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Abstract: Because of the existence of composite faults, which consist of both short-out and eccentricity
faults, the characteristics of the output voltage and internal magnetic field of aviation generators
are less different than those of single short-out faults; this causes the eccentricity fault to be difficult
to identify. In order to solve this problem, this paper proposes a fault diagnosis method using
an enhanced fireworks algorithm (EnFWA) to optimize a deep belief network (DBN). The aviation
generator model is built according to the finite element method (FEM), whereas the output of different
combinations of composite faults are obtained using simulations. The EnFWA algorithm is used to
train and optimize the DBN network to obtain the best structure. Meanwhile, an extreme learning
machine (ELM) classifier performs fault diagnosis and classification on the test data. The diagnosis
results show that a pinpoint accuracy can be achieved using the proposed method in the diagnosis of
composite faults in aviation generators.

Keywords: composite fault; enhanced fireworks algorithm; deep belief network; extreme
learning machine

1. Introduction

As the main power supply of the aviation power system, an aviation generator pro-
vides energy for various electrical equipment onboard and ensures a steady functioning of
the power supply system. According to the IEEE Std 493-2007 standard [1] and the statistics
of the Electric Power Research Institute, among all kinds of generator faults, 37% of faults
are related to the stator, 41% are caused by bearing faults, 10% are caused by the rotor, and
12% are caused by other faults [2].

When rotor eccentricity occurs, it is considered static eccentricity when the rotor
rotation center is not the geometric center of the stator but the rotation center is fixed; in
contrast, it is considered dynamic eccentricity when the rotor rotation center is not the
geometric center of the stator and the rotation center is changed. Typical internal faults
of aviation generators are mainly divided into electrical faults, which are represented by
a short-out of stator and rotor windings, and mechanical faults, which are represented
by rotor eccentricity and composite faults [3]. Aiming at addressing the composite fault
of winding short-out and rotor eccentricity at the same time, many scholars have carried
out fault research in different fields. Under normal operation and rotor interturn short-
out conditions, the electromagnetic torque is constant without a harmonic component.
Meanwhile, the static eccentricity of the air gap causes the electromagnetic torque to
produce three times frequency components, and the electromagnetic torque under the
composite fault produces both two and three times frequency components. The trend of
each frequency amplitude is only different when the degree of the short-out or the degree of
eccentricity is aggravated. Different types of single faults will cause different changes in the
harmonic frequency components of the electromagnetic waveform and magnetic density.
Ref. [4] pointed out that the short-out fault between the turns of the stator has a great impact
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on the magnetic field and electromagnetic force of the motor. The vibration displacement
curve of each part of the motor is not a simple superposition of each single fault. However,
the common dynamic eccentricity fault and the influence of the actual generator winding
structure on the fault characteristics were not considered in the study [5]. In [6], an air
gap magnetic field model of a generator was established using an air gap permeability
method. Unbalanced forces that act on the rotor and that are caused by a variety of
faults and rotor vibration characteristics under electromechanical composite fault were
analyzed. Furthermore, the interturn short-out fault of the rotor winding was diagnosed
using the amplitude and phase. To solve the problem of the complicated calculation of
the air gap permeability, in [7], the influence of various fault variables on the magnitude
and direction of the unbalanced magnetic pull of the rotor was analyzed under the dual
factors of static and dynamic eccentricity and short-out between turns of the excitation
winding. Ref. [8] analyzed the stator radial vibration characteristics of a turbo-generator
under normal operation, an air gap static eccentricity fault, a stator interturn short-out
fault and composite fault of air gap static eccentricity, and a stator interturn short-out fault.
The influence of the fault parameters on the stator vibration characteristics was analyzed.
The results show that the tendency of stator radial deformation and the amplitudes of
two, four, and six times frequency will intensify with the increase in the level of the stator
short-out or static eccentricity fault of the air gap. In [9], the degree of the short-out fault
and the location of the short-out fault on the winding was studied under a composite
fault. This study mainly includes the frequency component, amplitude, and vibration
response of the winding to the electromagnetic force. In [10], the electromagnetic force
and mechanical response of the end winding of the generator stator before and after two
single faults and composite mechanical faults were studied in detail. The influence of the
pole number of the generator on the frequency component of the electromagnetic force
and the influence of coil position, eccentric angle, and eccentricity on the electromagnetic
force amplitude were analyzed. The theoretical derivation of generator internal magnetic
field fault characteristics depend on different generator fault air gap permeability and air
gap magnetic potential; thus, the derivation is complicated due to the combinations of
factors, such as the short-out degree, short-out position, and eccentricity. In [11], single
faults and composite faults were comparatively studied from the perspective of spectrum
characteristics based on the rotor line current and stator line voltage. The analysis results
show that the presence of static eccentricity will lead to the same frequency characteristic
in the stator line voltage as the inter-turn short-out fault of the rotor winding, which
may lead to misdiagnosis. Ref. [12] took the stator and rotor core of a generator as the
research object and analyzed the temperature characteristics of the stator and rotor core of a
generator under different operating states. Ref. [13] also studied rotor loss and the variation
of temperature under short-out and eccentricity faults. In [14], a Fourier transform was
used to extract the frequency characteristics of the eccentric vibration acceleration, and
the eccentric mass and eccentric radius were predicted using the k-nearest neighbor and
decision tree algorithm techniques. In [15], a multi-scale, high-order, singular spectrum
analysis was used to extract the singular spectrum entropy characteristics of vibration
signals, and the rotor unbalance fault was diagnosed by combining the genetic algorithm
and variable prediction model techniques.

