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Abstract: In light of the frequent occurrence of counterfeit food sold in global commercial markets, it
is necessary to verify the authenticity of tasty natural-plant-based products by checking their labels,
as well as their pricing and quality control. Lemon juice has repeatedly been the victim of fraud
attempts by manufacturers to lower the price of products. Electronic noses are used in many fields,
including the beverage industry, for classification and quality control. This involves the detection and
differentiation of volatile organic compounds (VOCs) released from food. This study evaluated pure
lemon juice and 11 counterfeit samples (water, lemon pulp, and wheat straw) using an electronic
nose equipped with 8 metal oxide sensors to detect fraud. Chemometric methods such as principal
component analysis (PCA), linear and quadratic analysis (LDA), support vector machines (SVMs),
and artificial neural networks (ANNs) were used to analyze the response patterns of the sensors.
The outputs of eight sensors were considered as the input of the model and the number of lemon
juice groups, and its adulterations were also considered as the output of the model. Of the total data,
60% (for training), 20% (for validation), and 20% (for testing) were used. According to the results, all
models had an accuracy of more than 95%, and the Nu-SVM linear function method had the highest
accuracy among all models. Hence, it can be concluded that the electronic nose based on metal
oxide semiconductor sensors combined with chemometric methods can be an effective tool with high
efficiency for rapid and nondestructive classification of pure lemon juice and its counterfeits.

Keywords: analytical methods; electronic nose; food safety; machine learning

1. Introduction

An economic motivation for food fraud occurs when a substance is intentionally
substituted for or added to another food to improve it for financial gain [1]. Counterfeit
foods can be potentially harmful to consumers if they are allergic to ingredients not listed
on the label, if the product is contaminated with harmful microorganisms, or if the added
ingredients contain detrimental additives [2].

Economic fraud is a crime under the Code of Federal Regulations (CFR). Even simple
economic fraud can inadvertently lead to health problems for consumers of counterfeit
goods. Contamination of infant formula with melamine is a common example of eco-
nomically motivated fraud [3]. In 2012, the National Consumer League (NCL), the oldest
consumer protection organization in the United States, called on the U.S. Food and Drug
Administration (USFDA) to take action against manufacturers of “100%” lemon juice who
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dilute lemon juice with more water than is needed to make a concentrated juice. USFDA
field investigations of suspect samples of lemon juice have resulted in import warnings
and refusal to ship the product [4].

In people’s diets, lemon juice is an important ingredient because it contains many
natural compounds, such as vitamin C, antioxidants, and anticancer compounds, with
many health benefits. Lemon juice is consumed both in cooking and as a beverage [5].
It is also an excellent source of micronutrients, including phenolic compounds (mainly
flavonoids) and other nutrients (vitamins, minerals, fiber, and essential oils) that promote
health [6]. Consumption of this juice has been associated with lowering blood pressure
and plasma cholesterol levels, as well as a possible treatment of urinary tract and mental
disorders [7]. It also contains citrus flavonoids (such as naringin, hesperitin, and erythrosin),
which have been related to cancer prevention [8].

Lemon juice is susceptible to fraud due to its increasing demand. There are several
types of lemon juice fraud, such as the use of undeclared sugar and water, the addition of
peel and/or pulp washing agents, and/or the addition of other undeclared compounds
and juices from other citrus fruits, which are not allowed [6].

The titratable acidity content and degrees Brix (◦Bx) can be used as indicators to check
whether the juice has been diluted too much with water, which is the simplest method of
deception. However, since these values are easy to measure, fraudsters often dilute fruit
juices with water containing sugar and citric acid. It is therefore necessary to use compre-
hensive analytical approaches to detect changes in chemical composition due to fruit juice
fraud [9]. Fraud in the composition of fruit juice without sugar has a negative impact on the
quality of the juice. The impact of food fraud now affects a larger and broader population
than ever before as globalization increases. Fraud in lemon juice is a persistent problem,
so appropriate analytical methods are needed. The use of methods in conjunction with
chemistry to detect fraud is now in high demand, such as liquid chromatography linked to
isotope ratio mass spectrometry (LC-IRMS) [10], high-performance liquid chromatography
(HPLC) [11], HPLC and isotope ratio mass spectrometry (IRMS) [12], inductively coupled
plasma mass spectrometry (ICP-MS) [13], and gas chromatography (GC) coupled with
flame ionization detector (FID) [14] methods, but many of these methods, including LC,
GC, and IMS, are expensive (solvent consumption) and time-consuming [15,16].

