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Abstract: Smart factories have attracted a lot of attention from scholars for intelligent scheduling
problems due to the complexity and dynamics of their production processes. The dynamic job
shop scheduling problem (DJSP), as one of the intelligent scheduling problems, aims to make an
optimized scheduling decision sequence based on the real-time dynamic job shop environment. The
traditional reinforcement learning (RL) method converts the scheduling problem with a Markov
process and combines its own reward method to obtain scheduling sequences in different real-time
shop states. However, the definition of shop states often relies on the scheduling experience of
the model constructor, which undoubtedly affects the optimization capability of the reinforcement
learning model. In this paper, we combine graph neural network (GNN) and deep reinforcement
learning (DRL) algorithm to solve DJSP. An agent model from job shop state analysis graph to
scheduling rules is constructed, thus avoiding the problem that traditional reinforcement learning
methods rely on scheduling experience to artificially set the state feature vectors. In addition, a new
reward function is defined, and the experimental results prove that our proposed reward method is
more effective. The effectiveness and feasibility of our model is demonstrated by comparing with
general deep reinforcement learning algorithms on minimizing the earlier and later completion time,
which also lays the foundation for solving the DJSP later.

Keywords: smart factory; dynamic job shop scheduling; Markov process; graph neural network;
deep reinforcement learning

1. Introduction

In recent years, the smart manufacturing boom has swept across China, becoming the
most important initiative to promote the national strategy of “Made in China 2025”. Among
them, smart factory, as an important practice area of smart manufacturing, has attracted
wide attention from manufacturing enterprises and high attention from governments at
all levels. All major economies around the world are vigorously promoting the revival of
manufacturing industry. Under the boom of Industry 4.0, Industrial Internet, Internet of
Things and Cloud Computing, many excellent manufacturing enterprises around the world
have carried out smart factory construction practices. DJSP as a representative problem
model in the production scheduling industry is proven to be a np-hard problem of most
cases [1]. As the modern job shop scheduling problem becomes more complex, the time
cost of the exact solution to the problem is too large, making it difficult to apply the solution
to a wide range of applications in practical production scheduling. Therefore, the methods
of obtaining an approximate solution to the job shop scheduling problem have attracted
many scholars. First of all, the rule-based scheduling [2,3], which is designed based on
practical experience, is able to respond quickly to the dynamic environment of the job
shop with high migration [4]. However, its solution quality cannot be guaranteed, and the
literature [5] demonstrates the inability to obtain a locally optimal solution using a single
rule-based scheduling, while the super heuristic algorithm [6] can optimize this problem
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better. Zhang et al. [7] used genetic planning algorithm to encode the scheduling decision
method, made a selection of dominant individuals in the population by value function
and updated the local optimal solution by gene iteration. It is finally proved that the
method outperforms the regular scheduling in terms of solution quality. However, as the
problem size increases, the algorithm tends to fall into local optimal solutions and has poor
migration. A new optimal search is needed for the new problem model, which requires a
long scheduling time. In summary, it is difficult for heuristic algorithms to achieve better
solutions to both solution quality and speed [8].

Recently, the rise of reinforcement learning (RL) algorithm’s ability to explore un-
known environments in many fields such as robot control and game competition [9] has
attracted more and more scholars to try to use it for solving DJSP. Zhao et al. [10] used deep
Q-network (DQN) algorithm for the DJSP and verified that the DQN algorithm is signifi-
cantly superior to other rule-based scheduling methods and heuristic scheduling methods.
This proof effectively shows that reinforcement learning has a significant advantage in
dealing with dynamic scheduling problems. Luo et al. [11] also used the DQN to solve
the flexible DJSP and verified that the proposed algorithm has a stronger superiority in
handling continuous states. This also makes reinforcement learning a hot topic in solving
scheduling problems. Although the RL algorithm can well compensate the shortcomings of
rule-based scheduling and super heuristic algorithms in dealing with dynamic scheduling
problems, there are still some problems. Wang et al. [12] proposed that a reasonable defini-
tion of the state space, action space, payoff function and policy function of an agent is the
core of reinforcement learning for solving job shop scheduling problems. Traditional RL
methods rely on the state features of manually designed models, so they need to refer to
relevant domain scheduling experiences. In addition, there are differences in the selection
of features due to different job shop scheduling environments, which can also affect the
migration of the model. The graph neural network has good graph features extraction
capability [13,14], and its introduction also makes it possible to optimize the problems
existing on job shop state designs.