The DBN shows good feature extraction and generalization ability when it has been
applied for diagnosing motor, transformer, gear box, and other parts [16]. In these studies,
DBN structures are basically defined by experience. Improper number of layers or nodes
will lead to a longer training duration or insufficient training, which are common problems
that exist in deep learning models. In order to reduce the influence of the subjectivity
of network parameters on the diagnosis results, a particle swarm optimization (PSO)
approach was proposed in [17] to optimize the DBN structure and realized a transient
stability evaluation of the power system. It can also improve the fault diagnosis efficiency
of rotating rectifier of aviation generator. In addition, PSO-DBN was also applied to the
feature extraction of bearing and power system fault, prediction of power system load, and
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many other fields [18]. On this basis, a quantum PSO algorithm was used in [19] to optimize
the DBN learning rate and completed analog circuit fault diagnosis. The determination
of DBN parameters by these algorithms enables DBN to extract effective fault features
accurately when processing high-dimensional non-linear data.

Based on this, because of the requirement of reliability and the inadequacy of the
research on the composite fault diagnosis of aviation generator, it is necessary to study and
identify the composite fault of aviation generator precisely. Therefore, a model of three
layers of DBN and a single layer of ELM optimized by EnFWA is proposed in this paper.
In Section 2, an aviation generator and a field-circuit coupling model are built by FEM to
simulate the composite fault of short-out and eccentricity of the aviation generator with a
multi-parallel branch structure. In Section 3, the structure of DBN-ELM and improvement
of FWA are introduced. In addition, there are several combinations of other algorithms and
models to compare with. In Section 4, fault data and labels of different faults used to train
the model are listed. Furthermore, feature extraction and diagnosis of the faults are carried
out. Then, both the result of training set and test set are shown to validate the proposed
model. Finally, a brief conclusion is drawn to summarize the contribution of this paper in
Section 5.

2. Aviation Generator Model
2.1. Aviation Generator Parameters

Rotor of aviation generator usually adopts salient pole structure. In addition to direct
current (DC) field windings, there are damping windings on rotor core which can effectively
improve the output quality. The inner surface of the stator core is uniformly slotted and
embedded into the armature. The aviation generator designed in this paper needs to meet
the rated capacity of 65 kVA, the rated voltage of 407 V, the rated speed of 8000 rpm, and
frequency of 400 Hz. The main parameters of the generator to be calculated include the
pole-pairs number p, stator slots number Z, stator slot area S, stator outer diameter Ds,
rotor outer diameter Dr, gap length dr, core length le f , etc. According to the principle
of generator design, the larger the electromagnetic load A and Bδ are, the smaller the
volume will be. The outer diameter of the stator and the length of the core can be roughly
determined by le f /Ds, as shown in Equation (1):

D2
s le f =

6.1Pem

α0kwmkdpBδ Ans
(1)

where Pem is the rated power, ns is the rated speed, α0 is polar arc coefficient, kwm is
magnetic density waveform coefficient, and kdp is winding coefficient.

According to Equation (2), the number of slots q for each pole can be determined.
Then, the number of parallel branches a, current density J, and standard wire gauge can
be used to determine the number of conductors and the diameter of the wire dφ can be
expressed as Equation (3):

q =
Z

2pm
(2)

dφ =

√
4IN
aJπ

(3)

where m = 3 is the number of phases and IN is the rated current.
According to preliminary calculation and fine-tuning, main parameters of the genera-

tor are shown in Table 1.

