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Abstract: The multi-objective optimization of methanol distillation is a critical and complex issue in
the methanol industry. The three-column methanol distillation scheme is first simulated with Aspen
Plus to provide the initial value of the NSGA-III algorithm. The operating parameters are optimized
through the Python-Aspen platform. The total annual cost and CO, emissions are considered the
objective function. A small value of indicator generational distance can be achieved by increasing
the number of generations, which is helpful in improving algorithm convergence. The NSGA-III
algorithm has good convergence and distribution performance. By comparing the optimized results
with the original ones, the total annual cost and CO, emissions are, respectively, reduced by 5.35%
and 12.80% when the operating parameters of the methanol distillation sequence are optimized
through NSGA-IIIL. As a result, substantial economic and energy savings can be made, offering great
potential to improve the performance of the three-column methanol distillation.

Keywords: methanol; distillation sequence; NSGA-III; multi-objective optimization; process simulation

1. Introduction

Methanol has wide industrial applications for the production of methylamine, formalde-
hyde, acetic acid, dimethyl ether, and methyl tert-butyl ether. In the methanol industry, crude
methanol products are refined by distillation operations, which has a direct impact on the
output and quality of methanol products [1]. Approximately 20% of the energy consumption
in methanol production originates from the distillation units [2]. To save energy cost, some
researchers developed extractive distillation for the production of ethanol [3—6]. To identify
the minimum total annual cost, the optimization of distillation sequences was carried out
for separating acetonitrile-methanol-benzene mixture [7]. However, the multi-objective
optimization of methanol distillation sequences is still a much more essential task for the
methanol industry.

Initially, the two-column methanol distillation scheme was commonly adopted to re-
move water and organic contaminants from crude methanol. At present, the three-column
double-effect distillation scheme is widely applied due to its better performance. In this
scheme, the methanol refining is separated into a pressurized column and an atmospheric
column. The liquid from the bottom of the atmospheric column is heated by the gas from
the top of the pressurized column. The three-column scheme has resulted in a signifi-
cant decrease in energy consumption compared to earlier designs. For the three-column
methanol distillation schemes, Xue et al. [8] developed a novel technology for three-column
triple-effect methanol distillation, and the results revealed that the energy consumption
was decreased by 20.91% compared to the three-column double-effect distillation scheme.
However, they did not carry out the multi-objective optimization. The optimization of the
operating parameters is non-trivial and needs some sophisticated mathematical algorithms
rather than empirical attempts.

In recent years, the introduction of differential evolution algorithms has been favored
to synchronously optimize chemical processes. Errico et al. [9] proposed a multi-objective
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design approach for the optimization of distillation sequence systems. By combining
this method with the differential evolution algorithm, the calculation time was reduced
by 28% compared with the optimization, using only the differential evolution algorithm.
Contreras-Zarazua et al. [10] intensified the production process of diphenyl carbonate
by the optimization involving cost and operating properties. The optimal configuration
design of different reactive distillation towers was carried out. They found that the larger
the liquid holding capacity and diameter of the tray, the better the control performance.
Alcocer-Garcia et al. [11] used differential evolution with tabu list as the optimization
algorithm for optimizing the Eco-indicator 99 and the total annual cost of four different
levulinic acid distillation sequences. Compared with the conventional scheme, both the
Eco-indicator 99 and the total annual cost were reduced by the multi-objective optimization.
However, compared with the genetic algorithm (GA), which is rich in individual selection
strategies, the evolutionary mechanism of the differential evolution algorithm adopts a sim-
ple selection strategy, and it has not been optimized in advance for the parent individuals
who participate in the reproduction, resulting in a low calculation efficiency.

