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Abstract: In order to improve the problem of low oxygen supply efficiency during aerobic composting
and prolong composting maturity, a genetic algorithm was used to optimize the initial weights and
thresholds of the standard BP neural network and obtain the optimal parameters, and then a clonal
selection algorithm was used to optimize the mutation operator in the genetic algorithm and duplicate
the operator. A CGA-BP neural network based on an aeration oxygen supply prediction model was
constructed, and the aeration oxygen supply predicted by the model was used to ferment the compost
and accelerate the process of compost maturation. The results show that compared with the standard
BP neural network algorithm and the GA-BP neural network algorithm, this model has accurate
prediction performance in predicting aeration oxygen supply, with a prediction accuracy of 99.26%.
The aeration oxygen supply predicted based on the CGA-BP model can effectively promote the
composting maturity process and meet the needs of aeration oxygen supply throughout the entire
fermentation process of aerobic compost.

Keywords: aerobic composting; aeration oxygen; BP neural network; CGA-BP neural network; maturity

1. Introduction

According to statistics, China’s annual agricultural organic waste is about 5.7 billion
tons. This includes approximately 3.8 billion tons of livestock, fresh poultry manure and
urine and approximately 1 billion tons of straw. The natural discharge or improper use
of livestock and poultry manure will bring harm to the environment, and the arbitrary
stacking or burning of straw will cause environmental pollution. With the rapid develop-
ment of the composting industry, compost producers are focusing their attention on the
effective utilization of energy in the production process and on improving the quality of
compost by controlling the forced ventilation system [1]. Aerobic composting can ratio-
nalize the use of livestock manure and straw and alleviate environmental pollution [2–5].
The amount of aeration will affect the microbial activity in aerobic composting, thereby
affecting the normal fermentation of aerobic compost and delaying the composting
maturity process. Therefore, precise control of the aeration rate plays a crucial role in
aerobic composting fermentation.

In recent years, both Chinese and foreign scholars have conducted research on aeration
control. Most studies have established intelligent modeling methods [6–8] to control the aer-
ation rate of sewage biochemical tanks, using dissolved oxygen as an intermediate variable
and establishing models for inlet and outlet water indicators and dissolved oxygen, as well
as models for dissolved oxygen and aeration rates. The hierarchical control concept was
introduced into the aeration system, and a controller was designed to track the dissolved
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oxygen content. The tracking performance of the controller was verified, thereby achieving
the goal of precise aeration [7].

The intelligent modeling method achieves precise aeration in the sewage treat-
ment process. During the composting fermentation process, aeration is usually carried
out at a fixed time and quantity, and sufficient oxygen is obtained by changing the
ventilation mode and frequency of the compost, thereby promoting the normal fermen-
tation of the compost [9–11]. In the static aerobic composting experiment of sludge
and mushroom residue, by changing the ventilation rate at different stages and the
ventilation frequency per unit time, it was found that the stage rates were 0.1, 0.4, 0.6,
0.3 and 0.6 m3/h, and the composting effect was better with a single ventilation of
15 min/h [12]. Under both continuous and intermittent ventilation conditions, there
are significant differences in microbial community succession during the fermentation
process of cow manure–straw mixed compost, which affects how efficiently the com-
post reaches maturity [13]. In aerobic composting, experience is mostly used to set the
aeration value and aeration rate, which has low efficiency and affects the humification
process of compost. This article uses the relationship between multiple factors affect-
ing aerobic compost fermentation and the aeration rate to directly model and predict
the aeration rate, accurately control the aeration rate, improve compost fermentation
efficiency and promote compost maturity.

Therefore, in order to improve the ventilation technology in the aerobic composting
process and accurately control the aeration rate, a prediction model of aeration oxygen
based on CGA-BP neural network was established. The standard BP neural network itself
has defects such as slow convergence speed and a local infinitesimally small and complex
structural analysis [14,15], while the genetic algorithm is better at solving and optimizing
nonlinear and multi-dimensional space problems [16] and clone selection algorithms are
faster at obtaining optimal or feasible solutions. In this paper, the three algorithms are
combined to establish a prediction model of aeration oxygen supply based on a CGA-BP
neural network to predict the next required aeration oxygen supply and calculate the
aeration rate. The prediction data will be presented in the prediction system in real time
to provide a plan for the next aeration rate, improving the experimental efficiency and
reducing the experimental time.