With the rise of graph neural networks in many fields related to molecular structure,
image processing, etc. [15–17], it has also given rise to thoughts about its application
of scheduling problems. Zeng et al. [18] first applied graph representation learning to
scheduling problems. They used graphs to describe the state space of the scheduling
problem, selected graph features by an attention mechanism to speed up training, and used
the D3QPG network to obtain output actions. In this experiment, the problem that the
state of the traditional reinforcement learning algorithm depends on the manual is broken.
The graph representation is introduced into reinforcement learning to solve the scheduling
problem, and the effectiveness of the scheme is verified. Junyoung Park et al. [19] used
a combination of GNN and RL in solving the JSP. Firstly, a graphical substitution for
the environment state is used; then, the features are extracted by GNN, and finally, the
standard state description vector is obtained. Then, the optimization of action selection
is performed by RL method. Finally, it proves the superiority of the constructed model in
solving scheduling problems and also makes GNN more widely concerned and explored
on scheduling issues. Feature extraction by GNN can effectively avoid the problem of
relying on scheduling experience of the shop state feature values in the traditional RL
algorithm and also enhance the network model migration capability in solving problems
of the same scale [14,20]. However, all the above schemes only apply GNN to prove the
efficiency of the model through experiments, while we build on this and also demonstrate
the superiority of GNN as a feature extraction method compared to manual extraction. The
contributions of this paper are as follows:



Processes 2023, 11, 1571 3 of 14

1. A GNN combined with DRL model was constricted for solving DJSP with random
job arrivals;

2. A scheduling pool to store the processes that satisfy the following two conditions in
the current job shop environment: (1) the process being processed is currently in a
executable state; (2) the machine processing the process is also in an idle state;

3. A new reward function is designed to enhance the learning ability of the algorithm
for solving the target.

The rest of this paper is organized as follows: in Section 2, we introduce the dynamic
scheduling problem perturbation events, such as dynamic arrival of jobs and random
weights, as well as the mathematical model and constraints; next, we introduce our DJSP
solution model, including GNN’s disjunctive graph feature extraction and the DRL algo-
rithm processes combined with GNN in Section 3; in Section 4, we use a related algorithm
to compare with our model on minimizing the earlier and later completion time; finally,
Section 5 draws the conclusions.

2. Problem Modeling
2.1. Problem Introduction

DJSP is based on the classic JSP and takes into account a variety of disturbing factors
that occur during job processing. In this paper, random arrival jobs with weights are used
as disturbing factors. In the DJSP of this paper, we are provided with n successively arriving
jobs J = {J1, J2, . . . , Jn} to be processed on m machines M = {M1, M2, . . . , Mm}, each of which
has to go through multiple different processing sequences, and the processing time OPij of
each process and the processing order constraint on each machine are known. The arrival
time of each job is Ai, and the weight of the job is wi. DJSP should satisfy the assumptions
as follows:

(1) All machines are in an executable state at the start of scheduling, and machine failures
are not considered;

(2) Multiple processes for the same job need to be processed sequentially in the process
order;

(3) Processes for individual jobs must be processed on designated machines and have
different priorities between different jobs to account for the degree of urgency between
different jobs;

(4) Processes may not be interrupted once they have begun processing;
(5) No consideration is given to the transfer time of jobs between different machines.

2.2. Construction of Mathematical Model

In order to better realize the influence of job priority weights on the solution objective
of minimizing the earlier and later completion time in the dynamic scheduling problem, we
define the objective function that makes the higher weight job priority scheduling under the
condition of minimizing the earlier and later completion time and the relevant constraint
expressions in the problem. The relevant symbols involved in the formula are explained in
Table 1:

Table 1. DJSP symbol definitions.

Symbol Meaning Description

i Index of jobs, i = 1, 2, 3, . . . , n
j Index of operations belonging to jobs

Oij Index of operation j belonging to job i
Ci The finishing time of job i
Di The deadline of job i
Mij The index of machine set for operation Oij
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Table 1. Cont.