2.2. FEM Model of the Aviation Generator

FEM is a numerical technique for obtaining the approximate solutions of partial differ-
ential equations. When solving the problem, the whole region is divided into several small
regions and each part of the region becomes simple. The general process of FEM is model
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creation, condition setting, meshing, and solving. FEM is widely used in electromagnetic
simulation, fluid analysis, and many other fields [20].

Table 1. Main parameters of the generator.

Stator Rotor

Outer diameter/mm 230 Outer diameter/mm 158
inner diameter/mm 160 shaft diameter/mm 53.2
the number of slot 54 core length/mm 103
core length/mm 103 pole pairs 3

material DW315_50 material M27_24G
connection of winding Y turns each pole 50

winding pitch 6 width of pole shoe/mm 58.6
branch 2 height of pole shoe/mm 9.6

conductors per slot 10 pole-core width/mm 22
width of air gap/mm 1 pole-core height/mm 24

wire size/mm 1.219 polar arc coefficient 0.72
resistance of each phase/Ω 0.126 resistance of field winding/Ω 0.44

According to the parameters of the aviation generator in Table 1, the model is created
by FEM and its structure is shown in Figure 1.

Figure 1. Finite element model.

There is power loss in the actual operation, mainly involving copper loss, hysteresis
loss, eddy loss, friction, and wind loss. Among them, friction and wind loss are only
related to rotational speed. In simulation, the rotational speed is constant and the friction
and wind loss is about 300 W. Other losses can be calculated through simulation. While
the field current is 18.6 A, the amplitude of no-load back electromotive force (BEF) is
332.84 V and its RMS value is about 235 V. Total harmonic contents of the BEF is 2.6%,
as shown in Figure 2. Meanwhile, the magnetic field, which is shown in Figure 3, is
not saturated. The no-load characteristic of the aviation generator is obtained. Under
this condition, the generator works near the turning point of the magnetic saturation as
shown in Figure 4.

The field-circuit coupling method is adopted to build the three-phase six-branch
external load circuit, as shown in Figure 5, which can realize the load operation of the
generator. Here, Lphase represents each branch winding, R is the equivalent resistance of
each branch winding, and L is the leakage inductance. Rload and Lload are the load resistance
and inductance of each phase, respectively.
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Figure 2. No-load BEF.

Figure 3. Magnetic density.

Figure 4. No-load characteristic.
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Figure 5. External circuit.

The equivalent leakage inductance L = 0.112 mH and the equivalent resistance R = 0.126 Ω
at the end of each branch of the three-phase windings can be calculated by finite element
simulation. According to the rated output, Rload and Lload of the external load circuit can be
calculated as shown in Equation (4):Zload =

√
R2

load + (ωLload)2

tanϕ = ωLload
Rload

(4)

When the generator runs with resistive load with the resistance value Rload = 2.67 Ω
and the field current I f = 36 A, the generator is operating under rated conditions. The
amplitude of the output voltage is 332.481 V and its RMS value is 235.1 V. While the peak
value of output current is 124.525 A and its RMS value is 88.04 A. The efficiency of the
generator reaches 95.4%. As damping windings can inhibit distortion, the waveform of
the output voltage and current of the generator is close to sine wave as shown in Figure 6.
Because the winding pitch of the generator is y = 2/3, the effect of suppressing the triple
harmonics can be achieved. In addition, affected by the harmonic magnetomotive force,
the phase current mainly contains 6n ± 1(n = 0, 1, 2, ...) harmonic components. So the
harmonic components of the phase current are mainly 5 and 7 times.

(a) (b)
Figure 6. Rated output with resistive load: (a) Voltage. (b) Current.

2.3. Model of Composite Faults

The field-circuit coupling method, considering relative spatial position of short-out
windings, separating out the short-out part from other windings and changing the resis-
tance according to the degree of short-out in the corresponding coupling circuit, can be used
to simulate the short-out fault, as shown in Figure 7. The simulation model for eccentricity
is also shown in Figure 8. As shown in the figure, the gap length on both sides of the rotor
is different.
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Figure 7. External circuit with short-out fault.

Figure 8. Simulation model of eccentricity.

In simulation, the eccentric direction is set as the positive direction of the X-axis. In
the case of static eccentricity, the center of rotation and the geometric center of the rotor
coincide with the X-axis. In the case of dynamic eccentricity, only the coordinate offset of
the rotation center is set.