In recent years, research has focused intensively on the development of nondestructive
methods for measuring fruit quality. Accordingly, quality is generally associated with the
consumer’s perception of food, which is mediated by the senses, so the superior tool to
determine food quality is the human senses [17]. Experts in the food industry often evaluate
quality based on odors. This method is a costly procedure that is fraught with problems,
such as the variability of different people’s responses, the time required, the subjective
response of experts to odors, odor matching, and the impossibility of evaluating hazardous
odors using this method [18]. The electronic nose is a new technique for controlling food
quality [19–21]. Using a sensor array, this system simulates the human sense of smell and
attempts to determine the effects of odors on the headspace of samples [22,23]. Gas sensors
play an important role in many areas of human life, including the monitoring of production
processes, occupational safety, food quality assessment, and air pollution monitoring [24].
Essentially, an electronic nose is a device that includes a multisensor array and multidi-
mensional signal processing through pattern recognition algorithms that can detect the
presence of volatile compounds associated with food aromas [25]. In this technique, the
focus of the analysis process is not on the identification and quantification of volatile com-
pounds, but on the quantitative description of the complete characteristics of the fragrance,
including the relationships between its components [26]. Compared to traditional sensory
and physicochemical methods, which are both time-consuming and costly, the electronic
nose provides an efficient, fast, nondestructive, and real-time experiment [27]. Monitoring
the quality of beverages with this technique is widely recommended. For example, E-noses,
with monitoring product fragrance, have been successfully used for food quality [28] and
to classify and predict products such as apple juice [29], kiwi juice [30], orange juice [31],
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tangerine juice [32], tomato juice [33], pineapple juice [34], strawberry juice [35], as well for
juice spoilage [36], edible essential oil classification [37], and juice fraud [38].

In the food industry, quality assurance is one of the most important objectives; there-
fore, a variety of methods and techniques are used to confirm and evaluate food quality.
Several techniques include chemical analysis and nondestructive testing. Application of
the E-nose can be useful in the beverage and food industry. When we plan to assemble
an instrument for odor discrimination and recognition, using the approach of the human
nose—what we would call an artificial nose—we are confronted with at least three major
types of challenges: complexity of the olfactory code, limited knowledge of the biological
system, and the high sensitivity of the human nose [39]. Moreover, the main limitation
of the E-nose is that it only assigns volatile compounds to certain categories and cannot
identify the specific volatile compounds or obtain quantitative data to clarify differences in
compounds among samples. Moreover, the electronic senses still possess some limitations
regarding sensitivity and specificity as compared to their biological counterparts [20].

Tests to detect cheaper juices, such as apple and grape blended into more expensive
juices, are in place to ensure juice products are labeled properly and sold legally. However,
an ongoing problem arises when lime juice is blended with lemon juice. Due to their
chemical similarities, this requires new in-depth methods. This study aimed to detect
common frauds in lemon juice using an electronic nose. It is worth mentioning that there
are expensive and complex techniques used to detect fraud in lemon juice, such as LC, GC,
and IMS, which are expensive (solvent consumption) and time-consuming. To date, there
has not been a comprehensive review of gas-sensor-based electronic nose technologies for
lemon juice fraud applications.

2. Materials and Methods
2.1. Sample Preparation

First, fresh lemons were bought in the fruit and vegetable market of Kermanshah,
Iran. The fruits were washed; then, their pure lemon juice (LJ) was extracted with a juicer.
After passing through the filter, the pulp was separated and the pure lemon juice was
transferred to the laboratory for testing. At this stage, 3 conventional levels of lemon juice
fraud were considered for the experiments (Figure 1). The first treatment was the water
fraud (W), including water + citric acid and sugar to the lemon juice at 25% lemon and
75% water (LW1), 50% lemon and 50% water (LW2), and 75% lemon and 25% water (LW3),
respectively. The second treatment was wheat straw fraud (S), in which wheat straw was
soaked in lukewarm water for 24 h until the water added to the straw turned yellow. Then,
lemon juice, citric acid, and sugar were added in three different amounts of 25% lemon
and 75% straw (LS1), 50% lemon and 50% straw (LS2), and 75% lemon and 25% straw
(LS3). The last treatment was performed with lemon pulp (P) obtained after the preparation
of lemon juice. In this method, different amounts of 25% lemon and 75% pulp (LP1),
50% lemon and 50% pulp (LP2), and 75% lemon and 25% pulp (LP3) were prepared by
adding lemon juice, citric acid, and sugar. Notably, the pure sample of lemon juice had a
Brix and an acidity of 8 and 2.53, respectively, while other samples’ acidity was prepared
between 2.67 and 3.2. In addition, their Brix degree was prepared in the range of 7 ± 1. To
minimize any physical or chemical reactions, samples were kept in a dry and dark place
at room temperature. Each sample was then placed in a 50 mL glass bottle containing
25 mL of lemon juice. Therefore, a total of 180 lemon juice samples were prepared for fraud
testing, where 15 lemon juice samples were prepared in a 25 mL container per each class.
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Figure 1. Schematic of sample preparation steps.