At present, genetic algorithms have been widely used in many chemical process
optimizations. The genetic algorithm is a search technique based on the principles of
genetics and natural selection [12]. Since the conventional genetic algorithm chooses the
best solutions based on random changes generated by the mutation operator, it is not
guaranteed to find the optimal global solution to specific problems, but it is excellent at
finding good, acceptable Pareto solutions [13]. With the continuous optimization of coding
and convergence, the performance of the genetic algorithms is improved. Among them, the
elite non-dominated sorted genetic algorithm-II (NSGA-II) can find the optimal solution
approach to the Pareto front infinitely, and the crowding distance mechanism ensures that
the optimal solution set has a good distribution. Tarafder et al. [12] presented a multi-
objective optimization of the industrial ethylene reactor based on the elite non-dominated
sorting genetic algorithm-II and finally obtained better operating parameters for the reactor.
Although NSGA-II is widely applied because of its superior global search capability, its
search accuracy is relatively poor, and the diversity remains to be enhanced because of
blind spots.

The non-dominated sorting genetic algorithm (NSGA-III) based on the reference point
was proposed by Deb and Jain [14]. It can balance the relationship between the accuracy of
the optimization model and calculation time and effectively select the optimal point of the
Pareto solution set, thus making the algorithm capable of dealing with multi-dimensional
complex optimization problems efficiently. Pan et al. [15] proposed a multi-objective
optimization for the separation of ethylbenzene from C8 aromatic hydrocarbons with
extractive distillation, and the total annual cost and CO; emissions were minimized by
NSGA-III to increase the economic and environmental benefits. Compared to conventional
genetic algorithms, NSGA-III has a unique selection mechanism of non-dominated sorting
based on the calculation distance of reference points [16], so it is necessary to apply NSGA-
III for the multi-objective optimization of the methanol three-column distillation process.

If the operating cost for saving energy during methanol distillation is reduced exces-
sively, equipment investments will increase. The present study aims at achieving optimal
global results for the reduction in CO; emission and total annual cost of the process of three-
column methanol distillation. Firstly, the three-column double-effect methanol distillation
is designed, and the initial parameters of the process are determined by process simulation.
Then, NSGA-III is used for the multi-objective optimization of the total annual cost and
CO; emissions of the process, because the sequential optimization cannot comprehensively
consider energy consumption and equipment investments. All of the algorithm parameters
of the conventional genetic algorithm are empirical. In addition, differing from the opti-
mization of genetic algorithm parameters used by Pan et al. [15], the effects of different
algorithm parameters on the optimization results of methanol distillation are investigated
in this work to determine the appropriate algorithm parameters. In addition, the evaluation
indicators and the minimum Euclidean distance are determined to find the optimal point
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in the Pareto front. Finally, the multi-objective optimization of three-column methanol
distillation is achieved. The optimal global solution can be obtained through the above
explorations of different algorithm parameters and evaluation indicators.

This work is organized as follows. The process simulation of the methanol distillation
unit is shown in Section 2. In Section 3, the process parameters optimization through
NSGA-III is reported for the three-column double-effect methanol distillation. Performance
indexes of total annual cost (TAC) and CO; emissions are considered as the objective
function. Pareto optimal solutions set and other evaluation indexes, which are presented to
satisfy the multi-objective optimization for process design and operation, are obtained and
reported in Section 4. The conclusions are given in Section 5.

2. Process Simulation
2.1. Implementation of The Base Simulation Model

Before building the multi-objective optimization model, the process simulation with
Aspen Plus v11 was carried out to provide the initial values for the optimization procedure.
It is worth noting that recent methods have been proposed to overcome the burden linked
to simulation costs using analytical simplifications, and “analytical Real Time Optimization”
is a typical example based on an offline simulation model [17]. The thermodynamic model
NRTL-RK is selected to predict the interaction among the components since NRTL can
predict the equilibrium for polar mixtures and calculate the activity coefficients in the liquid
phase of each column properly. The RK state equation can also predict nonpolar compounds
in the vapor phase. According to industrial uses, the purity of the refined methanol is set at
99.9 wt%, and the methanol content of the wastewater at the bottom of the atmospheric
column is required to be less than 0.3 wt%. The composition of the crude methanol feed
is presented in Table A1l in the Appendix A section. The temperature, pressure, and mass
flow rate of the feed are 40 °C, 5000 kPa, and 169,068.75 kg /h, respectively.

