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Abstract: This paper focuses on the combustion mechanism of furan-based fuels synthesized from
lignocellulose. The fuel is a binary alternative fuel consisting of 2-methylfuran and 2,5-dimethylfuran
derived from furfural. The key reactions affecting the combustion mechanism of this fuel were
identified via path analysis, and the initial reaction kinetic mechanism was constructed using a
decoupling methodology. Then, a genetic algorithm was used to optimize the initial mechanism.
The final skeleton mechanism consisted of 67 species and 228 reactions. By comparing experimental
data on ignition delay, component concentration, and laminar flame velocity under a wide range of
conditions over various fundamental reactors, it was shown that the mechanism has the ability to
predict the combustion process of this fuel well.

Keywords: skeleton mechanism; genetic algorithm; biomass fuel

1. Introduction

The severe environmental situation has forced countries to lay out new energy strate-
gies to achieve carbon neutrality. There are still many factors that drive us to seek carbon
reduction solutions through renewable energy [1]. Among the renewable energy sources,
the development of biomass fuels has been anticipated [2]. Compared with the first gen-
eration of biofuels extracted from food crops such as sugar cane and corn [3], the second
generation of biofuels synthesized from waste crops, such as corn cobs and other lignocellu-
lose [4], has the advantage of non-competitiveness amongst people for food and is similar
in fuel properties to that of traditional fuels. Moreover, the fuel consumption requirements
for such fuels should be reduced in terms of greenhouse gas emissions. In addition, the
platform molecules [5] possessed by such biofuels are able to be used for the preparation
of fuels or high-value-added chemicals, which are highly regarded for their considerable
flexibility and can effectively reduce commercial risks. Agricultural waste, such as corn
cobs, is the raw material for biofuel in this study, due to the abundance of corn around the
study area.

Currently, research on platform molecular compounds prepared from lignocellulosic
feedstocks has focused on process improvement for catalytic synthesis [6]. Mailaram
et al. [7] studied furan fuels with other biomass compounds as fuel additives. In the
study by Khemthong et al. [8], the conversion process of various lignocelluloses and
hemicelluloses as renewable energy sources such as biofuels was demonstrated in detail,
with the advantages of furfural as a biomass-derived platform being noted in particular.
Recently, Jin et al. [9] developed the detailed kinetic reaction mechanism of furfural as
a fuel based on the component concentration variation in a jet-stirred reactor (JSR) and
laminar combustion rate. In the course of their study, they suggested the possibility of the
combustion behavior of furan-based biofuels derived from furfural as a feedstock. Based
on the biofuel prepared during the group’s pre-process research, an appropriate reaction
mechanism will be constructed in this paper for subsequent research.
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There are many corresponding bio-derived fuels [10], and the current common ones in-
clude 5-hydroxymethylfurfural (HMF) [11], 2-Methylfuran (MF) [12], and 2,5-dimethylfuran
(DMF) [13,14]. The collaborators for this study are the ones who prepare furfuryl alcohol
mainly from furfural [15], and furfuryl alcohol is further synthesized into the high-value-
added products MF and DMF using copper–silicon-based catalysts [16]. As shown in
Figure 1, the synthesis process is a pre-process study between the group and the partner,
which is not reflected in this paper. However, the application of such a method of fuel
preparation falls under the category of carbon sink [17]. Therefore, this study intends
to construct a skeletal chemical reaction mechanism for binary alternative fuels derived
from the platform molecule furfural, which consists of MF and DMF, in order to study
their combustion characteristics. Thus, the whole research project was completed in a
closed loop.
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2. Initial Mechanism

Coupling the C0-C3 sub-mechanism [18] with the fuel sub-mechanism using the
decoupling methodology [19], this study proposes the construction of a skeleton mechanism
that can respond to the combustion characteristics of DMF and MF based on the DMF
sub-mechanism constructed by Somers et al. [20] and the MF sub-mechanism constructed
by Tran et al. [21].