2.2. The Electronic Nose System

The device was fabricated at the Department of Mechanical Engineering of Biosystems,
Razi University, Kermanshah, Iran [40]. There are 8 metal oxide sensors (FIGARO, Osaka,
Japan) throughout the device, and each sensor has cross-sensitivity to certain volatile
chemicals or aromatic compounds (Table 1). The sensors are exposed to the sensor array
via a diaphragm pump with a flow rate of 1.5 L/m (Model R385) (Gikfun Inc., Dongguan,
China). Therefore, the inlet flow into the sensor chamber was 1.5 L per min. These arrays
are exposed to aromatic compounds, where a chemical interaction between the sensor
element and the volatiles results in a change in electrical voltage. This voltage change
is proportional to the amount of chemical substance absorbed by a conductive polymer
on the sensor surface. The signal is caused by a change in the resistance of the sensing
element during the period it was exposed to chemical vapors. The voltage changes in each
sensing element create a distribution pattern or odor print that can be used to identify
VOC mixtures through pattern recognition techniques. The E-nose system was cleaned
with fresh air for 100 s before testing to establish a stable baseline. The sample chamber
was manually connected to the device and then analyzed for 120 s for the E-nose analysis.
Finally, the sensor housing was cleaned with fresh air for 100 s (Figure 2). The output
voltage of the sensors was acquired with data acquisition cards (ATmega2560 R3, Italy), and
the sensor signals were recorded at 1-s intervals and stored in the computer by connecting
the USB port to the computer. The baseline was corrected using a fractional method in
which possible noise or deviations were eliminated. Moreover, the sensor responses were
normalized and made dimensionless using the following equation [22]:
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Ys(t) =
Xs(t)− Xs(0)

Xs(0)
(1)

where YS(t) is the normalized response, XS(0) is the baseline, and XS(t) is the sensor
response.

Table 1. The used sensors in the electronic nose [27], reproduced with permission from author,
Journal of Food Measurement and Characterization, published by Springer Nature, 2020.

Sensor Type Main Applications Typical Detection Ranges
(ppm)

MQ3 Alcohol 10–300
TGS822 Steam organic solvents 50–5000
MQ-136 Sulfur dioxide (SO2) 1–200
MQ-9 CO and combustible gas Co 10–1000, Cg 100–10,000

TGS813 CH4, C3H8, C4H10 500–10,000
MQ135 Steam ammonia, benzene, sulfide 10–10,000

TGS2602 Sulfide, hydrogen sulfide,
ammonia, toluene 1–30

TGS2620 Alcohol, steam organic solvents 50–5000
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Figure 2. Schematic of E-nose used. The components of this system consist of the following parts:
(a) Air filter (activated charcoal to remove ambient-air VOC hydrocarbons); (b) Sample headspace
chamber; (c) Solenoid air valves; (d) Diaphragm pump; (e) E-nose sensor array chamber; (f) Data
acquisition recorder; (g) Personal computer (PC); (h) Air outlet line from sensor array chamber (for
exhaust gases) [37].

2.3. Chemometrics Methods

Based on the results of the experiments performed with the electronic nose, prin-
cipal component analysis (PCA), linear and quadratic analysis (LDA), support vector
machine (SVM), and artificial neural network (ANN) methods were used to analyze the
initial reaction.

In addition to reducing the size of large datasets by creating uncorrelated variables,
PCA can help reduce dimensionality in large datasets. Here, each principal component is a
linear combination of all primary variables. This method also helps to understand how a
sample differs from other samples (score plot) and which variables contribute most to this
distinction [41]. For data analysis, after normalization, it was entered into the Unscrambler
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software. PCA was used as a method capable of showing the initial relative position of
samples in a two-dimensional space to observe the escape changes between different lemon
juice samples.

Fisher’s linear discriminant generalization is a method used in statistics, pattern
recognition, and machine learning to find a linear combination of features that distinguish
or differentiate two or more classes of objects or events. LDA is closely related to PCA in
that both look for linear combinations of variables that best describe the data, although
LDA usually has a better classification effect than PCA and CA. LDA has been used to
detect different levels (12 levels) of lemon juice fraud in practice, whether it can be detected
by the electronic nose or not [42]. In this method, normalized data and their labels (targets)
were used for analysis.

Vapnik introduced the SVM method, which has been further developed in recent years.
Studies have shown that SVMs have a higher classification rate than other classification
algorithms. The use of the SVM as a learning technique has become increasingly popular
in various fields over the last decade [43]. The support vector machine (SVM) is a classifi-
cation algorithm described by a separate hyperplane. In SVMs, hyperplanes are found in
dimension N that allow the unique classification of data points. Support vectors are data
points closer to the hyperplane that affect the orientation and position of the hyperplane
and help increase the classifier’s margin. Data points on either side of the hyperplane
can be assigned to different classes, where their dimensions depend on the number of
attributes. For example, if the number of input properties is two, the hyperplane will be a
line, while if there are three input properties, the hyperplane will be a two-dimensional
plane [44]. In this research, 4 kernel functions, including linear, polynomial, sigmoid, and
radial functions, were used. The data intended for test learning were considered 60% and
40%, respectively. To analyze the dataset, each learning set was repeated ten times and the
average value was calculated.

An ANN is also a machine learning algorithm that mimics human neural networks
and can be used to predict, cluster, and recognize patterns based on past and present
educational data [45]. It is known that the human brain has billions of neurons that send
and receive electrical signals for proper function and control [46]. With an ANN, a large
number of variables can be included, and each variable can be weighted differently to
produce an output that is very similar to the predicted one [47]. In a classification network,
there are three layers: an input layer, a hidden layer, and an output layer. Furthermore,
the data are usually divided into training, validation, and test sets. Since the lemon juice
dataset was processed at 12 different layers, 12 output layers and the input layers based
on the signals from 8 sensors were considered as 8 layers in this study. The hidden layer
was also determined by trial and error. About 60% of the data were used for learning,
20% for testing, and 20% for validation. The log-sigmoid transfer function and Levenberg–
Marquardt learning method were used in network training. The calculations and methods
were performed using Unscrambler X 10.4 (for the PCA, SVM, and LDA) and MATLAB
R2016a (for the ANN).