With the three-column arrangement, shown in Figure 1, the crude methanol is purified
via pre-run column T1, higher pressure column T2, and atmospheric column T3. To reduce
energy consumption, the overhead vapor of the high-pressure column T2 heats the sum
of the atmospheric column T3. After removing part of the soluble gas by expansion tank,
the crude methanol enters T1 near the top stage. T1 operates at a pressure slightly higher
than atmospheric pressure. The methanol vapor generated in the reboiler of T1 acts to strip
the light ends (such as dimethyl ether, hydrogen, and nitrogen) and residual dissolved gas
from the crude methanol. The bottom product of T1 is pressurized and then sent to T2,
operating at a pressure of 0.81-0.86 MPa, where approximately 50% of methanol can be
produced as the overhead product. Then, the bottom product of T2 flows into T3. In T3, the
remaining methanol is obtained as the overhead product, while wastewater is withdrawn
as the bottom product. The middle boiling impurities (mainly n-butanol) are withdrawn as
a side stream below the feed stage.

T3

side-line flow

process water
refined methanol
B

Figure 1. Schematic of the three-column double-effect methanol distillation scheme. (V1: expansion

tank; T1: pre-run column; T2: high-pressure column; and T3: atmospheric column).
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2.2. Data Reconciliation

This method was proposed by Vaccari et al. [18]. The optimization variables used for
reconciling the available data, are the following:

RRy: the mole reflux ratio of T1
RRy: the mole reflux ratio of T2
RRj3: the mole reflux ratio of T3

The objective function ¢ used for the data reconciliation procedure is based on the
errors between measured (¢;) and predicted model (¢;) values of selected key quantities.
The quantities taken into consideration are the top temperature of the three columns, the
bottom temperature of the three columns, and the mass flow rate of the refined methanol,
process water, side stream. The various terms of the objective function have all been
normalized in the following way:

)

Different runs of the following optimization problem have been executed to find the
optimal combination of variables values:

ming (k) @
Subject to
kmin S k S kmax (3)

in which k = [RRy; RRy; RR3], kmin = [0.01; 0.01; 0.01], and kmax = [5; 5; 5]. The optimization
problem is solved using the sensitivity analysis tool in Aspen Plus v11, and the optimal
values are reported in Table 1.

Table 1. Optimal values obtained with data reconciliation of methanol distillation.

Quantity Initial Values Optimal Values
RRy 1.053 0.085
RR, 0.715 1.169
RR3 0.732 0.605

To obtain the calibration values of the operating parameters, the design specifications
are carried out in the rigorous simulation of the three-column double-effect methanol
distillation without separating the reboilers and condensers from the columns. The cali-
bration values are close to the data from the actual process. After data reconciliation, the
comparison results are shown in Table 2. Except for the side stream flow rate, the relative
error between simulation values and calibration values is within the acceptable range,
indicating that the simulation results are accurate. The process simulation results from
Aspen Plus can be used for the subsequent optimization of the distillation sequence.

Table 2. Comparison results between simulation values and calibration values.

Operating Parameters Calibration Values Simulation Relative Error
T1 top/bottom temperature (°C) 82/90 82.7/90.1 0.85%/0.11%
T2 top/bottom temperature (°C) 127.2/135 128.7/134.4 1.18%/0.44%
T3 top /bottom temperature (°C) 41/116 41/116.8 0.00%/0.69%
Refined methanol flow rate (t/h) 149.591 149.592 0.00067%
Process water flow rate (t/h) 12.600 12.472 1.02%

Side stream flow rate (t/h) 1.250 1.359 8.72%
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3. Optimization of Distillation Sequence
3.1. NSGA-III

The basic process of NSGA-III is similar to that of the genetic algorithm, and it adds a
fast non-dominated sorting operation from NSGA-II and introduces reference lines for the
non-dominance ranking of individuals, effectively reducing the range of multi-dimensional
search space, and making the search process clearer. The NSGA-III algorithm is shown
in Figure 2.

|

| Initial NSGA-III
| parameters
|

|

Initial population
generation

S —— S O S

Determine

reference points

Normalized
reference planes

Associate reference
points

-

Saving log

Crossing. Mutation.
Recombination

|
. . Non-dominated :
Gen=Gen+1 sorting :
|
Select the optimal \

population

Teeting max
generation

Yes

Figure 2. NSGA-III algorithm.