When the LPhA_L1 branch, which is shown in Figure 7, has 1/9 short-out, the leakage
inductance of the branch winding L and the resistance R will be 0.0996 mH and 0.112 Ω. As
the A-phase effective windings decreases, the amplitude of the A-phase current will also
decrease. In order to balance the three-phase power and keep the terminal voltage constant,
the current amplitude of other two phases will increase resulting in three-phase imbalance.
Since the load carried by the generator is resistive, the distortion of the output voltage and
current are basically the same with only different amplitudes as shown in Figure 9. The
short-out between turns of the stator windings changes the distribution of magnetic density.
Taking 1/9 short-out of the LPhA_L1 branch as an example, the positive part of magnetic
density is severely distorted while the negative part is basically unchanged as shown in
Figure 10.

Figure 9. Output voltage under short-out.
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Figure 10. Magnetic density under short-out.

The time-domain waveform and the frequency components of magnetic density under
static eccentricity at rated load operation are shown in Figure 11. As can be seen in the
figure, the amplitude of each frequency component is increased with the degree of static
eccentricity. Therefore, the time-domain waveform of magnetic density will be distorted
due to static eccentricity.

(a) (b)
Figure 11. Magnetic density under static eccentricity: (a) Time-domain. (b) Frequency-domain.

The time-domain waveform and the frequency components of magnetic density under
dynamic eccentricity at rated load are shown in Figure 12. The trend of magnetic density
is the same as no-load condition and the frequency is newly added with harmonics, such
as 533.3 Hz, 1066.7 Hz, and 1333.3 Hz. The distortion of the time-domain waveform of
magnetic density is aggravated compared with the static eccentricity. Namely, dynamic
eccentricity will do more damage to the stable operation of the generator and the reliability
of aircraft power supply system.

(a) (b)
Figure 12. Magnetic density under dynamic eccentricity: (a) Time-domain. (b) Frequency-domain.

As the stator windings of the generator adopt a = 2 parallel branch structure, the two
branches are located near and far from the eccentric position in space, respectively. So
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the amplitude of the BEF on these two branches of each phase is different. The unbalance
phenomenon of the BEF on these two branches will be offset by parallel branches. The
amplitude of the BEF at the parallel output terminal does not change significantly in several
electrical cycles. When the degree of static eccentricity is 25%, 50% and 75%, the output
voltage of the A-phase parallel terminal at rated load is shown in Figure 13. When the
generator is running at rated load, the output voltage of the parallel terminal increases
because of the static eccentricity. Moreover, due to the influence of the armature reaction,
the fractional harmonics, and the load type, the difference of the output of different fault
degrees is more obvious than that under no-load conditions. In the case of dynamic
eccentricity, the BEF of each branch is superimposed through the parallel structure and the
amplitude of the A-phase BEF does not change significantly within several electrical cycles,
as shown in Figure 14. However, it should be pointed out that the difference between the
BEF of static eccentricity and dynamic eccentricity is imperceptible, which makes it difficult
to distinguish and carry on the fault diagnosis.

Figure 13. Output voltage under different degrees of static eccentricity.

Figure 14. Output voltage under different degrees of dynamic eccentricity.

The three-phase output voltage and magnetic density under 25% dynamic eccentricity
and 1/3 A-phase short-out are shown in Figure 15. The output voltage mainly reflects
the characteristics of short-out. So it is not significantly different from the mere short-
out. On the basis of short-out, the time-domain waveform of magnetic density adds the
harmonics produced by dynamic eccentricity, that is, the magnetic density amplitude
decreases periodically when t = 17.5 ms and 25 ms in Figure 15b.

When the characteristic of the composite fault is similar to the short-out the output
characteristics are difficult to reveal the eccentricity. In addition, it can hardly distinguish
whether the short-out fault caused the rotor eccentricity or the eccentricity occurred before
the short-out. Therefore, the feature extraction and diagnosis of the composite fault are
carried out in the next section.
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(a) (b)

Figure 15. The 1/3 short-out and 25% dynamic eccentricity: (a) Output voltage. (b) Magnetic density.