2.4. Criteria for Model Evaluation

The confusion matrix is a very popular measure used while solving classification
problems. It can be applied to binary classification as well as for multiclass classification
problems [48]. This method shows how well a classification model performs on a set of
experimental data whose actual values are known. This confusion table or matrix shows the
results of classification based on the actual information available. It is a two-dimensional
matrix, indexed in one dimension by the true class of an object and in the other by the
class that the classifier assigns [49]. Based on these values, various criteria for classification
evaluation and accuracy measurement can be defined:

Accuracy is the most important and simplest criterion for evaluating the quality of a
category. It is defined as the degree of correct diagnosis of the category in a total of two
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categories. This parameter indicates the number of correctly identified patterns and is
formulated and defined as follows [50]:

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

The accuracy parameter is usually expressed as a percentage. However, in addition
to the accuracy criterion, other parameters can be easily extracted from this matrix. One
common criterion is the sensitivity criterion, also called “true positive rate” or recall.
Sensitivity refers to the proportion of positive cases that the test correctly identified as
positive. It can be calculated as follows [51]:

Re call =
TP

TP + FN
(3)

Alternatively, the accuracy of detecting negative classes may sometimes be more
important than this parameter. The specificity parameter, also referred to as the true
negative rate, is usually considered along with sensitivity. This factor indicates the ratio of
negative samples that the experimenter correctly identified as negative, which is calculated
as follows [52]:

Speci f icity =
TN

TN + FP
(4)

The criteria of sensitivity and specificity are similar to the criterion of accuracy, which
is usually expressed as a percentage. Clearly, an excellent prediction determines the
sensitivity and specificity values as a percentage. In reality, however, this is very unlikely,
and there is always a small margin of error. By their very nature, the mentioned parameters
are always in competition with each other. As one increases, the other decreases, and vice
versa. Therefore, another tool was developed to assess the quality of categories.

The area under a receiver operating characteristic (ROC) curve, abbreviated as AUC, is
a single scalar value that measures the overall performance of a binary classifier. The AUC
value is within the range (0.5–1.0), where the minimum value represents the performance
of a random classifier and the maximum value would correspond to a perfect classifier [53].
The Receiver–Operating–Characteristic curve (ROC) expresses the relationship between
the two parameters’ sensitivity and characteristics [54].

AUC =
Sensitivity + Precision

2
(5)

There is another important parameter, the F-measure, which is often used to evaluate
the performance of categories, and a combination of the two parameters of sensitivity and
positive predictive value. Explaining that the parameter of positive predictive value is
called precision and sensitivity is called recall, the “criterion F” is defined as follows [55]:

F =
2 × PR
P + R

(6)

Precision =
TP

TP + FP
(7)

3. Results and Discussion
3.1. Principal Component Analysis (PCA)

The maximum value of the response curve of the electronic nose is a stable value
throughout the response process, reflecting the stable response of the sensor to the sample
gas and the maximum change in the electrical signal. We selected the maximum response
values for the PCA analysis of the nasal output data. Figure 3 shows the PCA score chart
based on the maximum values of the samples obtained from the electronic nose. In Figure 2,
the samples can be generally divided into three groups (lemon juice with water with red,
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lemon juice pulp with blue, and wheat straw with green). The two principal components
explained 87% and 5% of the changes in the dataset, respectively. The cumulative variance
contribution for the first two principal components was 92%. On the PCA plot, although
the straw fraud samples are more distinguishable from the other treatments, there is some
overlap between the lemon juice and water samples and the lemon fruit pulp samples. This
is due to the similar odor of lemon juice and lemon pulp, varying only in intensity.
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electronic nose. Abbreviations: Lemon juice (LJ), 25% lemon and 75% water (LW1), 50% lemon and
50% water (LW2), 75% lemon and 25% water (LW3); Lemon Pulp (P), 25% lemon and 75% pulp (LP1),
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The LS3 sample overlaps with the LW1 sample, making it clear that this level of fraud
is very similar to straw and water, allowing profiteers to extract the maximum profit from
this level of fraud (Figure 2). It can also be seen, on the left side of the diagram, that the LP3
sample is very similar to the LJ sample, and this level of fraud is also widespread. From
the PCA diagram, it can be concluded that the 25% fraud levels (water, lemon pulp, and
straw) are very similar to the 75% lemon juice and are difficult to detect.

Celdrán, et al. [56] used an inexpensive electronic nose to identify different types of
wine. According to their results, the PCA method had 100% accuracy. They stated that the
electronic nose can be used as a reliable tool to detect counterfeit wine labels in the wine
industry. Moreover, an electronic nose with 12-MOS-based gas sensors has been used to
classify the quality of three Indonesia black teas. The experimental results showed that all
three samples almost have the same aroma when observed from the sensor response. The
results of the PC-1 and PC-2 components accounted for 80.3% and 15.3% of the variance,
respectively [57].