Figure 3 shows the distribution of 3D elevation reference points [19]. NSGA-III selects
the reference points from the bottom and the number of reference points becomes fewer.
The vector is constructed from the reference point to the origin, and the distances to the
reference point for each population individual are calculated. Finally, the nearest reference
point and the shortest distance are determined.

___ normalized hyperplane

Figure 3. The distribution of 3D elevation reference points.
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The implementation of this optimization method is conducted through a hybrid
platform using Python v3.9 and Aspen Plus v11. The vectors of decision variables are
sent from Python to Aspen Plus through COM technology [20]. In Python, the vectors
are attributed to the process variables that will be evaluated by Aspen Plus. After the
simulation is finished, Aspen Plus returns the vector to Python. Then, the optimization
model is solved based on the NSGA-III algorithm toolbox “Geatpy” in Python. Finally,
the process is repeated until the maximum generation is reached, and the values of the
objective functions are obtained. The procedure of the optimization with the NSGA-III is

shown in Figure 4.
@ Multi-objective
optimizatio

Setting NSGA - 11T Genetic ﬁ
parameters al o
I gorithm
Establishing ‘
optimization model 11
l Process rl(-h
1 Initializing population simulation ¥ *

Generating
HV and IGD

| |

Selecting. Mutation.
Recombination

Non-dominated sorting

Printing Pareto front

l

Calculating Euclidean Selecting
distance next generation
Selecting Generating

the optimal point new generation

Figure 4. The flowsheet of the NSGA-III procedure.

3.2. Performance Parameters
3.2.1. Population Size

Population size directly affects the calculation time and population diversity. If the
value of population size is too large, the optimal solution set in the Pareto front curve
will be uniformly distributed, but the calculation time is long. Otherwise, the algorithm
has low complexity and converges prematurely, resulting in the non-uniform distribution
of Pareto solution sets. It is necessary to explore the suitable population size for the
optimization model.

The total annual cost (TAC) is selected as the assessment indicator. With the population
size P, the optimal values x; of n non-dominant individuals obtained after running the
NSGA-III program. Solution accuracy S is defined in Equation (4):

5= )

where x is the global optimal solution, x is the local optimal solution and the minimum
value of TAC. After the program runs terminally, the global optimal solution xy can be
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obtained by calculating the minimum Euclidean distance in the Pareto dataset, and the
local optimal solution x is the minimum value of TAC in the Pareto dataset.

Figure 5a presents the relationship between the population size and the total annual
cost. It is seen that the local optimal solution x is smaller than the global optimal solution
xo, so all values of S range between (0 and 1). To determine the suitable population size, the
curve fitting following Equation (5) is made by taking P as the independent variable and
S as the dependent variable. The fitting parameters are listed in Table 3. The good fitting
curve is shown in Figure 5b. It is observed that S increases with P. However, S has a slight
decrease when P is larger than 110. As a result, this study chooses 110 as the suitable value
of P.

f(x) = aexp(bx) + cexp(dx) (5)
43.8 0.994
437 @ m  Global optimal point x, (b) T
436 - ® Local optimal point x 0.992 ]\
4350 [ .
n a 0.990 1 | optimal point
~434 = !
@ Iy
Susf g o9ss -
= L 3
é‘ 432 33
& " . S 0986 -
SEERNS " . 5
E]
=430 = 0.984 |
7]
429
0.982 -
4281+ © ° o ° ° ° °
2.7 0.980 -
4.6 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Population size (P) Population size (P)

Figure 5. (a) Relationship between population size P and total annual cost; and (b) Curve fitting
between population size P and solution accuracy S.

Table 3. Parameters of fitting results.