2.1. Reaction Path Analysis

Based on the pathway and reaction coupling sensitivity analysis, it was determined
that the initial skeleton mechanism contains 5 major categories and 22 sub-categories of
core reactions. The MF-DMF skeleton sub-mechanism reaction types are categorized as
shown in Table 1.

2.2. Construction of the Initial Mechanism

In this study, the decoupling methodology was used to construct the chemical reaction
mechanism of binary alternative fuels composed of MF-DMF. As shown in Table 1, the
MF-DMF sub-mechanism mainly contains 22 types of aggregate and special reactions,
which are dominated by C4+ reactions with a few C2-C3 reactions. As shown in Figure 2,
the MF-DMF sub-mechanism is coupled with the C2-C3 simplified mechanism and the
C0-C1 detailed mechanism to form the initial chemical reaction mechanism of the binary
alternative fuel, which is the decoupling methodology.
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Table 1. Reaction categorization.

Major Categories Sub-Categories Reaction Number

Pyrolysis/decomposition
Fuel decomposition r01

R decomposition r02
Intermediate pyrolysis r03

Hydrogenation/
dehydrogenation

C2 hydrogenation r04
C3 hydrogenation r05

Fuel dehydrogenation r06
R dehydrogenation r07
C3 dehydrogenation r08

Oxidation/synthesis

R + O2 = ROO r09
R + O = RO r10

R + HO2 = RO + OH r11
C2 synthesized with OH r12
C2 synthesized with CH3 r13

Isomerization R-isomerization r14

Special consumption

5-Methyl-2-formylfuran consumption r15
Diformylfuran consumption r16

2-Methyl-5-ethylfuran consumption r17
2-Ethyl-5-ethylfuran consumption r18

2-Ethylfuran consumption r19
Vinyl-furan consumption r20

Furfuryl alcohol consumption r21
Dicarbonyl compounds consumption r22
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In this study, the initial mechanism mentioned above was combined and simplified via
global sensitivity analysis for some of the reactions using the set sum method. As shown in
Table 1, the five major categories in the initial mechanism were combined and simplified
into a lumping solution via global sensitivity analysis. These mainly included the lumping
of pyrolysis/cracking reactions into r02 reactions, the hydrogenation/dehydrogenation
reactions being represented by r04 and R06 reactions, the oxidation/synthesis reactions
being mainly expressed by r11 and r12, eliminating the isomerization reactions, with only
two types of intermediate product reactions, r15 and r17, being retained to replace all the
special consumption reactions of the mechanism. In this way, the reactions of the MF-DMF
sub-mechanism in the initial mechanism of the binary alternative fuel were further reduced
to seven lumped types.

The reaction pathway of MF-DMF sub-mechanism is summarized in Figure 3. In
order to characterize the combustion accurately, the MF part is coupled to the C3-C0 sub-
mechanism through the following paths: dehydrogenation, oxygenation, re-dehydrogenation,
decomposition of CO, and cleavage to small molecules. The pathway is dominated by
R1-R13 and R25 reactions. It can also synthesize P14O3J directly with OH, which later
cleaves to methyl vinyl ketone (MVK), which further reacts with hydrogen groups to
form C3-C0 molecules. The pathway is dominated by R14-R15 reactions. The reaction
pathway of DMF is a bit more complex in the mechanism. Firstly, MF can be synthesized by
hydrogenation onto DMF, which is the response R24, and then the MF pathway can be used
for carbon reduction. Secondly, DMF can also react with OH directly to form MVK, and
then the MVK pathway can be used. This path consists of R43 and R16. This pathway is a
lumping reaction within the mechanism of this study, which represents multiple reactions
such as OH-group, isomerization, and decomposition reactions. Finally, the important
intermediate DMF252J is generated from DMF by dehydrogenation. This contains multiple
reactions, as follows R17, R16-R31. The intermediate is divided into three pathways through
DMF252OJ, CHE21O4J, and M2E5F, via MF25CHO, P14DE1J, and C5H6, until coupling
with the C3-C0 sub-mechanism of the decoupling methodology occurs. The main reactions
of these paths are shown in Figure 3. In this way, the initial chemical reaction mechanism
of the binary alternative fuel was constructed. The reactions shown in Figure 3 are listed
below. The corresponding reactions are listed in Table 2.
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Table 2. The reactions of MF-DMF sub mechanism.