Symbol Meaning Description

Ai The arrival time of Job i
OPij The processing time of operation Oij

OPi
rest The remaining processes of job i

Startij The starting time of Oij
Stateij The state of Oij

Wi The weight of job i
OPn The entire process of all jobs

StateMij The state of Mij

The experiment uses minimizing the job earlier and later completion time as the
objective function of the dynamic job shop scheduling problem, which is defined by the
following equations:

Objective:
T = min(∑n

i=1 wi(|C i − Di|)) (1)

Subject to:
OPij > 0 (2)

startij + OPij ≤ starti(j+1) (3)

startij ≥ Ai (4)

stateMij =

{
1 i f stateij = 1
0 else

(5)

Di ≥ Ai + ∑
j

OPij (6)

Equation (2) indicates that the operation time of the process must symbolize the actual
conditions. Equation (3) indicates that the next process of the same job can only start after
the completion of the previous process; Equation (4) indicates that the start time of the
job must be after the arrival time; Equation (5) indicates that only one job process can be
processed by one machine at the same time; Equation (6) indicates that the cut-off time of
the job must be greater than the sum of the arrival time and operation time of the job.

3. Model Construction of Reinforcement Learning Algorithm Combined with GNN

Figure 1 shows the scheduling flow diagram for solving the DJSP model, which
demonstrates the learning process of an agent that obtains the scheduling rules in the action
space by using the dynamic shop parsing graph as input.

3.1. Graph Neural Network
3.1.1. Characterization of the Graph

The graph mainly consists of node information and the connection relationship be-
tween them, which is defined as follows: G = (V, C ∪ D). V represents the node information
in the graph; C represents the directed line segments connected between different processes
of the same job in the graph; D represents the undirected line segments between processes
with the same processing machine between different jobs. As shown in Figure 2, the start
node and end node processing times are 0, which are used to supplement the graph struc-
ture and do not count in the scheduling process. Oij indicates the processes of each job,
and the same color is used to describe the processes of the same processing machines. In
addition, to better describe the DJSP, we add some feature values for the nodes as follows
to form the feature vectors of the nodes and simulate the dynamic environment in real time
by the change of feature values.
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1-i indicates the job number of the current node;
2-j indicates the process number of the current node;
3-Mij indicates the machine number for processing the process;
4-Ai indicates the arrival time of the job;
5-OPij indicates the operation time of the process;
6-Di, the latest submission time of the job;
7-Startij, the time when the process is started to be executed;
8-Stateij indicates the scheduling status of the process; 0 means not scheduled; 1 means
being scheduled; 2 means the process has been scheduled;
9-wi indicates the urgency of the job.

3.1.2. Advantages and Methods of Job Shop Extraction of Graphs

The state spaces of traditional reinforcement learning algorithms for solving job shop
states are mostly defined based on relevant scheduling knowledge. The state feature
vector of the job shop is formed by selecting variables that can describe the current state
of the shop, such as the current average completion rate of each job, the load rate of each
machine, the average remaining completion time of each job and so on [21–24]. However,
this method relies on manual scheduling experience, and its migratory nature can be
affected for shop floor operations in different environments. In contrast, the graph neural
network can effectively extract the node features and the information of its surrounding
nodes effectively, and the feature vector of the job shop state is obtained by using the job
shop scheduling parse map as the input of the graph neural network; the process can be
described by the following equations:

h0 = ∑ vi, f ori ∈ Nv (7)



Processes 2023, 11, 1571 6 of 14

First, the information of all nodes in the graph is obtained to form the node set h0. As
shown in Equation (7), Nv denotes the set of all nodes in the graph. Vi is the feature vector
of node I ∈ Nv.

ht+1 = σ
(

D
−1
2 AD

−1
2 htWt

)
(8)

The information aggregation operation is shown in Equation (8); the node set and
the adjacency matrix of the graph are used as inputs, and A denotes the adjacency matrix
with self-connections; D is the degree matrix of A; ht denotes the set of node information of
the previous round; Wt is the parameter matrix; and finally, the aggregated information
ht+1 is output by the activation function σ to obtain the final result after this round of
feature aggregation.

As shown in Figure 3a, the relationship matrix is multiplied with the node information
matrix to obtain the new feature vector of each node, and the resulting updated node
contains the feature information of itself and its surrounding nodes. As shown in Figure 3b,
it is the information aggregation process of the node X2 from t to t + 1 times. Xt+1

2 contains
Xt

2 as well as the information of its neighboring nodes.