2. Materials and Methods
2.1. Instruments and Equipment

The experimental aerobic composting equipment was placed in the scientific and
technological achievements demonstration greenhouse of the Beijing Academy of Agricul-
tural and Forestry Sciences. The experiment was conducted with raw materials for aerobic
composting. Cow manure, biogas residue, chicken manure and corn stalks were provided
by the Haihua biogas Plant in Miyun District, Beijing.

The experimental aerobic composting plant is mainly divided into three units (Figure 1):
aerobic fermentation, measurement and control, and aeration. The remote monitoring
system was used to monitor the temperature, humidity, oxygen concentration, room tem-
perature, pH and EC in the aerobic fermentation process. The parameters that changed in
the aerobic fermentation process were collected by the sensor in the fermentation tank. A
controller was placed on site to acquire and transmit sensor data. Data were then uploaded
to the monitoring interface via the Internet.
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Figure 1. Schematic diagram of aerobic composting experiment unit.

2.2. Data Sources and Selection

The experimental data were selected from the reactor data of no. 1 cow manure and
straw of the Haihua Biogas Plant from 4–22 January 2019. Composting is a complex physical,
chemical and biological process in which bacteria and fungi degrade organic matter under
certain conditions [17]. The activities of micro-organisms such as bacteria and fungi are
affected by various factors and lead to changes in the composting process [18]. Factors
mainly include the temperature, pH, moisture content, ventilation and oxygen supply
conditions of composting materials, carbon/nitrogen ratio and so on [19]. Therefore, the
input data of the experiment were room temperature, oxygen concentration, temperature,
pH and EC, and the output data were the amount of aeration. The initial physicochemical
parameters of compost raw materials are shown in Table 1.

Table 1. Initial physical and chemical parameters of compost raw materials.

Material Moisture Content/% C/N pH Value EC/(µS·cm)

Cow dung 57.34 18.18 7.0 3864
Corn straw 5.08 49.34 8.3 2986

Cow manure + corn straw 62.89 21.27 7.6 4125

When selecting the sample data, the lost data were repaired and the outliers were
removed. Finally, a total of 218 sets of data were selected as data samples; 218 sets of data
were randomly selected as input data, and 50 sets of data were selected as test samples,
calculate error analysis, and use Microsoft Excel (v.2304 Build 16.0.16327.20200, Microsoft,
Redmond, DC, USA) to optimize the image of the aeration oxygen supply prediction
model [20].
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3. Establishment and Evaluation of the Aeration Oxygen Supply Prediction Model
3.1. Data Preprocessing

To improve the training rate and operation accuracy, data should be normalized due
to the large numerical differences between different dimensions in the original data [21]. To
evenly distribute the data, the mapminmax function is adopted in this paper to normalize
the original data. The normalization formulas are shown as follows:

inputn =
2(input−mininput)
maxinput−mininput

− 1 (1)

outputn =
2(output−minoutput)
maxoutput−minoutput

− 1 (2)

where input and output are input and output samples of the original data, respectively;
mininput and maxinput are the minimum and maximum values of the input, respectively;
minoutput and maxoutput are the minimum and maximum values of the output, respec-
tively; inputn and outputn are the normalized input and output samples, respectively,
namely median values of the influencing factors. At this time, the data fitted by BP neural
network are still normalized data, thus the mapminmax function is needed to reverse the
normalization processing of the experimental data to obtain normal values.

3.2. Design of BP Neural Network

To construct a BP neural network model, appropriate parameters need to be deter-
mined. In this paper, each parameter of the BP neural network was set, which mainly
included the number of network layers, the number of neurons in each layer, training times
and the training model.

3.2.1. Design the Number of Network Layers

The single hidden layer runs faster when the BP neural network can meet the accuracy
requirements of the network. Therefore, the basic structure of the prediction model with a
three-layer network structure is shown in Figure 2:

Figure 2. BP neural network structure diagram.

3.2.2. Selection of Neuron Number in Each Layer

The factors affecting the aeration oxygen supply of this experimental data are tem-
perature, humidity, oxygen concentration, room temperature, pH and EC value, and these
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six-dimensional data are used as the input values for predicting the aeration oxygen
supply, so the number of neurons in the input layer and output layer were set as 6 and
1, respectively.