mf + h = furylch2 + h2 1.07e + 04 2.730 3.55e + 03 (R01)

mf + oh = furylch2 + h2o 3.26e + 04 3.133 2.16e + 03 (R02)

mf + ch3 = furylch2 + ch4 1.22e−03 4.290 4.48e + 03 (R03)

mf + o2 = furylch2 + ho2 1.60e + 03 3.340 3.47e + 04 (R04)

mf + o=furylch2 + oh 1.75e + 10 0.700 5.90e + 03 (R05)

mf + ho2 = furylch2 + h2o2 5.10e + 00 3.780 1.23e + 04 (R06)

ho2 + furylch2 = furylch2o + oh 3.40e + 35 −6.150 1.60e + 04 (R07)

ho2 + furylch2 = furylch2o + oh 1.97e + 40 −8.540 4.80e + 03 (R08)

furylch2o = furylcho + h 9.74e + 09 1.440 1.73e + 04 (R09)

furylcho + oh = furylco + h2o 7.79e + 13 0.000 0.00e + 00 (R10)

furylcho + ho2 = furylco + h2o2 3.00e + 13 0.000 1.10e + 04 (R11)

furylco = furyl-2 + co 1.59e + 15 0.000 2.95e + 04 (R12)

furyl−2 + o2 = ch2chco + co2 4.33e + 17 −1.390 1.00e + 03 (R13)

mf + oh = p14o3j 1.11e + 05 2.450 −7.25e + 03 (R14)

p14o3j = hco + mvk 1.07e + 02 2.800 4.43e + 03 (R15)

mvk + h = c2h4 + ch3co 4.62e + 11 0.510 2.62e + 03 (R16)

dmf25(+m) <=> dmf252j + h(+m) 4.75e + 15 0.070 8.57e + 04 (R17)

dmf252j = che21o4j 7.70e + 13 0.157 4.02e + 04 (R18)

che21o4j = p14de1j + co 8.17e + 08 1.360 4.38e + 04 (R19)

che21o4j = chde241o + h 2.82e + 11 1.020 4.88e + 04 (R20)

chde241o <=> c5h6 + co 1.60e + 41 −7.815 5.77e + 04 (R21)

p14de1j = c2h2 + c3h5 3.19e + 10 0.000 6.96e + 03 (R22)

p14de1j = c5h7 3.56e + 10 0.880 1.61e + 04 (R23)

dmf25 + h=mf2 + ch3 5.26e143 −39.13 6.25e + 04 (R24)

mf2 + oh = ch3co + c2h3cho 1.11e + 04 2.450 −7.25e + 03 (R25)

dmf25 + h = dmf252j + h2 2.95e + 06 2.360 4.48e + 03 (R26)

dmf25 + oh = dmf252j + h2o 1.02e + 04 3.130 2.16e + 03 (R27)

dmf25 + ch3 = dmf252j + ch4 1.26e + 03 3.020 7.42e + 03 (R28)

dmf25 + o2 = dmf252j + ho2 6.25e + 13 0.000 3.53e + 04 (R29)

dmf25 + o = dmf252j + oh 1.26e + 12 0.000 3.00e + 03 (R30)

dmf25 + ho2 = dmf252j + h2o2 1.98e + 00 3.780 1.23e + 04 (R31)

dmf252j + ho2 = dmf252oj + oh 5.00e + 12 0.000 0.00e + 00 (R32)

dmf252j + ch3o2 = dmf252oj + ch3o 2.00e + 13 0.000 0.00e + 00 (R33)