NormA =
A√

Di
√

Dj
(9)

Processes 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 

ℎ 
𝑡+1 = σ(𝐷

−1
2 𝐴𝐷

−1
2 ℎ𝑡𝑊𝑡) (8) 

The information aggregation operation is shown in Equation (8); the node set and the 

adjacency matrix of the graph are used as inputs, and A denotes the adjacency matrix with 

self-connections; D is the degree matrix of A; ht denotes the set of node information of the 

previous round; Wt is the parameter matrix; and finally, the aggregated information ht+1 is 

output by the activation function σ to obtain the final result after this round of feature 

aggregation. 

As shown in Figure 3a, the relationship matrix is multiplied with the node infor-

mation matrix to obtain the new feature vector of each node, and the resulting updated 

node contains the feature information of itself and its surrounding nodes. As shown in 

Figure 3b, it is the information aggregation process of the node X2 from t to t + 1 times. 

𝑋2
𝑡+1contains 𝑋2

𝑡 as well as the information of its neighboring nodes. 

𝑁𝑜𝑟𝑚𝐴 =
𝐴

√𝐷𝑖√𝐷𝑗
 (9) 

 

Figure 3. Node update. 

When the graph convolution layer is deepened, considering only the constant aggre-

gation of information can lead to excessive information values of newly generated nodes. 

To avoid changing the original distribution of features after matrix multiplication, it is 

necessary to make Laplace changes to the relationship matrix A. As shown in Equation 

(9), it can effectively balance the importance of too-large nodes. In addition, the influence 

of the number of graph convolution layers on the experimental results needs to be consid-

ered. The literature [19] points out that the number of graph convolution layers for ex-

tracting image features is generally set to 2 or 3 layers. Finally, the current scheduling state 

of the job shop is obtained by flattening the output, as shown in Equation (10). 

𝑠𝑡 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(ℎ 
𝑡+1) (10) 

3.2. Deep Reinforcement Learning 

Deep reinforcement learning (DRL) is an algorithm that combines deep learning and 

reinforcement learning. Traditional reinforcement learning algorithms have achieved 

good results in areas such as robot control and competitive gaming [9]. However, when 

first introduced to solve job shop scheduling problems, such as the Q-learning algorithm, 

it needs to rely on tables to record the rewards corresponding to different actions in dif-

ferent states. As the scale and complexity of the scheduling problem increases, the short-

comings of Q-table are exposed. In the face of the explosive increase in the shop floor state 

space, the Q-table is difficult to meet the scheduling demand. Therefore, deep learning is 

introduced into the scheduling problem. The network can be fitted due to the same di-

mensionality of the input feature vector in different states. The original problem of over-

sized tables due to defining job shop states in discrete space is solved [10]. 

Figure 3. Node update.

When the graph convolution layer is deepened, considering only the constant aggre-
gation of information can lead to excessive information values of newly generated nodes.
To avoid changing the original distribution of features after matrix multiplication, it is
necessary to make Laplace changes to the relationship matrix A. As shown in Equation (9),
it can effectively balance the importance of too-large nodes. In addition, the influence of
the number of graph convolution layers on the experimental results needs to be considered.
The literature [19] points out that the number of graph convolution layers for extracting
image features is generally set to 2 or 3 layers. Finally, the current scheduling state of the
job shop is obtained by flattening the output, as shown in Equation (10).

st = f latten
(

ht+1
)

(10)

3.2. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is an algorithm that combines deep learning and
reinforcement learning. Traditional reinforcement learning algorithms have achieved good
results in areas such as robot control and competitive gaming [9]. However, when first
introduced to solve job shop scheduling problems, such as the Q-learning algorithm, it
needs to rely on tables to record the rewards corresponding to different actions in different
states. As the scale and complexity of the scheduling problem increases, the shortcomings
of Q-table are exposed. In the face of the explosive increase in the shop floor state space, the
Q-table is difficult to meet the scheduling demand. Therefore, deep learning is introduced
into the scheduling problem. The network can be fitted due to the same dimensionality of
the input feature vector in different states. The original problem of oversized tables due to
defining job shop states in discrete space is solved [10].
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3.2.1. Markov Process and Reinforcement Learning