Parameter Values
a B c d R?
78.34715 —0.00163 —77.37291 —0.00165 0.98875

3.2.2. Objective Function

To achieve the two goals of cost saving and emission reduction, two objective functions
are defined as follows:

fl(x) = min[fl(NTirNFi)] =123 6)

fz(x) = min[fZ(NTir Nri)]i=1,2,3 (7)

where f1(x) is the global minimum of total annual cost (million$); f,(x) is the global mini-
mum of CO; emissions (kt/year); Ny; is the total number of the ith column trays; and Np; is
the feed plate of the ith column.

TAC is calculated as follows [21,22]:

Cc
payback

TAC = Cg +

®)

where Cg is the annual operating cost, including low-pressure steam and condensate
(million$); Cc is the equipment investments, including heat exchanger cost, pump cost, and
column vessel cost (million$); and Ppgypack is the payback period (3 years).

The annual operating cost is calculated as

Cr = 8000(31.432m15 + 0.1525m1.4, + 0.118E) )
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where My is the annual consumption of low-pressure steam (t/year, 1 MPa); Mcy is
the annual consumption of cooling water (t/year, 20 °C); and E is the annual power
consumption (kW-h/year).

The equipment cost Cc is calculated as

Cc=Cy+Chp+Cp (10)

where the pump cost Cp is calculated as 0.01 million$.
The column cost Cy is calculated as

Cy = 17640D"%9(0.7315N)*8%2 (11)

where D is column diameter (m) and N is the total number of trays.
The heat exchanger cost Cyg is calculated as

Che = 7296 A% (12)

where A is the heat exchang area (m?).

By considering the impact of distillation separation on the environment, the indicator
of environmental performance is CO, emissions. The CO, emissions mainly come from
the reboilers at the bottom of the columns. This methodology was proposed by Gadalla
et al. [23], and CO, emissions can be calculated as

QFuel C%
[Coz]emissions = (Nf—ﬁ/ 100 (13)

where Qg is amount of fuel burnt (kW); a is the ratio of molar masses of CO, and C; and
NHYV represents the net heating value of fuel with a carbon content of C% (k] /kg).

The present study uses a NumPy array matrix in Geatpy to store the objective function
value of the population. It is named ObjV. Each row corresponds to each individual, and
each column corresponds to an objective function. Therefore, ObjV in this study is a binary
function matrix, which is expressed as follows:

fAlxn,x12-00x16)  fa(x10, %12+ X16)
filxo1,x00 ... x06)  fa(X21,X22 ... X2)

ObjV (14)

fi(xna, Xn2 o Xne)  fo(Xn1, Xn2 .- Xnp)

3.2.3. Constraint Function

Before the optimization of the distillation sequence, the purity of the corresponding
substances in the discharge stream must be qualified, and the recovery rate of the key
components must meet the requirements. In order to ensure that the flow rate and purity
of methanol at the top of T2 and T3 meet the requirements, the design specifications of the
distillation columns are used to set the recovery rate of the key components at the top and
bottom of each column, which ensures that the reflux ratio and the flow rate of the column
bottom are the output results. The constraint functions are defined as follows:

€11 €2 -+ Cle
€21 €2 -+ C2p6

CVW=| . ) ) . (15)
Cnl Cun2 - Cup

where in the matrix, column 1 represents the reflux ratio of T1, column 2 represents the flow
rate of the T1 bottom, column 3 represents the reflux ratio of T2, column 4 represents the
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flow rate of T2 bottom, column 5 represents the reflux ratio of T3, and column 6 represents
the flow rate of T3 bottom, respectively.

The NumPy array matrix CVV (Constraint Violation Value) in Geatpy is used to store
the degree of violation of each constraint condition by population individuals. If an element
of the CVV matrix is less than or equal to 0, it means that the corresponding individual
element satisfies constraint conditions. Otherwise, it means the constraint is violated. The
reflux ratios and bottom flow rates of three columns are filled into the CVV matrix by
taking the opposite numbers of these six parameters. Then, the communication between
python and Aspen Plus can be operated in a dynamic fashion well.

3.2.4. Decision Variables

Under the condition that the pressure of the three columns and the constraint condi-
tions are defined, there are six key operating variables that can be adjusted in this study,
which are the total number of trays of the three columns and the corresponding feed plate.