dmf252oj <=> mf25cho + h 1.13e + 12 0.220 3.38e + 03 (R34)

mf25cho + ch3 = mf25cjo + ch4 5.79e−15 8.560 −2.47e + 02 (R35)

mf25cho + ho2 = mf25cjo + h2o2 7.05e + 00 3.810 9.25e + 03 (R36)

mf25cjo = mf25j + co 4.00e + 14 0.000 2.95e + 04 (R37)

mf25j = c3h4 + hcco 1.02e + 14 0.000 2.69e + 04 (R38)

dmf252j + ch3 = m2e5f 1.25e + 13 0.000 0.00e + 00 (R39)

m2e5f + ch3 = m25jef-a + ch4 2.26e + 03 2.890 5.77e + 03 (R40)

m25jef-a + ho2 => mf25cho + oh + ch3 5.00e + 12 0.000 0.00e + 00 (R41)

m25jef-a + ch3o2 => mf25cho + ch3o + ch3 5.00e + 12 0.000 0.00e + 00 (R42)
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Table 2. Cont.

dmf25 + oh = mvk + ch3co 2.21e + 04 2.450 −7.25e + 03 (R43)

c5h7 + o2 = c5h6 + ho2 1.30e + 15 −1.070 9.53e + 03 (R44)

c5h6 + o=c5h5 + oh 4.77e + 04 2.700 1.11e + 03 (R45)

c5h6 + oh = c5h5 + h2o 3.08e + 06 2.000 0.00e + 00 (R46)

c5h6 + o => c2h4 + c2h2 + co 3.89e + 08 1.360 8.87e + 02 (R47)

c5h5 + oh <=> c5h4oh + h 3.50e + 57 −12.18 4.84e + 04 (R48)

c5h5 + o=> c2h2 + c2h3 + co 9.20e + 13 −0.170 4.40e + 02 (R49)

c5h4oh <=> c5h4o + h 2.10e + 13 0.000 5.40e + 04 (R50)

c5h4o => c2h2 + c2h2 + co 5.70e + 32 −6.760 6.85e + 04 (R51)

c5h4o => c2h2 + c2h2 + co 6.20e + 41 −7.870 9.87e + 04 (R52)

Note: The above format is the Chemkin adaptation. Specific content can be found in the Supplementary Materials.

3. Optimization Mechanism with Genetic Algorithm

In this subsection, the initial mechanism of the binary alternative fuel is optimized
by the non-inferiority solution ranking genetic algorithm program (NSGA-II), which is
commonly used by the group [22]. The core of optimization lies in the rational adjustment
of the reaction rate coefficient of the MF-DMF sub-mechanism.

3.1. Genetic Algorithm

The optimization principle is to set the rate coefficient of the lumping reaction to
be adjusted as a priority. By comparing the experimental results of similar fuels in the
shock tube (ST) and JSR, which allows the mechanism to simulate ignition and combustion
characteristics of a fuel accurately [23]. As shown in Figure 4, the initial mechanism is
optimized iteratively via the following steps:
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(1) Adjusting the parameters of the Arrhenius equation for the MF-DMF sub-mechanism
in the initial mechanism within a certain range, multiple mechanisms are randomly
generated to constitute the primitive population Gen N.

(2) By invoking the Chemkin-Pro program, the genetic algorithm analyzes the prediction
accuracy of ignition delay (ID) and component concentration (CC) for each mechanism
in the current population and also determines whether to continue the iteration or
to output the results based on the difference between the prediction accuracy of the
upper and lower generations of the population.

(3) If the predicted difference between generations is greater than a threshold, the domi-
nant individuals in the population of the current generation are selected for inheri-
tance. These individuals are subjected to non-dominant stratification and crowding
measures via selection, crossover, and mutation operations, and are ranked in order
of superiority. The multiple new mechanisms thus generated serve as the offspring
population, Gen N + 1.