The essence of the solution process of applying reinforcement learning algorithm to
the shop scheduling problem is the continuous interaction between the agent and the shop
environment. The agent makes a decision to choose the process according to the current job
shop environment, while the environment rewards the agent in time based on its behavioral
feedback. The final process with the goal of the agent learning to maximize the reward
is shown in Figure 4. St, At and Rt represent the status, action and reward of the current
moment, respectively.
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The process can be modeled as a Markov decision process with a 5-tuple (S, A, P, R,
γ). S represents the current state of the job shop scheduling environment; A represents
the action executed by the intelligence in the current state; P represents the probability of
moving from the current state to the next state, and R represents the reward received by the
current intelligence after executing action A. γ is the discount factor, which is used to play
a weakening effect on the visionary reward. The more backward action has less influence
on the decision in the current state—therefore, the greater the discount of its reward. The
discount factor usually takes values between 0 and 1. The intelligence interacts with the
environment according to an initial policy, and at each decision point, the intelligence
observes the current state St ∈ S and executes an action At ∈ A according to its own strategy.
Then, it enters a new state St+1 and a new state transfers probability Pt+1 and receives
a timely reward Rt. The goal of the intelligence is to find the optimal strategy π∗ that
maximizes the sum of the expected long-term reward values of the action A in state S and
is measured by the action valued function, and the strategy is solved as in Equation (11).

Qπ∗(S, A) = maxQπ(S, A) (11)

3.2.2. Double Deep Q Network

Double Deep Q Network (DDQN) is proposed on the basis of Deep Q Network (DQN).
The traditional DQN method has only one Q-network for learning the value function of
each action, and the update formula is Equation (12).

Q(St, At)↔ rt + γmaxQ(St+1, At+1) (12)

Q(St, At) denotes the current action value function, and the update of the Q network
is each time to select the action corresponding to the optimal reward in the current state, so
the final learned prediction of the Q network is large compared to the general condition.
DDQN uses two Q-networks: learning-Q-network and target-Q-network (Qt).

Q(St, At)↔ rt + γQt(St+1, argmaxQ(St+1, At+1)) (13)

As shown in Equation (13), there are two Q functions: Q and Qt. When the Q function
selects the action corresponding to the maximum reward, the resulting action value is closer
to the actual situation by the network computation that is not updated for the time being,
compared to the Q network. This design better alleviates the problem that the traditional
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DQN algorithm has a large network output due to the need for a single Q network to do
both prediction and learning operations. In this paper, the DQN algorithm is combined
with GNN to construct a new reinforcement learning model, and the pseudo-code of the
method is shown in Algorithm 1:

Algorithm 1. GNN + DDQN

Initialize replay memory D;
Initialize online network action-value Q with random weights θ;
Initialize target network action-value Qt with θt = θ;
For episode = 1:E do:
Initialize state S1 ← GNN(G1)

For t = 1:T do:
If p < ε :

select a random action a;
Else:

a = argmaxaQ(St, At; θ);
Execute a, observe the next state: St+1 ← GNN(Gt+1) , get the immediate reward r;
Store (St, At, r, St+1) in D;
Get a random minibatch from D;
Select the optimal action by Q: Aj

max
(

Sj; θ
)
= argmaxAj

Q
(

Sj, Aj; θ
)

;

Update Q as fellow: yj =

{
r; If for the last step

rj + γQt

(
Sj, Aj

max(Sj; θ
)
; θt

)
; else

Execution of gradient descent: (y j −Q
(

Sj+1, Aj+1; θ
)
)

2
;

Each m step, update Qt with θt ← θ ;
End;

3.2.3. Action Space

Inspired by the selection of general scheduling rules as the action space in the tradi-
tional RL algorithm for solving job shop scheduling problems [10,22], we select some rules
as the scheduling action space for our intelligence. In addition, to enhance the generaliza-
tion ability of the model, we introduced the ε-greedy strategy [25,26] to select actions. It
defines a decrease in the randomness probability of the model’s action selection from 0.6 at
the beginning of training to 0.01 at the end of training, thus enhancing the randomness of
the model’s action selection at the beginning of training and being more favorable to the
optimal search of the scheduling problem. The following is the Rule Base:

Dispatching Rule 1: Shortest Processing Time (SPT), the machine gives priority to the
process with the shortest processing time.

Dispatching Rule2: Longest Processing Time (LPT), the machine gives priority to the
process with the longest processing time.

Dispatching Rule3: First In First Out (FIFO), the machine gives priority to the process
with the earliest arrived.

Dispatching Rule4: Last In First Out (LIFO), the machine gives priority to the process
with the latest arrived.

Dispatching Rule5: Most Operations Remaining (MOR), the machine gives priority to
the process with the most operations remained.