Since too few neurons in the hidden layer cannot establish a complex nonlinear
relationship, too many will consume a large amount of learning time, the trial-and-error
method is used to determine the number of nodes in the hidden layer of the BP neural
network, and the number of nodes in the hidden layer corresponding to the minimum
network error is selected. The commonly used empirical formula is shown as follows:

n =
√

m + l + α (3)

where α is an integer between 1 and 13. The number of neurons in the hidden layer is
determined in the range of 3 to 15 according to the formula. In the case of the same sample
set and training times, network errors corresponding to the number of nodes in different
hidden layers are shown in Table 2 and Figure 3.

Table 2. Network errors corresponding to the number of nodes in different hidden layers.

Hidden Layer Nodes Network Training Error Hidden Layer Nodes Network Training Error

3 0.0245790 10 0.0020776
4 0.0167170 11 0.0073227
5 0.0075307 12 0.0052863
6 0.0080417 13 0.0010084
7 0.0040497 14 0.00061092
8 0.0151270 15 0.0009366
9 0.0047590

Figure 3. Network training errors corresponding to the number of neurons in different hidden layers.

According to the simulation results in Figure 3, when the number of hidden layer
nodes reaches 14, the training error reaches the minimum of 0.00061092. Therefore, the
number of hidden layer nodes of the neural network designed in this paper is 14.

Based on the above analysis, the number of nodes in the input, hidden and output
layers of the experimental model are 6-14-1, respectively, and the prediction model of 6-14-1
for aerobic composted aeration based on the BP neural network is established, as shown
in Figure 4:
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Figure 4. Prediction model of aerobic composting aeration based on BP neural network.

3.3. Parameter Setting of Genetic Algorithm

The parameters of fitness function, population size, number of iterations, crossover
probability and mutation probability were set as below during the implementation of the
genetic algorithm.

3.3.1. Fitness Function

The fitness function can determine the probability of an individual being selected [22].
In this experiment, the reciprocal of the squared error of the test data was used as the
fitness function:

f(x) =
1

SE
=

1
sse
(
T̂ − T

) =
1

∑n
i=
(
t̂i − ti

)2 . (4)

where T̂ =
{

t̂1, t̂2, . . . t̂n
}

is the prediction value for the test set; T = {t1, t2, . . . tn} is the
true value of the test set; and n is the number of samples in the test set.

3.3.2. Population Size

The population size can affect the performance of the genetic algorithm to some
degree. The population size was determined by the optimized accuracy of the algorithm.
The simulation results are shown in Table 3:

Table 3. Performance of optimization algorithm corresponding to different population sizes.

Population Size Optimal Accuracy Population Size Optimal Accuracy

10 0.02013 50 0.017293
20 0.0082072 60 0.0096451
30 0.016153 70 0.010597
40 0.0036939 80 0.010084

According to the experimental optimization accuracy in Table 2, when the population
size is 40, the experimental effect is better.
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3.3.3. Number of Iterations

Depending on the number of iterations, the accuracy achieved by the genetic algorithm
when converging will be different. Thus, it is necessary to find a balance between the
accuracy of the algorithm and the efficiency of the system. The difference in algorithm error
is analyzed for different numbers of iterations. The simulation results are shown in Table 4:

Table 4. Algorithm errors corresponding to different numbers of iterations.

Iterations Algorithm Error Iterations Algorithm Error

10 0.026475 50 0.0038662
20 0.0048512 60 0.0090891
30 0.0036939 70 0.010336
40 0.0054137 80 0.013127

The algorithm error curve results corresponding to different numbers of iterations are
shown in Figure 5:

Figure 5. Changes in number of iterations.

It can be seen from Figure 5 that when the number of iterations is 30, the minimum
algorithm error is 0.0036939. Thus, the number of iterations is set to 30.

3.3.4. Crossover Probability

The size of the crossover probability will indirectly affect the performance of the
algorithm [23]. When the crossover probability is high, each generation can be fully crossed,
but there will be a large generation gap, and the good patterns in the group will also be
destroyed. When the crossover probability is low, the generation gap decreases, but the
evolutionary process will slow down, which may lead to the stagnation of the genetic
search. Therefore, the crossover probability is generally limited to between 0.2 and 0.99.
The corresponding algorithm errors obtained when the number of iterations is linearly
correlated with the crossover probability are shown in Table 5:

From Table 4, when the number of iterations is linearly correlated with the crossover
probability, the algorithm error is small when the crossover probability is 0.8.

Table 5. Algorithm errors corresponding to different crossover probabilities.