(4) Then, the calculation of steps (2) and (3) is repeated for Gen N + 1 until the reproduc-
tion of intergenerational difference is not greater than a threshold. Genetic termination
then occurs and the final result is output as the optimal mechanism.

3.2. Optimal Mechanism

The optimization process of this algorithm is expressed in Equations (1)–(3) for the
fitting functions of the ID in ST and the CC in JSR, respectively. Additionally, the optimized
iterative evolution process is represented by a Pareto front [24] diagram as shown in
Figure 5.

f ID =
N1

∑
i=1

∣∣∣∣∣τ′i − τ0
i

τ0
i

∣∣∣∣∣ (1)

fCC =
N2

∑
j=1

N3

∑
k=1

∣∣∣∣∣C′j,k − C0
j,k

Cavg
j,k

∣∣∣∣∣ (2)

Cavg =
Cy + Cmax

2
(3)

where f ID and fCC represent the prediction accuracy fitting functions of the skeleton
mechanism to ID and CC, respectively; τ represents the ignition delay; C represents the
concentration of the substance component; the upper corner markers 0 and ‘ represent the
experimental and predicted values, respectively; the lower corner marker i represents the
ith ignition delay; the subscript j represents the jth component; the subscript k represents
the kth temperature measurement point for that component; N represents the total amount
of data, and the subscripts 1, 2 and 3 are used to indicate the ID, CC and measurement
points in JSR, respectively. Cavg

j,k in Equation (2) is obtained from Equation (3), where the
subscript y represents the experimental concentration of the yth component at a certain
temperature and the subscript max represents the maximum experimental concentration of
the component at the same temperature.

If the above optimization process also has multiple sets of parallel experimental results,
an additional set of merging operations for parallel experimental results is required.

Figure 5 shows the comparative results of the Pareto fronts for the 100th, 200th, 500th,
750th and 1000th generations in the genetic algorithm optimization. As seen in Figure 5, the
mechanism converged to the optimal Pareto front at the 750th generation as the number of
generations increased. Instead, further iterations tended to lead to biased iteration results,
as shown in the 1000th generation. This has been mentioned in many studies [25,26], and
this study suggests that it is possible that a flawed elite selection procedure led to sampling
errors that affected the iterative robustness [27]. For this study only, the optimization
results of the 750th generation can be used for subsequent simulations, which possess more
desirable convergence.
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4. Validation of the Mechanism

This study focuses on the development of second-generation biomass fuels based on
furfural-derived MF and DMF. Since there is a lack of experimental data on the combustion
of MF-DMF directly, the following validation will be carried out separately for similar
experimental parameters of each substance under a wide range of conditions. The vali-
dation process includes several validation parameters for both substances that reflect the
performance of the mechanism.

4.1. Ignition Delay

The ignition delay is one of the important parameters that describe the combustion
characteristics of a fuel. Its common experimental devices are ST and a rapid compression
machine (RCM) to maintain a stable response test under the operating conditions approxi-
mating the engine. This section will verify the prediction accuracy of the mechanism for
such experimental results.

4.1.1. ID in ST

Due to the lack of experimental results for this alternative fuel, the present verification
compares the experimental results of ignition delay, which was measured in a ST by
Uygun et al. for MF [12] and Somers et al. for DMF [20]. As shown in Figure 6, the
optimized mechanism of the binary alternative fuel has a good prediction accuracy for
the ID of MF and DMF in ST at stoichiometric, temperature intervals of 800–1250 K, with
pressure taken as 20, 40, and 80 bar. The experimental uncertainties are all 20%. The
advantages of this mechanism for the ID prediction of DMF are obvious. Additionally, for
MF, the ID prediction is better in the low-temperature region. However, there are some
deviations in the prediction of the ID for MF under high temperatures and for DMF in the
low-pressure and low-temperature regions.