3. Feature Extraction and Fault Diagnosis Algorithm
3.1. DBN

DBN consists of several restricted Boltzmann machines (RBM) which can be applied to
feature learning, dimension reduction, and classification. Each layer of RBM is trained by
unsupervised training method. The original features of input data are extracted gradually
in the pre-training stage and the result will be used as initial value of the supervised training
probability model with the gradient-based algorithm for reverse parameter adjustment.
Advantages of supervised training and unsupervised training are combined to improve
the learning performance. Figure 16 shows the structure of DBN.

The single RBM shown in Figure 17 is a probabilistic model consisting of visible layer
and hidden layer. Only neurons between different layers are connected through weight
vector w and bias vectors b and c.

Figure 16. Structure of DBN.

Figure 17. Structure of RBM.



Processes 2023, 11, 1577 11 of 19

The function between neurons of two layers is shown in Equation (5):

E(v, h) = −
V

∑
i=1

H

∑
j=1

wijvihj −
V

∑
i=1

civi −
H

∑
j=1

bjhj (5)

where vi and hj are the input and output of each neurons in the two layers, respectively.
wij is the weight of each layer. ci and bj are the bias vectors of two layers, respectively. V
and H are the number of neurons.

The joint probability distribution between the two layers is shown in Equation (6):

P(v, h) =
e−E(v,h)

∑v ∑h e−E(v,h)
(6)

The conditional probability distribution of hidden layer vector h and visible layer
vector v can be expressed by activation probability. Equation (7) represents the forward
training process and Equation (8) represents the reverse reconstruction process.

P(hj = 1|v) = δ(bj + ∑
i

wijvi) (7)

P(vi = 1|h) = δ(ci + ∑
j

wijhj) (8)

The output of the single RBM is a binary variable of 0 or 1, the activation function
adopts Sigmoid as shown in Equation (9):

δ(t) =
1

1 + exp(−t)
(9)

In the training process, derivative of the log-likelihood function of the visible layer is
shown in Equation (10):

∂logP(v, θ)

∂θij
= (vihj)data − (vihj)model (10)

where θ = {w, b, c}, ()data and ()model is the mathematical expectation of P(h|v) and P(v|h),
respectively.

RBM training adopts the contrastive divergence method to solve the error of the
mathematical expectation of the reconstructed data by the gradient-based method until
it reaches the maximum of the iteration. The parameter update method is shown in
Equation (11): 

w(n+1)
ij = w(n)

ij + η[(vihj)o − (vihj)k]

b(n+1)
j = b(n)j + η[(hj)o − (hj)k]

c(n+1)
i = c(n)i + η[(vi)o − (vi)k]

(11)

where η is the learning rate and n is the number of iterations.
After the pre-training, θ is reversely fine-tuned to reduce the error E which is defined

as Equation (12):

E(θ) =
1
M

M

∑
m=1

(||tm − ym||2) (12)

where tm is the label of input data and ym is the output of pre-training.
As the number of iterations is constantly updated, the updating method is shown in

Equation (13):

θ = θ − η
∂E(θ)

∂θ
(13)
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3.2. ELM

As can be seen from Figure 16, DBN network consists of the input layer, multiple
RBMs, and classifiers that constitute the [X−H1−H2−... Hi−T] structure. In this paper, the
extreme learning machine (ELM) is used as the classifier of label layer. The ELM different
from the gradient-based method mainly features the random set of parameters of hidden
layer nodes and the only calculation of the output weight. Non-linearity is introduced into
the system because of the non-linear activation function in the hidden layer. Therefore, the
convergence of ELM is faster than the traditional algorithm. At the same time, random
hidden nodes guarantee the global approximation ability.

During training of ELM, different pairs of input and output (xi,ti) are required. Where
xi = [xi1, xi2, ..., xin]

T ∈ Rn, ti = [ti1, ti2, ..., tim]
T ∈ Rm. The ELM model with the number of

hidden layer nodes L can be expressed as Equation (14):

L

∑
i=1

βih(ωi · xj + bi) = Oj (14)

where h(x) is the activation function of the hidden layer that provides non-linearity for the
system. ωi = [ωi1, ωi2, ..., ωin]

T is the input weight matrix. βi is the output weight matrix.
bi is the hidden layer bias. Oj is the output of the model.

The purpose of ELM training is to minimize the error, which is shown in
Equation (15):

N

∑
j=1
||Oj − tj|| = 0 (15)

The target matrix T can be expressed as Equation (16):

Hβ = T (16)

H =

 h(ω1 · x1 + b1) · · · h(ωL · xL + bL)
...