Crossover Probability Algorithm Error Crossover Probability Algorithm Error

0.2 0.0113020 0.6 0.0077799
0.3 0.0083982 0.7 0.0082414
0.4 0.0131170 0.8 0.0036939
0.5 0.0116900 0.9 0.0101390
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3.3.5. Variation Probability

The size of the mutation probability will affect the birth of new individuals. When the
mutation probability is high, it is easy to produce new individuals, but it may also change
the structure of the existing pattern [16]. If the mutation probability is too low to produce
new individuals, the convergence performance of the algorithm will be reduced. Generally,
this is limited to between 0.0001 and 0.1, with the initial setting at 0.1.

3.4. Prediction Model of Aeration Oxygen Supply by GA-BP Neural Network

Since the standard BP neural network is prone to issues such as falling into local
extremum and having slow convergence, this paper combines it with genetic algorithms,
which are better at solving nonlinear and multidimensional space optimization problems,
to establish an aeration oxygen supply prediction model based on a GA-BP neural network.
The genetic algorithm optimization of the BP neural network mainly optimizes the initial
weights and thresholds [24] and is noted as a GA-BP neural network model, through selec-
tion, crossover and mutation operations, to obtain optimal parameters for the assignment
and training of the BP neural network, which ultimately delivers the most optimal solution
for the predictive oxygen aeration model based on GA-BP neural network. This algorithm
process is shown in Figure 6:

Figure 6. Algorithm flow chart.
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3.5. BP Neural Network Based on Improved Genetic Algorithm Optimization

Since the traditional genetic algorithm generally searches for feasible solutions, the
convergence speed is relatively slow, the search ability is poor and it is easy to fall into the
local optimum, which is the “premature” problem. In order to improve the above problems,
make the optimized network converge faster and more accurately and improve the global
search ability of the genetic algorithm, the traditional genetic algorithm is improved in the
clone selection algorithm.

3.5.1. Clone Selection Algorithm

In 2002, based on the immune mechanism of the biological immune system, De Castro
proposed the clonal immunization algorithm, abbreviated as CLONALG [25]. The core of
the clonal selection algorithm is the use of the proportional replication operator and the
proportional variation operator.

At the beginning of the algorithm, two subpopulations of H antibodies are generated
at random, which can be divided into memory cells and remaining populations. Then, the
affinity between the antigen and the antibody is calculated. The c antibodies with high
affinity are selected for replication in set P to form set C. This process is cloning. High-
frequency mutation is performed on set C to avoid the local optimum of the algorithm, and
the antibodies are selected in the mutated population Cn. The above process is repeated
until the algorithm satisfies the conditions.

3.5.2. Optimization of BP Neural Network Based on Clonal Genetic Algorithm

Due to the slow convergence speed of the standard BP neural network, the prediction
accuracy is low and it is easy for the genetic algorithm to fall into local optimum, which
has great limitations. In contrast, the clonal selection algorithm has the advantages of par-
allelism and adaptivity, which can maintain the diversity of the population and search for
the optimal solution or feasible solution faster. The clone selection algorithm maintains the
diversity of the population by adopting the proportional replication operator and propor-
tional variation operator, while using the ability to balance the global and local search [26]
of memory units, and optimizing the parameters of BP neural network and GA. Therefore,
a BP neural network model based on clonal genetic algorithm optimization is established
to optimize BP neural network, which is noted as the CGA-BP neural network model.

The flow chart of the BP neural network optimized based on the clonal genetic algo-
rithm is shown in Figure 7.

Through the above simulation experiments on the parameters of the BP neural network
and GA, the parameters of the predicted aeration oxygen supply model are shown in
Table 6.

Table 6. Parameter Settings of GA-BP neural network.

Parameter Name Parameter Value Parameter Name Parameter Value

Network layer numbers 3 Cloning factor 0.6
Input layer numbers 6 Population size 40

Hidden layer numbers 14 Iterations 30
Output layer numbers 1 Crossover probability 0.8

Vector 0.1 Variation probability 0.1
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Figure 7. Flow chart of BP neural network algorithm optimized by cloning genetic algorithm.

3.6. Model Evaluation Index

To comprehensively and accurately evaluate the performance of the aeration oxygen
supply prediction model, MAE, MAPE and MSE were selected as evaluation indexes in
this paper [20,26,27]. The expression of each evaluation index is

MMAE =
1
N

N

∑
i=1
|yi − ŷi| (5)

MMAPE =
1
N

N

∑
i=1

|yi − ŷi|
yi

(6)

MMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (7)

yi—real value;
ŷi—predicted;
N—number of test samples.