In this study, the mechanism was also analyzed with predictive accuracy specifically
for two core fuels under low-pressure and high-temperature conditions. On the one hand,
the prediction accuracy of this mechanism for MF at a low pressure and high temperature
is tested; on the other hand, the prediction ability of DMF at an extremely low pressure and
high temperature is further analyzed. The verification results are shown in Figure 7.
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As shown in Figure 7, the optimized skeleton mechanism of the binary alternative fuel
was tested under low pressure for the ID of MF and DMF, respectively. The uncertainty of
these two sets of experimental data is about 21% and 30%, respectively. As mentioned by
Somers et al. [20], the uncertainty is a systematic problem that encompasses fluctuations in
pressure, temperature, measurement methods and other factors. This mechanism describes
the ID of MF mixed with oxygen under a low equivalent ratio better, but there is some bias
in the prediction for the opposite conditions. Meanwhile, the prediction accuracy of the
mechanism for DMF under low-pressure and high-temperature conditions has significant
deviations. Among them, the prediction accuracy is better around 1400 ◦C at low equivalent
ratios and shifts toward the high-temperature region at high equivalent ratios. As mentioned
by Li et al. [30], the above discrepancies are mainly caused by the differences between the
substances and reaction paths in the skeleton mechanism and the actual fuel.

4.1.2. ID in RCM

Usually, the ST mainly studies the ignition characteristics of the fuel at high temper-
atures [31], while the characteristics of the low-temperature region are often analyzed via
RCM [32]. Since RCM belongs to piston isentropic compression heating, it is more informative
in some operating conditions compared to ST with adiabatic non-isentropic heating.

The ID prediction accuracy of DMF/O2 mixtures in RCM using this mechanism is
shown in Figure 8. Considering the experimental uncertainty of 11%, it can be seen that the
mechanism is more accurate at predicting the ignition delay between 830–1100 K, which
is consistent with the piston compression. However, the mechanism shows significant
prediction deviation at low equivalent ratios and temperatures of less than 830 K. Since the
optimization process of the mechanism mainly refers to high temperature, high pressure
and stoichiometric ratios, resulting in some low temperature, low pressure or low equiv-
alence ratio reaction effects are not accurately considered, thus affecting the prediction
accuracy under such conditions. This may be related to the restricted engine ignition
temperature and the characteristics of the binary alternative fuel.

4.2. Verification of Component Concentrations

Another major reference for the optimization mechanism in this study is the prediction
accuracy of the component concentration during fuel combustion. Combined with the
prediction accuracy of this parameter, it can fully reflect the performance of the optimization
mechanism.

4.2.1. Jet-Stirred Reactor

The mechanism was validated by predicting the component concentrations in the
JSR, and the experimental results used for the validation were the data measured by
Somers et al. [20] on the variation of the main component concentrations in the JSR for
DMF/air mixtures. There is an uncertainty of about 15% in these data. Due to a large
number of combustion components, this section only selects the concentrations of some
key components for comparative analysis.

Figure 9 shows the results of the analysis of several major component concentrations
of DMF/air mixtures predicted by the optimization mechanism in JSR compared with
experimental data, including two reactants, two products, and two major intermediates,
with working conditions of ϕ = 0.5–2.0, p = 10 bar and T = 700–1250 K. As can be seen from
Figure 9, the mechanism predicts component concentrations lower than the experimental
values at low equivalence ratios and partially higher concentrations at high equivalence
ratios, while the prediction accuracy is excellent upon the performance of stoichiometry.
When predicting oxygen consumption, this mechanism predicts better under medium to
high equivalence ratios, while the prediction is high under low equivalence ratios. This
mechanism is able to predict both H2O and CO2 well at low to medium temperatures, with
minor deviations at high temperatures. As far as the prediction results of two intermediates,
CO and CH2O, selected in this study, the mechanism is able to predict accurately except for
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a slightly higher prediction of CH2O at low equivalence ratios and low temperatures. Con-
sidering the small order of magnitude of the component concentrations and the uncertainty
of the experimental data [20], this mechanism is basically able to predict the component
concentrations reliably.