Dispatching Rule6: Least Operations Remaining (LOR), the machine gives priority to
the process with the least operations remained.

3.2.4. Reward Function

DDQN is a value-based reinforcement learning algorithm, and the job shop scheduling
problem has the following two characteristics: 1. The sum of locally optimal solutions is
generally not equal to the global optimum; 2. The scheduling problem can only obtain
the earlier and later time of the whole scheduling process after the completion of the last
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process. Therefore, the definition of reward needs to be set reasonably with the state at the
completion of the last process. The reward function is defined as in Equation (14):

r =


−0.01; un f inished dispatch

opn; f inidhed, nowyt < = bestyt
1

ln(nowyt−bestyt+e)
∗ opn; f inished, bestyt < nowyt < bestyt ∗ 1.05

−5; f inished, nowyt> bestyt ∗ 1.05

(14)

OPn denotes the number of processes; NOWyt denotes the earlier and later completion
time at the end of the current round, and Bestyt denotes the shortest earlier and later
completion time learned in the whole training cycle. In order to prevent the difference
between the two from being too large, we use a logarithmic function to deflate them. We
introduce a natural constant e to ensure that the denominator is greater than 1. Finally,
we use an elite retention strategy [27], which gives a positive reward to solutions with
an earlier and later completion time within 105% of the current optimal solution and a
negative reward to other solutions so as to enhance the learning of the better solution by
the agent.

4. Numerical Experiments

The GNN designed was based on torch_geometric. The experimental data are ran-
domly generated using Poisson distribution under the constraint of meeting the actual
production conditions, and two groups of 10× 10 and 20× 15 are mainly chosen for testing.
The settings of some key parameters are based on the experience in the experiments. The
hyper parameters in Table 2 were set during the experiments:

Table 2. Hyper parameter setting.

Hyperparameter Value

Epoch 400
Learning rate 0.001

Experience pool 2000
Qtarget update step 20

Batchsize 10
Q network layers 5

Graph convolution layers 2
Discount factor 0.95
ε-greedy {0.01~0.6}

Activation function Tanh()

As shown in Figure 5, the box plots of the fluctuation range of the optimal solution
for different GNN convolutional layers in 400 training cycles under the dataset Bs5, it can
be seen that when the number of convolutional layers is two, the retrieval range and the
search effect of the model on the minimized earlier and later completion time are optimal
compared with other numbers of convolutional layers, which also lays the theoretical
foundation for the design of the model with two convolutional layers in this paper.
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Figure 5. The relationship between the number of layers of the graph neural network and the quality
of the solution.

Because DDQN is a value-based reinforcement learning algorithm, defining the ap-
propriate reward function is of pivotal importance to the optimization-seeking effect of
the model. The literature [10] also uses job random arrival as a perturbation factor, so
we try to compare the two reward functions. The reward function in the literature [10] is
shown in Equation (15): EAST(t) denotes the average slack time of all remaining processes;
EART(t) denotes the expected average remaining process processing time, and R gives
a single-step reward based on the state of the real-time job shop. Our proposed reward
function is Equation (14): a global reward method based on the length of the earlier and
later completion time. The experimental results are compared on datasets Bs2, Bs3, Bs5,
and Bs6, as shown in Figure 6.

EAST(t) = 1
n

n
∑

i=1
(

OPi
rest

∑
j=1

OPij − (Di − t))

EART(t) = 1
n

n
∑

i=1

OPi
rest

∑
j=1

OPij

R = EAST(t)
EART(t)+0.01

(15)

In the four sets of comparison experiments, the box plots on the left of the images are
the experimental results of our proposed reward functions, and the right are the results
corresponding to the reward methods in the literature [10]. The distribution states of the
earlier and later completion time are obtained by 400 rounds of training. The experiments
are only adjusted in the settings of the reward functions. Among them, both Figure 6a,b
are the results on the 10 × 10 scale dataset. At this point, the two reward methods have
comparable effects in terms of retrieval range and search ability, and both can obtain the
local optimal solution, but it can be seen from the average optimal solution that our reward
function works better. Figure 6c and d are the experimental results for the 20 × 15 dataset,
and it can be seen that our incentive approach has better solution quality when finding the
optimal earlier and later completion time on larger datasets. It indicates that the ability
of the reward function in the literature [10] to guide the intelligence in the search for the
optimum decreases with the proliferation of the types of states in the scheduling shop on
a larger scale dataset and also proves the rationality and efficiency of the design of our
proposed reward function.
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Figure 6. (a–d) are comparison tests on different datasets.