4. Prediction Results and Discussion
4.1. Model Prediction Results

Figure 8 shows the comparison between the predicted and actual values of the standard
BP algorithm, GA-BP neural network algorithm and CGA-BP neural network algorithm.
It can be seen visually that the trend of variation in the aeration oxygen supply of the
CGA-BP neural network algorithm, the GA-BP neural network algorithm and the standard
BP algorithm is consistent with the actual changing trend. After the BP neural network
was optimized by the GA, the prediction results were more accurate than those of the
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standard BP neural network, but after the GA-BP neural network was optimized by the
clone selection algorithm, the prediction results were closer to the actual value than the
GA-BP neural network algorithm, and the CGA-BP prediction value was almost the same
as the real value with high accuracy when the real value of aeration is 12.25 min/L.

Figure 8. Comparison of the predicted and true values of BP, GA-BP and CGA-BP.

Figure 9 shows the comparison of the error between the aeration oxygen supply and
the actual value of the three algorithms of the standard BP neural network algorithm, the
GA-BP neural network and the CGA-BP neural network. From Figure 9, we can see that
the prediction error of the GA-BP neural network is much smaller than the prediction
error of the standard BP neural network, and the prediction error of the CGA-BP neural
network is almost 0. Therefore, the improved CGA-BP neural network prediction model
can accurately predict the next aeration oxygen supply.

Figure 9. Comparison of BP, GA-BP and CGA-BP errors.

The prediction results of aerobic compost aeration oxygen supply based on the CGA-
BP neural network show that using six commonly used indicators, such as temperature,
humidity, oxygen concentration, room temperature, pH value and EC, to predict the
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aeration amount further improves the prediction accuracy and improves the aeration
efficiency during the compost fermentation process.

In the past, most studies have used aeration control systems to control the aeration rate.
Through aeration systems, the oxygen content in sewage tanks can be studied. Through
parameter control, the change in oxygen content in the aeration tank does not exceed
0.5 mg/L of soil [28]. Zhao and others analyzed the operation of the precise aeration control
system, indicating that the gas supply volume of the gas supply system has decreased
by 30% [29]. Now, some scholars have introduced modeling methods to control aeration
rate and improve aeration efficiency. Jin established an energy consumption prediction
model using a BP neural network, and used inflow information to predict dissolved
oxygen, providing a reliable basis for the timely scheduling of aeration volume [30]. Tang
established a genetic-algorithm-optimized BP neural network model to predict the aeration
rate of the biochemical tank, and the proportion of test sample data prediction errors
within 5% reached 98.67% [31]. The results of this study show that the prediction accuracy
is improved to 99.65% by using the clonal selection algorithm to optimize the genetic
algorithm and BP neural network.

As can be seen from Table 7, the genetically optimized BP neural network algorithm
has a significant improvement in prediction accuracy over the standard BP neural network
algorithm, with an accuracy of 98.94% for the BP neural network algorithm, 99.26% for
the genetic-algorithm-optimized standard BP neural network and 99.65% for the clonally
optimized genetic algorithm. The MAE, MAPE and MSE of the GA-BP model were 0.083017,
0.0073914 and 0.013188, respectively, and the MAE, MAPE and MSE of the CGA-BP model
were 0.038882, 0.003506 and 0.003373, respectively. The MAE, MAPE and MSE of the GA-
BP model were improved compared with the standard BP model by 29.4913%, 30.1644%
and 53.2490%, and the MAE, MAPE and MSE of the CGA-BP model were improved by
53.1638%, 52.5638% and 74.4260%, respectively, compared with the GA-BP model. This
shows that the prediction accuracy of the CGA-BP algorithm is higher than that of the GA-
BP algorithm and the BP neural network algorithm, and the error between the predicted
and true values of the CGA-BP neural network model is basically zero, which can predict
the aeration oxygen supply well and provide data for the next aeration.

Table 7. Evaluation indexes of BP and GA-BP algorithms.