4.2.2. Premixed Laminar Flame

In addition to analyzing the component concentration trends during fuel oxidation at
low temperatures in the JSR, this subsection will also compare the evolutionary predictions
for the component concentration after fuel combustion and expect better predictions.

Figure 10 shows the results of the analysis of several major component concentrations
of DMF/oxygen mixtures predicted by the optimization mechanism in a premixed laminar
burner compared with the experimental data, including two reactants, two products,
and one major intermediate, with working conditions of ϕ = 1.0 and 1.7, p = 20 and
40 mbar, and a distance from the burner from 0 to 25 mm. As can be seen in Figure 10,
the mechanism is slightly faulty when predicting the trend of substance concentration in
premixed laminar flames at chemical equivalent ratios and low pressures, while it performs
quite well in predicting the trend of substance concentration in premixed laminar flames
at high equivalent ratios and higher pressures. It is shown that the mechanism can better
predict the changes in component concentrations during fuel combustion in engines.
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Figure 8. Experimental and predicted results of ID obtained for alternative fuel/oxygen mixtures in
a RCM at ϕ = 0.5–2.0 and p = 16 and 30 bar, respectively. (a): ϕ = 0.5; (b): ϕ = 1.0; (c): ϕ = 2.0. The
dots are the experimental results [33] and the lines are the predicted results.
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in a premixed laminar burner at ϕ = 1.0 and 1.7, p = 20 and 40 mbar. (a): DMF; (b): O2; (c): CO2;
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4.3. Laminar Flame Speed

At the end of this study, this mechanism was also used to calculate the premixed
laminar flame speed of the DMF/oxygen mixture at p = 1 atm in an adiabatic burner, and
the predicted results are shown in Figure 11. The uncertainty of the experimental results in
Figure 11 are measured by the following equation [20]:

U = (LFS× 0.015) + 0.4 (4)

where U stands for uncertainty and LFS is the laminar flame speed.
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As shown in Figure 11, this mechanism has excellent accuracy in predicting the laminar
flame speed of DMF/oxygen mixtures at T = 298 and 358 K, where the effect of experimental
uncertainty is almost negligible. Combining the previous analysis with this, it is confirmed
that the mechanism has the ability to predict the combustion characteristics of the binary
alternative fuel.

As shown in Figure 12, the present study constructs mechanisms that describe well
the experimental results of Ma et al. [35] but deviate considerably from the results of Wu
et al. [36] for the same conditions due to the differences of the experimental technique
leading to some differences in experimental data under the same operating conditions. This
measurement uncertainty can make it difficult for the mechanism to fit the laminar flame
speed for each fuel well [37].
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5. Conclusions

The subject of this article is a binary alternative fuel, which consists of furan-based
biomass fuels synthesized from lignocellulose, 2-methylfuran and 2,5-dimethylfuran. A
skeleton mechanism conforming to its combustion characteristics was constructed using
the decoupling methodology, the mechanism was optimized via a genetic algorithm, and
an optimal mechanism consisting of 67 components and 228 reactions was obtained. In this
study, the final optimized skeleton mechanism of the alternative fuel was used to predict
the ignition delay in ST and RCM, the component concentration in JSR and premixed
laminar burner, and the laminar flame speed, respectively. Despite the lack of experimental
data for 2-methylfuran, via a comparison of the available experimental data, it was found
that the mechanism obtained a desirable prediction accuracy at ϕ = 0.5–2.0, p ≥ 20 bar, and
T = 800–1200 K in the several verifications mentioned above. However, some discrepancies
still exist. In this study, the simplification and optimization of the mechanism is focused
on the engine conditions, which may neglect some relatively important reactions at con-
ventional conditions and lead to errors in the experimental values and simulated values
using the skeleton mechanism under non-engine conditions. In the future, more extreme
experimental data can be introduced to improve the performance of the current skeleton
mechanism. In addition, when applicable 2-methylfuran experimental data are available,
the prediction of relevant parameters can be investigated.
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