Considering that if the feed plate position is directly specified, the index number of
the feed plate may be greater than the total number of trays, causing the process of sending
parameters into Aspen Plus to terminate. Hence, the feed plate is changed to the ratio of
the feed plate to the total number of trays in this study, and the results are rounded down
to ensure that the index number of the feed plate is always smaller than the total number of
trays. To ensure that the mass purity of the product reached 99.9%, the design specifications
are set in the RadFrac block. At the same time, the molar recoveries of the key components
are specified as 99.9%. The six operating variables are chosen as decision variables, which
are given in Table 4.

Table 4. Range of decision variables.

Decision Variables Range
Total number of T1 trays [30, 60]
The ratio of the index number of feed plate to total number of T1 trays [0.20, 0.48]
Total number of T2 trays [65, 100]
The ratio of the index number of feed plate to total number of T2trays [0.7,0.95]
Total number of T3 trays [65, 100]
The ratio of the index number of feed plate to total number of T3 trays [0.53, 0.95]

4. Optimization Results and Discussion

The optimization procedure is carried out on a 64-bit desktop computer with an Intel
Core i7-8700 CPU @3.20 GHz, including 32 GB RAM. The results of indicator generational
distance, hypervolume, and Pareto optimal solutions are discussed.

4.1. Indicator Generational Distance

The indicator generational distance (IGD) [24], one of the indexes of evaluating the
effectiveness of evolutionary algorithms, indicates the average distance from individuals in
the Pareto front to the non-dominated solution found by the evolutionary algorithm, which
means that the smaller the value of IGD, the better the performance of the algorithm. Its
definition is as follows:

ZVEP d(l/, Q)
\uj

where U is the point set uniformly distributed on the real Pareto surface, | U1 is the number
of individuals, Q is the optimal Pareto solution set, and d (v, Q) is the minimum Euclidean
distance from individual v to population.

The IGD results of the population evolution process under different generations
are shown in Figure 6. With the increase in evolution generations, IGD value decreases
sharply and tends to be stable, which indicates that the optimization algorithm has good
convergence. In the late evolution period, the local optimal solution of the individual

IGD = (16)
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population tends to be the global optimal solution. In addition, when IGD tends to be stable,
the larger number of generations leads to a smaller value of IGD, indicating that increasing
number of generations is helpful to further improve the convergence of the algorithm.

2.00

generation 20
generation 40
generation 60
generation 80
generation 100

1.98

1.96

1.94

1.92

1.90

Indicator generational distance (x107)

0 10 20 30 40 50 60 70 80 90 100
Generation

Figure 6. The IGD results under different generations.

4.2. Hypervolume

The hypervolume (HV) evaluation method was first proposed by Zitzler [25]. It
represents the volume of the hypercube enclosed by the non-dominated solution set and
reference points in the target space obtained by the multi-objective optimization algorithm,
which means that the bigger the value of HV, the better the performance of the algorithm.
HYV is defined as follows:

HV = (5(611/14) (17)
i=
where ¢ is used to measure volume, | S| is the number of non-dominated solution sets, and
v; is the super volume formed by the reference point and the iy, solution in the solution set.
Since the calculation accuracy of the hypervolume depends on the selection of reference
points and the number of non-dominant individuals, the changing trajectory of HV is
recorded with the increase in generations, which is shown in Figure 7. It can be seen that
under different generations, HV values fluctuate greatly at the initial stage of evolution and
tend to be stable at the later stage of evolution, indicating that the number of non-dominated
individuals is increasing rapidly at the initial stage of evolution and the non-dominated
solution set reaches saturation later, which further shows that the algorithm has good
convergence and distribution performance. In addition, the reason why HV values tend to
be larger under 60 and 40 generations is that both the numbers of non-dominant individuals
are greater than those under other generations. The number of non-dominant individuals
under different generations is shown in Table 5.

Table 5. The number of non-dominant individuals under different generations.

Generation Non-Dominant Individuals
20 62
40 75
60 75
80 69

100 70
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0.024 - generation 60
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Figure 7. The HV tracking results under different generations.