From Figure 4, it can be seen that, except for the sensors TGS2602 and MQ136, which
are located near the middle circle, the other sensors are located around the outer circle. This
classification describes 100% of the data variance, while the middle circle explains only 50%
of the data variance. As is clear from Figure 3, the highest loading coefficient is related to
the TGS813 sensor. A positive correlation was found between MQ9 and TGS2620. In turn,
MQ3, MQ135, and TGS822 exhibited a strong positive correlation. A correlation with a
specific compound may be detected because the E-nose sensors are cross-sensitive to all
materials in the headspace gas.
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3.2. Linear Discriminant Analysis (LDA)

The LDA model was used to detect fraud in lemon juice. In this method, 12 lemon
juice groups were classified (Figure 5). Eight metal oxide sensors were used as inputs to
the model. The inputs of the model all had the same weight. From Figure 4, it can be seen
that the first two unique functions were able to classify the samples into 12 groups with a
variance of 98.33%. The larger the variance between the data collection points, the larger
the group differentiation. This method correctly and completely separates samples LJ, LP3,
and LW1, which are very difficult to detect as fraud.
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Figure 5. Results of linear analysis to detect lemon juice fraud using LDA. Abbreviations: Lemon
juice (LJ), 25% lemon and 75% water (LW1), 50% lemon and 50% water (LW2), 75% lemon and
25% water (LW3); Lemon Pulp (P), 25% lemon and 75% pulp (LP1), 50% lemon and 50% pulp (LP2),
75% lemon and 25% pulp (LP3); Wheat Straw (S), 25% lemon and 75% straw (LS1), 50% lemon and
50% straw (LS2), 75% lemon and 25% straw (LS3).
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Table 2 displays the confusion matrix and performance parameters of the performance
parameters of the LDA methods. A total of 180 data points were included in the study,
and only 3 were misdiagnosed by lemon juice. According to the table, all samples except
LW1 were correctly identified, so that three samples have been diagnosed as the LP2
group. The performance parameters of the LDA method for detecting lemon juice fraud
can be determined using Equations (2)–(7). Accuracy, precision, recall, and specificity were
0.997, 0.986, 0.983, and 0.998, respectively. Additionally, the AUC and F values were 0.992
and 0.983, respectively. The results obtained in this research were consistent with other
products, such as different oil types and adulterated safflower seed oil [58], minced mutton
mixed with pork [59], oranges [60], and tomato paste [61]. Moreover, in another study, the
electronic nose was used by Gomez, et al. [62] to identify the ripening state of tomatoes, and
the results revealed that the electronic nose was able to discriminate the ripening states of
tomatoes. The LDA method was used to identify and classify the different ripening stages
of tomatoes. This method classified 100% of the total relevant samples for each group.

Table 2. Confusion matrix and performance parameters obtained from the LDA method to detect
lemon juice fraud.

LJ LW1 LW2 LW3 P LP1 LP2 LP3 S LS1 LS2 LS3 Accuracy Precision Recall Specificity AUC F

LJ 15 0 0 0 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LW1 0 12 0 0 0 0 0 0 0 0 0 0 0.983 1.000 0.800 1.000 1.000 0.889
LW2 0 0 15 0 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LW3 0 0 0 15 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
P 0 0 0 0 15 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LP1 0 0 0 0 0 15 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LP2 0 3 0 0 0 0 15 0 0 0 0 0 0.983 0.833 1.000 0.982 0.908 0.909
LP3 0 0 0 0 0 0 0 15 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
S 0 0 0 0 0 0 0 0 15 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LS1 0 0 0 0 0 0 0 0 0 15 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LS2 0 0 0 0 0 0 0 0 0 0 15 0 1.000 1.000 1.000 1.000 1.000 1.000
LS3 0 0 0 0 0 0 0 0 0 0 0 15 1.000 1.000 1.000 1.000 1.000 1.000

Average 0.997 0.986 0.983 0.998 0.992 0.983

Abbreviations: Lemon juice (LJ), 25% lemon and 75% water (LW1), 50% lemon and 50% water (LW2), 75%
lemon and 25% water (LW3); Lemon Pulp (P), 25% lemon and 75% pulp (LP1), 50% lemon and 50% pulp (LP2),
75% lemon and 25% pulp (LP3); Wheat Straw (S), 25% lemon and 75% straw (LS1), 50% lemon and 50% straw
(LS2), 75% lemon and 25% straw (LS3).

3.3. SVM Results

Two support vector machine methods, namely C and Nu, were used to classify the
lemon juice samples based on the signals obtained from the electronic nose. Nu-SVM
basically uses the parameter Nu instead of C (which is used as a hyperparameter in the
case of the linear SVM) as a hyperparameter for penalizing incorrect classifications. Range
here basically indicates the upper and lower limits between which our hyperparameter
can take its value. The range of C is from zero to infinity, but Nu is always between (0,1).
The parameters of this method, Nu, C, and γ, were validated by trial and error through
minimization. A total of 70% of the data were used for training and the remaining 30% for
testing, and the weighting of the input data was the same. Four sigmoid, radial, and linear
polynomial functions were also used. Twelve groups of lemon juice samples were analyzed
to determine if there were any differences between them, and the results are shown in
Table 3.