Algorithms MAE MAPE MSE

BP 0.117740 0.0105840 0.0282090
GA-BP 0.083017 0.0073914 0.0131880

CGA-BP 0.038882 0.003506 0.003373

4.2. Parameter Changes during Aerobic Composting Fermentation Process

This experiment used the CGA-BP model to predict the aeration oxygen supply for
compost fermentation, and used it as the experimental group. The other group is the
control group without aeration, which analyzes the changes in moisture content, C/N,
pH and EC value during the aerobic composting fermentation process. By comparison,
it can be concluded that the CGA-BP aeration oxygen supply prediction model can pro-
mote faster and more complete fermentation of compost, and improve the efficiency of
compost maturation.

(1) Moisture content

The moisture content of aerobic compost is the main factor affecting the process of
aerobic composting and the rate of organic matter decomposition, and its changes are
mainly the result of the combined action of organic matter oxidation and decomposition
to produce water and ventilation to remove water. The overall moisture content showed
a decreasing trend until the end of the composting reaction. The moisture content of the
control group and the experimental group decreased by 11.91% and 19.54%, respectively.
As shown in Figure 10, in the early stage of composting, due to the continuous increase in
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pile temperature, bacterial activity increases and absorbs a large amount of water. After
the evaporation of water during the high-temperature period, the rate of decrease in
moisture content significantly slows down, and the microbial metabolism rate decreases.
The experimental group aerates the compost to fully react, resulting in a more significant
decrease in moisture content. At this point, the compost reaches a more mature state.

Figure 10. Moisture content change curve.

(2) C/N

C/N plays an important role in the growth and metabolism of micro-organisms in
compost. Low C/N can lead to high salt content and inhibit microbial growth, while high
C/N can lead to substandard nutrient content in compost fertilizers. The C/N change
curve is shown in Figure 11. Comparing the two groups, it was found that the experimental
group showed a gradual decrease in C/N during the composting fermentation process,
which is more conducive to reducing nitrogen loss and promoting compost maturity.

Figure 11. C/N variation curve.

(3) pH

pH is an important parameter that can be used to determine the microbial environment
and is also one of the many factors that evaluate the maturity of aerobic compost. Research
has shown that composting fermentation can proceed efficiently and smoothly when the
pH is between 6 and 9, as shown in Figure 12, showing the dynamic changes in pH values
during various stages of aerobic composting fermentation. The pH value curves of the two
groups showed a similar trend of change, showing an overall upward trend, rising first and
then decreasing, and then rebounding to a stable range between 7.5 and 8.5. The overall
fluctuation range of the pH value of the experimental group is larger than that of the control
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group, but it tends to stabilize faster than the control group until the compost fermentation
is completed. The pH values of the control group and the experimental group are 8.25
and 8.2, respectively, meeting the commonly considered compost maturity standards (pH
8.0–9.0) [32].

Figure 12. PH value change curve.

(4) EC

The size of the EC value is directly related to the salt concentration in the aerobic
composting fermentation process. Generally speaking, the smaller the EC value, the more
harmless it is for plants. The dynamic changes in EC values are shown in Figure 13. The
EC values of the two groups do not change much. During each stage of composting
fermentation, the metabolic rate of micro-organisms increases, and the decomposition of
organic matter generates a large amount of mineral salts, which increases the EC value.
As ammonia volatilizes, the EC value also decreases. The experimental group can fully
react in the early stage of composting, and then continue stable fermentation, effectively
promoting maturity.

Figure 13. EC value variation curve.

5. Conclusions

Aiming at the problems of low prediction accuracy and poor aeration efficiency in
aerobic composting, this paper trains the neural network with normalized data, adjusts
various parameters to suit the model and establishes an aeration oxygen supply prediction
model based on a GA-BP neural network for aerobic composting. The simulation was
conducted by MATLAB toolbox functions. The comparison of the experimental results
shows that by optimizing the BP neural network through GA, the optimal weights and
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thresholds can be obtained. Thus, it solves the problem that the BP neural network is prone
to local extremes and improves the convergence speed as well as the prediction accuracy of
the model. The clonal selection algorithm optimizes the genetic algorithm and establishes
the CGA-BP neural network model, which has a more accurate prediction effect and can
better predict the aeration oxygen supply in the composting fermentation process.

The results indicate that the CGA-optimized BP neural network method used in this
article has good predictive ability and practical value in predicting aeration oxygen supply.
The aeration oxygen supply predicted by the CGA-BP model can effectively promote the
compost ripening process, improve compost fermentation efficiency and further determine
the required aeration oxygen supply during the aerobic compost ripening process.
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