced the scale thickness in centimetres as an
output. The RMSE for this neural network’s prediction of the scale thickness is less than
0.017. The effectiveness of the ACO algorithm in introducing acceptable inputs is a key
factor in the high accuracy achieved in this study, which is in turn owed to the careful
selection of characteristics to be applied to the inputs of the neural network.
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