The results for the classification of lemon juice show that the linear model has a train-
ing accuracy of 99.44% and a validation accuracy of 96.11% (Figure 6). As shown in Table 3,
the Nu-SVM method provides higher accuracy than the C-SVM method. Table 4 shows
the confusion matrix and performance parameters calculated from the linear function of
the Nu-SVM method, which provides the highest classification accuracy. Only 1 out of
180 samples of the linear model were misidentified by this matrix, while the other
180 samples were correctly identified. Moreover, the performance parameters of the
network, i.e., the values of accuracy, precision, recall, and specificity, were 0.999, 0.994,
0.999, and 0.099, respectively, and the values of AUC and F were also 0.997 and 0.994. These
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results are consistent with the results obtained by other researchers [63–66]. Ghasemi-
Varnamkhasti, et al. [67] used an electronic nose to determine the freshness of strawberries
when they were packaged in different polymers with a high classification accuracy using
the SVM method. In a study using an electronic nose, PCA, LDA, and SVM analysis
methods were used to detect artificial crab apples. The accuracy of these methods was
85.11, 100, and 98.3%, respectively [68].

Table 3. Results and comparison of Nu-SVM and C-SVM models subjected to the kernel functions.

Kernel Function
C-SVM Nu-SVM

C γ Train Validation Nu γ Train Validation

Linear 100 1 97.77 94.44 0.1 0.255 99.44 96.11
Polynomial 1 10 90.55 87.77 0.5 1 96.11 91.66

Radial basis function 1 100 93.33 85.55 0.1 0.5 97.22 95.55
Sigmoid 0.1 100 92.22 86.11 0.1 0.255 89.44 88.88

The bolded value in the table means the Nu-SVM model with a linear kernel function showed the best performance
in detecting lemon fraud.
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Figure 6. Results of the Nu-SVM method with liner kernel function to detect lemon juice fraud.
Abbreviations: Lemon Juice (LJ), 25% lemon and 75% water (LW1), 50% lemon and 50% water (LW2),
75% lemon and 25% water (LW3); Lemon Pulp (P), 25% lemon and 75% pulp (LP1), 50% lemon and
50% pulp (LP2), 75% lemon and 25% pulp (LP3); Wheat Straw (S), 25% lemon and 75% straw (LS1),
50% lemon and 50% straw (LS2), 75% lemon and 25% straw (LS3).

Table 4. Confusion matrix and performance parameters to detect lemon juice fraud using the Nu-SVM
method with liner kernel function.

LJ LW1 LW2 LW3 P LP1 LP2 LP3 S LS1 LS2 LS3 Accuracy Precision Recall Specificity AUC F

LJ 15 0 0 0 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LW1 0 14 0 0 0 0 0 0 0 0 0 0 0.994 1.000 0.933 1.000 1.000 0.966
LW2 0 0 15 0 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LW3 0 0 0 15 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
P 0 0 0 0 15 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4. Cont.

LJ LW1 LW2 LW3 P LP1 LP2 LP3 S LS1 LS2 LS3 Accuracy Precision Recall Specificity AUC F

LP1 0 0 0 0 0 15 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LP2 0 1 0 0 0 0 15 0 0 0 0 0 0.994 0.938 1.000 0.994 0.966 0.968
LP3 0 0 0 0 0 0 0 15 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
S 0 0 0 0 0 0 0 0 15 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LS1 0 0 0 0 0 0 0 0 0 15 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LS2 0 0 0 0 0 0 0 0 0 0 15 0 1.000 1.000 1.000 1.000 1.000 1.000
LS3 0 0 0 0 0 0 0 0 0 0 0 15 1.000 1.000 1.000 1.000 1.000 1.000

Average 0.999 0.995 0.994 0.999 0.997 0.994

Abbreviations: Lemon Juice (LJ), 25% lemon and 75% water (LW1), 50% lemon and 50% water (LW2),
75% lemon and 25% water (LW1); Lemon Pulp (P), 25% lemon and 75% pulp (LP1), 50% lemon and 50%
pulp (LP2), 75% lemon and 25% pulp (LP3); Wheat Straw (S), 25% lemon and 75% straw (LS1), 50% lemon and
50% straw (LS2), 75% lemon and 25% straw (LS3).