. . .
...

h(ω1 · xN + b1) · · · h(ωL · xN + bL)


N×L

(17)

where H is the output of hidden layer nodes. β is the output weight matrix. T is the
target matrix.

In the course of the traditional gradient-based training, all parameters of the network
are adjusted generally. While ELM only needs to determine the input weight of random
variable ωi and the hidden layer bias bi. On this basis, through the model, the output
matrix of hidden layer and the output weight β can be calculated. Therefore, the learning
process of ELM network is essentially a system of linear equations solving. Equations are
shown as Equation (18):

β
′
= H+T (18)

where H+ is the Moore–Penrose generalized inverse matrix of H.
To sum up, the feature extraction and the diagnostic performance of DBN-ELM is

directly affected by the network learning ability which depends on the number of RBM
layers and nodes. In order to avoid the influence of inappropriate parameters of the network
on the training speed and accuracy of feature extraction, EnFWA will be introduced to
obtain the optimal network structure and improve the feature extraction performance and
diagnostic accuracy of the network.

3.3. EnFWA

Traditional fireworks algorithm has the disadvantages of inferior fitness and large
search radius in the early stage. While the fitness improves, its searching radius decays
quickly which is easy to fall into the local optimum and loses the general searching ability.
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Fireworks with optimal fitness are kept when determining the next generation of fireworks,
which can accelerate the decay of searching radius. In addition, fireworks for Gaussian
mutation operation are randomly selected and the fitness value of these fireworks has a
direct impact on the optimization, which leads to the error of the optimal solution. Existing
research generally improve the algorithm from the perspective of explosion radius and
quantity, fireworks mutation, and the next generation selection strategy in order to solve
the local optimum of traditional FWA.

For the sake of coordinating the early general searching ability with the local search-
ing ability in the later stage, dynamic adjustment factor and dynamic radius factor are
introduced. The product of these two dynamic factors can realize the change of the explo-
sion radius Ri dynamically with search update. The dynamic adjustment factor q and the
dynamic radius factor µr are defined as Equations (19) and (20):

q = (1− n
N
)ξ (19)

µr = R
f (x)− fmin
fmax− fmin

· n
N

i (20)

In the formula, n is the number of current iterations. N is the maximum iteration. ζ is
the adjustment coefficient. f (x) is the fitness function of the error. fmax and fmin are the
extreme values of the function.

In the later stage of the search, in order to avoid the explosion radius close to 0,
the minimum explosion radius Rmin is introduced to ensure the local search ability. The
dynamic explosion radius is expressed as Equation (21):

R
′
i = Rmin + (1− n

N
)ζ · R

f (x)− fmin
fmax− fmin

· n
N

i (21)

When the explosion radius is less than Rmin, it will be taken as Rmin. In each iteration,
R
′
min can be calculated according to the maximum and minimum radius in the previous

iteration as shown in Equation (22),

R
′
min(N) = q · [Rmax(n− 1)− Rmin(n− 1)] (22)

where ti is introduced to simulate the falling of the actual fireworks explosion and the effect
of it is defined as e0.5gt2

i . Here, g = 9.8 is the gravitational acceleration and the function is
shown as Equation (23), {

xk
ij = xk

i + rand1 · R
′
i − e0.5gt2

i

ti = Ri/Rmax
(23)

where Rmax is the initial maximum explosion radius.
Since the roulette strategy is used to select the next generation of fireworks, R(xi) is

the sum of mahalanobis distance between the current individual and other individuals. For
a vector x = (x1, x2, x3, ..., xp)T with mean value µ = (µ1, µ2, µ3, ..., µp)T and covariance
matrix S, the mahalanobis distance RM(x) can be expressed as Equation (24):

RM(x) =
√
(x− µ)TS−1(x− µ) (24)

Then, the probability p(xi) of each individual firework being selected is shown in
Equation (25):

p(xi) =
RM(xi)

∑j∈k RM(xj)
(25)

In conclusion, the process of EnFWA is shown in Figure 18.
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Figure 18. Process of EnFWA.

3.4. Comparisons of Different Diagnostic Models

In order to further verify the feature extraction and the diagnosis ability of EnFWA-DBN-
ELM, different diagnostic models are used to identify the eccentricity fault and the composite
fault. The following models are used in this section:

(1) FFT + EnFWA + DBN: Preliminary feature extraction was carried out on the out-
put voltage and current data with fast Fourier transform (FFT). Features of the first
20 frequency components were used for training and diagnosing with the same
network structure.