After an illustration of the efficiency of the reward function, we need to test the
learning effect of the model. The experiments focus on minimizing the earlier and later
completion time as the goal, taking into account the dynamic arrival of jobs and job weights.
The comparison experiments consist of two main groups: first, the six basic rule scheduling
methods to solve the DJSP, which are the rules that make up the reinforcement learning
action space. Second, the DDQN model is used to solve the DJSP, which has a state space
as defined in literature [10]. Table 3 below shows the performance effects of the different
methods on each dataset:

Table 3. Minimum earlier and later completion time results.

Dataset Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 DDQN GNN + DRL

Bs1 10 × 10 8942 9918 9656 8482 8482 9747 8482 8482
Bs2 10 × 10 7118 7081 7211 7100 6893 7448 6885 6885
Bs3 10 × 10 7170 7594 9072 7170 6726 7268 6726 6726
Bs4 10 × 10 5740 5647 5732 5400 5640 5845 5400 5400
Bs5 20 × 15 61,679 61,549 73,736 58,476 60,784 72,205 53,946 53,913
Bs6 20 × 15 47,322 46,992 47,645 48,128 45,028 51,541 43,786 42,970
Bs7 20 × 15 40,484 36,944 41,448 36,292 34,938 41,160 34,269 34,011
Bs8 20 × 15 62,649 61,156 62,272 60,803 61,800 63,624 59,565 59,543

The difference between DDQN and GNN + DRL lies only in the way of describing the
job shop states. The former uses the state definition in the literature [10] when solving DJSP.
The latter extracts the features of the analytic graph of the dynamic job shop by GNN. The
other rule scheduling is several conventional job shop scheduling methods. The above are
the optimal solutions obtained by different scheduling algorithms when solving different
cases. It can be seen that the results of the general rule scheduling are more different
because of the different scheduling criteria followed. This is still different from the optimal
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solution derived by the deep reinforcement learning algorithm and shows the advantage
of reinforcement learning algorithms in solving dynamic scheduling problems. However,
the optimal solutions obtained by the above traditional solutions on different datasets are
inferior to the optimal solutions obtained by the model constructed in this paper, which
effectively proves the efficiency of graph neural networks for image feature extraction and
the feasibility and effectiveness of the GNN plus DRL model constructed in this paper.

Figure 7 shows the experimental results of the deep reinforcement learning algorithm
of GNN plus DDQN model on the arithmetic example Bs5, which is the average of the
optimal solutions learned by the agents in 10 times of 400 rounds of training. The conver-
gence curves of the images show that the model constructed in this paper has an advantage
over the DDQN algorithm in terms of average convergence efficiency. It shows that the
graph neural network has a significant advantage in feature selection compared with the
traditional deep reinforcement learning algorithm. It also proves that the learning efficiency
of the model is improved on the basis of the traditional DRL.
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Figure 7. 10 rounds of learning the mean value of the optimal solution.

Figure 8 shows the graphs of earlier and later completion time duration versus iteration
period for DDQN and GNN plus DDQN models on Bs2. The nodes indicate the average of
the minimum earlier and later completion time for every 20 rounds of training, and it can be
seen that, in general, the model in this paper outperforms the ordinary deep reinforcement
learning model in terms of the optimization seeking effect. It proves that the GNN plus
DDQN model has a better learning ability and better convergence in terms of the model’s
merit-seeking ability.
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5. Conclusions

In this paper, graph neural networks are integrated with deep reinforcement learning
algorithms to construct a model framework that is different from traditional reinforcement
learning algorithms. Then, by defining the DJSP environment, the scheduling problem is
transformed into a Markov process solution, while the associated action space and new
reward function are defined, which makes the model have considerable advantages in
solving DJSP.

The effectiveness of the constructed model is demonstrated by comparing the results
with those of the general rule-based scheduling method and the traditional deep reinforce-
ment learning algorithm on different cases of the minimum earlier and later completion
time. However, there is a lack of research on the complexity of the scheduling problem and
its related perturbation factors, such as machine failure and job rescheduling. In the future,
flexibility or other perturbation factors can be considered to be introduced into the model,
and further research can be conducted on the multi-objective solution in order to obtain a
better solution set and improve the solution quality.
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