3.4. ANN Results

To build the model, eight gas sensors were used as input data and twelve different
groups of lemon juice were used as target data. Therefore, the input neurons of the network
were set equal to eight, and the output neurons were set equal to twelve. The hidden
layer was determined by trial and error. As shown in Table 5, 60% (for training), 20% (for
validation), and 20% (for testing) of the total data were used. The developed models were
then evaluated by the percentage of correct diagnosis (CCR), R-squared (R2), and root
mean square error (RMSE). The optimal topology for the mentioned neural network is the
highest value for the coefficient of determination of R2 and the lowest for root mean square
error (RMSE). Therefore, the R2 value close to 1 and the RMSE value close to 0 indicate
the best model for classification. Based on the results from Table 6, for 12 groups of lemon
juice, the topology 8-15-12 was determined to be the best. The R2 values for train and test
sets were 0.981 and 0.951, respectively, the RMSE values for train and test sets were 0.027
and 0.061, respectively, and the model had an overall detection accuracy of 97.8%. Table 6
shows the confusion matrix and performance parameters for this network. Accordingly,
the performance parameters of the confusion matrix, such as accuracy, precision, recall,
and specificity, were 0.996, 0.980, 0.977, and 0.997, respectively, while the AUC and F values
were 0.989 and 0.977, respectively. Since the value performance in the training phase is
lower than that in the experimental phase, there is no evidence of under- or overfitting.
These results are consistent with the studies obtained by other researchers that have been
conducted with the help of the E-nose and ANNs [69–73]. Khorramifar, Rasekh, Karami,
Malaga-Toboła, and Gancarz [42] used an ANN and an electronic nose to classify potato
varieties with a 97.8% accuracy. Similarly, Rasekh, Karami, Wilson, and Gancarz [37] used
an olfactory machine and an ANN to classify the essential oils of plants and fruits with
a 98.9% accuracy. Accordingly, it can be said that the artificial neural network with the
electronic nose is very accurate and efficient in detecting and diagnosing diseases and is
also very practical.

According to Figure 7, the 12 lemon juice groups can be accurately classified based
on their test results. The statistical results were calculated using Equations (1)–(6) and
their average was presented. As can be seen in the figure, all models had an accuracy and
specificity greater than 0.995. The SVM method had the highest recall value of 99.4%, while
the ANN method had the lowest value of 99.7%. Overall, all models were very accurate, so
the electronic nose and chemometrics methods can be used to detect lemon fraud quickly
and accurately.
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Table 5. Artificial neural network results.

Topology Train Test
CCR (%)RMSE R2 RMSE R2

8-5-12 0.411 0.672 0.456 0.634 66.4
8-6-12 0.346 0.731 0.460 0.632 70.0
8-7-12 0.278 0.808 0.368 0.725 78.2
8-8-12 0.221 0.835 0.350 0.736 80.3
8-9-12 0.203 0.864 0.245 0.824 85.5

8-10-12 0.090 0.932 0.215 0.852 89.8
8-11-12 0.117 0.923 0.185 0.871 89.1
8-12-12 0.080 0.945 0.227 0.861 90.0
8-13-12 0.047 0.9967 0.219 0.857 91.4
8-14-12 0.093 0.978 0.268 0.904 94.2
8-15-12 0.027 0.981 0.061 0.959 97.8

The 8-15-12 topology is the best performance in detecting lemon fraud.

Table 6. Confusion matrix and performance parameters to detect lemon juice fraud using ANN
methods.

LJ LW1 LW2 LW3 P LP1 LP2 LP3 S LS1 LS2 LS3 Accuracy Precision Recall Specificity AUC F

LJ 15 0 0 0 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LW1 0 15 0 0 0 0 3 0 0 0 0 0 0.983 0.833 1.000 0.982 0.908 0.909
LW2 0 0 15 0 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LW3 0 0 0 15 0 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
P 0 0 0 0 15 0 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LP1 0 0 0 0 0 15 0 0 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LP2 0 0 0 0 0 0 12 0 0 0 0 0 0.983 1.000 0.800 1.000 1.000 0.889
LP3 0 0 0 0 0 0 0 15 0 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
S 0 0 0 0 0 0 0 0 15 0 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LS1 0 0 0 0 0 0 0 0 0 15 0 0 1.000 1.000 1.000 1.000 1.000 1.000
LS2 0 0 0 0 0 0 0 0 0 0 15 1 0.994 0.938 1.000 0.994 0.966 0.968
LS3 0 0 0 0 0 0 0 0 0 0 0 14 0.994 1.000 0.933 1.000 1.000 0.966

Average 0.996 0.981 0.978 0.998 0.989 0.978

Abbreviations: Lemon Juice (LJ), 25% lemon and 75% water (LW1), 50% lemon and 50% water (LW2), 75% lemon
and 25% water (LW1); Lemon Pulp (P), 25% lemon and 75% pulp (LP1), 50% lemon and 50% pulp (LP2), 75%
lemon and 25% pulp (LP3); Wheat Straw (S), 25% lemon and 75% straw (LS1), 50% lemon and 50% straw (LS2),
75% lemon and 25% straw (LS3).

The E-nose and chemometric methods, such as PCA, LDA, QDA and SVM, were
used to evaluate the freshness of natural and industrial juices. The accuracy of the afore-
mentioned methods was 93%, 85.83%, 90.83%, and 92.5%, respectively [38]. In a study
involving a portable E-nose and the SVM method, the researchers classified poultry meat
samples based on their firmness with 100% accuracy. They also used this method for the
samples of rapeseed oil and extra virgin olive oil with an overall accuracy of 100% and
82%, respectively [28]. In another study, an artificial neural network was utilized to predict
the shelf life of processed cheese; the achieved accuracy was 99.7% [74]. In a study by
Khorramifar, Rasekh, Karami, Malaga-Toboła, and Gancarz [42], the use of an ANN and
E-nose led to the classification accuracy of 97.8% for potato cultivars. Rasekh, et al. [75]
used an olfactory machine and ANN and reported an accuracy of 98.9% in the detection of
plant and fruit essential oils. Therefore, it can be said that a combination of a SVM with an
E-nose can lead to high accuracy and efficiency in identification and detection.
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4. Conclusions