(2) PSO + DBN: PSO algorithm was used to train and optimize the DBN. The number of
particles is 50, the acceleration coefficient c1 = c2 = 0.5, and the inertia weight decreased
from 0.9 to 0.4.

(3) SDAE + SVM: the stacked denoising autoencoder (SDAE) was used for feature extrac-
tion of the fault data and support vector machine (SVM) was used for fault diagnosis.
The structure of SDAE hidden layer is [150−75−20], sparse coefficient is 0.15, penalty
weight is 3, SVM penalty parameter C = 49.43, and kernel parameter g = 100.

(4) LSTM + Softmax: The long short-term memory (LSTM) was used to extract fault data
features and the softmax was used for fault diagnosis. Set the number of LSTM hidden
layer neurons as [14−14], the learning rate as 0.01, and the length of sliding window
as 10.

According to the above models and parameter settings, the training and diagnosis
of the eccentricity fault and the composite fault are carried out. The average diagnostic
accuracy and duration of the test set of these compared models are shown in Table 2.

Model 1 firstly extracted frequency features from the fault data and the model was
trained only according to main harmonic amplitude. Due to the lack of other component
features and the inevitability of the loss of effective features, the diagnosis accuracy of both
types of fault is inferior despite the fact that the duration is shorter. The training process of
model 2 is the same as the algorithm proposed in this paper. PSO without improvement
was also used to determine the optimal DBN structure. However, the training accuracy
and speed are worse than the algorithm proposed in this paper. Model 3 and 4 adopted a
deep learning algorithm similar to the DBN and trained directly according to the original
fault data, which can avoid the disadvantages of extracting frequency features through
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signal processing technologies. Unfortunately, the structural parameters of SDAE, LSTM,
and SVM were not optimized by any algorithms, which may lead to inaccurate feature
extraction due to the improper number of nodes. Compared with the algorithm proposed
in this paper, these two models are less accurate and require more time. Since the total
sampled data of the composite fault is less than the counterpart of the single eccentricity
fault, the average duration of the five models in the composite fault training and diagnosis
is less than that of the single eccentricity fault. Except for the fact that the accuracy of model
1 decreases significantly, the diagnostic accuracy of other models is almost not affected. This
also reflects that the deep learning model has strong generalization ability. In conclusion,
EnFWA-DBN-ELM has obvious advantages in feature extraction and diagnosis of both the
single eccentricity fault and the composite fault.

Table 2. Comparison of different diagnostic methods.

Algorithm Single Eccentricity Fault Composite Fault
Accuracy/% Duration/s Accuracy/% Duration/s

FFT + EnFWA + DBN 89.882 8.46 86.718 6.19
PSO + DBN 95.622 11.04 94.371 9.88

SDAE + SVM 92.677 20.81 92.445 18.27
LSTM + Softmax 93.493 12.06 93.986 10.62

Algorithm of this paper 99.144 9.34 97.857 7.08

4. Data Collection and Diagnosis

In this section, the fault diagnosis adopts EnFWA algorithm to train the DBN-ELM
model according to the fault data. Then, the fault diagnosis is carried out on the test data
and the diagnosis accuracy is calculated later.

Deep learning networks mostly adopt the superimposed structure of three hidden
layers, which can reduce the data reconstruction error. In this paper, four hidden layers
with a [X−H1−H2−H3−H4−T] structure which consists of three layers of RBM and a
single layer of ELM are selected for the DBN. Moreover, iteration of the RBM for each
layer is set as 20 with an initial momentum of 0.9 and a learning rate of 0.01. EnFWA is
trained by 175 sets of preprocessed data to determine the optimal number of nodes in each
hidden layer of the DBN-ELM network primarily and the range of nodes is [1, 500]. During
training, the optimization was carried out iteratively according to the fitness of the average
reconstruction error of all fireworks and its descendants in each iteration. The iteration
ends when the fitness value L f it < 0.01 or the number of iterations reaches 200. The fitness
function L f it is expressed as Equation (26):

L f it =
∑I

i=1 ∑J
j=1(pij − kij)

2

n2 (26)

In the formula, I is the number of RBM layers. J is the number of nodes in the hidden
layer. n is the total number of fireworks and its descendants. pij is the reconstruction value
of nodes. kij is the state of nodes.

There are seven fault categories to be studied. The original data of the output voltage
and current at rated load of the aviation generator are collected by simulation, as shown
in Table 3. Setting the sampling rate to 50 kHz and the single sampling time to 0.1 s. The
six sampled data are mixed into a group with a total of 30,000 sample points, collecting
30 groups of data for each fault with a total of 210 groups. Finally, a 210 × 30,000 original
dataset is obtained.