The recent development of electronic sensory methods based on the detection of artifi-
cial odors of volatile components using an electronic nose of the type MOS provides a new
tool for the detection of genuine and counterfeit foods in commercial markets. These new
methods have the potential to facilitate the implementation of regulatory quality assurance
and to verify the quality and authenticity of food products through rapid assessment by
volatile diffusions (aroma). To determine the relationship between the E-nose signal and
the classification of lemon juice, LDA, SVM, and ANN classification algorithms were used
and compared. The classification results showed that the accuracy of the Nu-SVM method
with a linear kernel function was higher than the others, there was no overlap between the
methods, and the methods were able to classify the lemon juice into different categories
with high accuracy. Our findings demonstrate that an electronic nose can be used to detect
different levels of lemon juice fraud nondestructively. In addition, it is possible to distin-
guish pure lemon juice from its counterfeit products. Thus, consumers are protected from
buying counterfeit products. Moreover, this method is simple and fast and does not require
the separation of volatile components.
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20. Wasilewski, T.; Migoń, D.; Gębicki, J.; Kamysz, W. Critical review of electronic nose and tongue instruments prospects in
pharmaceutical analysis. Anal. Chim. Acta 2019, 1077, 14–29. [CrossRef]

21. Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211. [CrossRef]
22. Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Comparison of chemometrics and AOCS official methods for predicting the shelf life

of edible oil. Chemom. Intell. Lab. Syst. 2020, 206, 104165. [CrossRef]
23. Rüffer, D.; Hoehne, F.; Bühler, J. New Digital Metal-Oxide (MOx) Sensor Platform. Sensors 2018, 18, 1052. [CrossRef] [PubMed]
24. Van Duy, L.; Nguyet, T.T.; Le, D.T.T.; Van Duy, N.; Nguyen, H.; Biasioli, F.; Tonezzer, M.; Di Natale, C.; Hoa, N.D. Room

Temperature Ammonia Gas Sensor Based on p-Type-like V2O5 Nanosheets towards Food Spoilage Monitoring. Nanomaterials
2023, 13, 146. [CrossRef] [PubMed]

25. Tatli, S.; Mirzaee-Ghaleh, E.; Rabbani, H.; Karami, H.; Wilson, A.D. Rapid Detection of Urea Fertilizer Effects on VOC Emissions
from Cucumber Fruits Using a MOS E-Nose Sensor Array. Agronomy 2022, 12, 35. [CrossRef]

26. Gorsaka-Horczyczak, E.; Guzek, D.; Moleda, Z.; Wojtasik-Kalinowska, I.; Brodowska, M.; Wierzbicka, A. Applications of electronic
noses in meat analysis. Food Sci. Technol. 2016, 36, 389–395. [CrossRef]

27. Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas.
Charact. 2020, 14, 2600–2610. [CrossRef]

https://doi.org/10.1111/jfpp.14696
https://doi.org/10.1080/10942912.2021.1908354
https://doi.org/10.1111/1750-3841.14279
https://www.ncbi.nlm.nih.gov/pubmed/30020548
https://doi.org/10.1080/19440049.2016.1138547
https://doi.org/10.1002/fsn3.2260
https://doi.org/10.1016/j.foodchem.2021.131424
https://doi.org/10.3390/antiox8050137
https://doi.org/10.3390/chemosensors10110486
https://doi.org/10.1007/s12161-016-0479-5
https://doi.org/10.1021/jf8006823
https://doi.org/10.1016/j.foodchem.2013.09.020
https://doi.org/10.1016/j.microc.2016.07.002
https://doi.org/10.1007/s12161-016-0747-4
https://doi.org/10.1021/acs.jafc.0c07447
https://doi.org/10.3390/foods11244077
https://doi.org/10.1016/j.snb.2005.03.090
https://doi.org/10.1016/j.lwt.2022.113667
https://doi.org/10.1016/j.foodchem.2017.11.013
https://www.ncbi.nlm.nih.gov/pubmed/29291839
https://doi.org/10.1016/j.aca.2019.05.024
https://doi.org/10.1016/0925-4005(94)87085-3
https://doi.org/10.1016/j.chemolab.2020.104165
https://doi.org/10.3390/s18041052
https://www.ncbi.nlm.nih.gov/pubmed/29614746
https://doi.org/10.3390/nano13010146
https://www.ncbi.nlm.nih.gov/pubmed/36616056
https://doi.org/10.3390/agronomy12010035
https://doi.org/10.1590/1678-457X.03615
https://doi.org/10.1007/s11694-020-00506-0


Processes 2023, 11, 1531 16 of 17

28. Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gebicki, J.; Namieśnik, J. Portable Electronic Nose Based on Electrochemical Sensors
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K.; Gancarz, M. How to Identify Roast Defects in Coffee Beans Based on the Volatile Compound Profile. Molecules 2022,
27, 8530. [CrossRef]
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