After noise preprocessing and normalization of the original data, 210 groups of fault
data which consist of 30 groups for each of the seven fault categories are obtained and
25 groups of each category are selected as the training set from 30 groups of each category.
Then, another five groups of each category are used as the test set. The optimal DBN
model is obtained by the EnFWA based on 175 groups of the fault data of the aviation
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generator. While the remaining 35 groups of the test data are diagnosed and the diagnostic
accuracy was calculated. At the beginning of the training, the RBM error determined
by each firework is large. With the increase in iteration and the continuous updating of
fireworks generation, RBM parameters are gradually optimized and the training error
decreases accordingly. The fitness curve is shown in Figure 19. According to the curve, after
140 training, the minimum error is 0.00855, which meets the end condition of the iteration.
Meanwhile, the number of nodes of the four hidden layers is determined to be [114, 298,
396, 403].

Table 3. Collected data and fault labels.

Fault
Category Type Training

Data
Test
Data

1 Normal 7.5 × 105 1.5 × 105

2 1/9 A phase short-out + 5% Dynamic eccentricity 7.5 × 105 1.5 × 105

3 1/9 A phase short-out + 5% Static eccentricity 7.5 × 105 1.5 × 105

4 2/9 A phase short-out + 15% Dynamic eccentricity 7.5 × 105 1.5 × 105

5 2/9 A phase short-out + 15% Static eccentricity 7.5 × 105 1.5 × 105

6 3/9 A phase short-out + 25% Dynamic eccentricity 7.5 × 105 1.5 × 105

7 3/9 A phase short-out + 25% Static eccentricity 7.5 × 105 1.5 × 105

Figure 19. Fitness curve.

With this structure, the result of the training set is shown in Figure 20 and the
diagnosis accuracy reaches 100%. Further, the diagnosis result of the test set with
97.1429% accuracy is shown in Figure 21. In these two figures, the Y-axis represents the
category of the fault shown in Table 3 and the X-axis represents the serial number of
the training set or the test set, where the training set contains 175 groups and the test
set is 35. The diagnosis accuracy of the training set and test set are 97.6% and 97.857%,
respectively, with 7.08 s average duration after 20 calculations. Compared with the single
eccentricity fault diagnosis, the accuracy of the proposed method in this paper is reduced
slightly under the circumstance of the composite fault. In addition to the reduction in
the training sample, the main features of short-out among mixed features will affect the
ability of the model to identify the secondary feature of eccentricity. In another way,
the feature of eccentricity is less obvious than the short-out. Sample No. 11 of the test
set in Figure 21 has the same degree of short-out as other samples in the group, but the
diagnosis result is wrong.
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Figure 20. Diagnosis result of training set.

Figure 21. Diagnosis result of test set.

5. Conclusions

In this paper, the finite element simulation model of a 65kVA aviation generator is
established and the fault model is set up for the short-out of stator windings, the static
eccentricity, and the dynamic eccentricity. A fault diagnosis method based on EnFWA-DBN-
ELM is proposed to realize the feature extraction and diagnosis of the composite faults of
the aviation generator. This algorithm makes full use of the output voltage and current data
of the aviation generator under the fault condition without additional signal processing.
The optimization ability of the EnFWA is significantly improved and enables the fast and
efficient optimization of DBN. Comparisons with other models are settled to validate the
proposed model. The result of the comparisons shows that the proposed algorithm has an
outstanding optimization ability that enables the model to diagnose the fault accurately
and fast. Benefit from this, the fault diagnosis efficiency of the aviation generator can be
improved. Furthermore, EnFWA-DBN-ELM is suitable for offline or online fault detection
of the aviation generator as an effective auxiliary maintenance method.
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Abbreviations
The following abbreviations are used in this manuscript:

FWA Fireworks Algorithm
EnFWA Enhanced Fireworks Algorithm
ELM Extreme Learning Machine
DBN Deep Belief Network
DC Direct Current
RBM Restricted Boltzmann Machine
FFT Fast Fourier Transform
PSO Particle Swarm Optimization
FEM Finite Element Method
BEF Back Electromotive Force
RMS Root Mean Square
SDAE Stacked Denoising Auto Encoder
SVM Support Vector Machine
LSTM Long Short Term Memory
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