4.3. Selection of The Optimal Point

Figure 8 shows all points on the Pareto front curve under different generations. These
points are the optimal solution set by considering all weight combinations which are
calculated based on NSGA-IIIL The evaluation of ideal optimization results depends on
whether points are evenly distributed and continuous. It can be seen from the comparison
that when the generation is 100, the Pareto front curve is evenly distributed and is very
close to the real Pareto frontier, thus it is selected as the optimal solution set.

®m  generation 20
125 - - ® generation 40
o A generation 60
x g
= n v generation 80
% 124 b ()’ generation 100
2 o»
g b
=} o,
Z ) %,
.2 %
Z = 1
g R 9%
) o ®
122 + <
) “3s
Mo
121 x‘f\‘A e
1 1 1 1 1 1 1

42.60 42.80 43.00 4320 43.40 43.60 43.80 44.00 44.20

Total annual cost[million$]

Figure 8. The Pareto front curve.

In industrial production, it is necessary to select one of the best points. In this study,
the technique for order preference by similarity to an ideal solution (TOPSIS), proposed
by Hwang and Yoon [26], is used to rank the evaluation object by detecting the distance
between the optimal solution and the worst solution, and then the best point on the Pareto
front can be selected.

The selection steps are as follows: Firstly, the total annual cost and CO, emissions are
normalized, as shown in Figure 9. Then, the “ideal point” according to the optimization
model is selected, which is (0,0), which meets the minimum annual total cost and CO,
emissions in this study. Finally, the distance between the point on the Pareto front curve
and the “ideal point” is calculated according to the Euclidean distance formula, and the
minimal value point is selected as the optimal point on the Pareto front curve, as shown
in Figure 10.
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Figure 10. The Euclidean distance results.

Figure 11 gives the comparison between the original and optimized results of total
annual cost and CO, emissions. By optimizing the operating parameters of the methanol
distillation sequence through NSGA-III, the total annual cost and CO, emissions are,
respectively, reduced by 5.35% and 12.80%, indicating that the optimization performance
is favorable. The optimized results of each operating variable are shown in Table 6. The
total annual cost and CO; emissions have both decreased. The tray number of column
T1 decreased from 40 to 30, and the index number of feed plate decreased from 11 to 9.
The tray number of column T2 decreased from 85 to 80, and the index number of feed
plate remained the same. The tray number of column T3 decreased from 85 to 65, and
the index number of feed plate decreased from 62 to 35. By optimizing the operating
parameters of the distillation sequence through NSGA-III, the total annual cost is reduced
by 2.44 million$, and CO, emissions are reduced by 18.01 kt/year. It can be concluded
that compared with the operating cost, the equipment cost has a greater impact on the
performance of the methanol distillation sequence, so it is necessary to use fewer trays to
reduce the total annual cost.
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Figure 11. Comparison between the original and optimized results of total annual cost and CO, emissions.

Table 6. Multi-objective optimization results and optimal operating variables.

Operating Parameters Plant Data Optimal Values  Adjustment Strategy
Total number of T1 trays 40 30 {
The index number of
feed plate in T1 1 ? '
Total number of T2 trays 85 80 {
The index number of
feed plate in T2 76 76 )
Total number of T3 trays 85 65 {
The index number of
feed plate in T3 62 35 v
TAC (million$) 45.58 43.14
CO; emissions (kt/year) 140.67 122.66

5. Conclusions

The high energy consumption is the main issue of three-column methanol distillation.
In order to achieve multi-objective optimization of three-column methanol distillation, a
strategy is put in place: optimizing the operating parameters to simultaneously minimize
the CO; emissions and total annual cost. The optimization method is based on the NSGA-
III algorithm, which is implemented through a hybrid platform using Python v3.9 and
Aspen Plus v11. The good convergence of NSGA-III was found by investigating the
indicator generational distance and the hypervolume. The evaluation indicators and the
minimum Euclidean distance were determined to find the optimal point in the Pareto
front. The TOPSIS method is applied to search for the optimal point on the Pareto front
curve, which explores an overall solution of distillation sequence design. Through multi-
objective optimization, the total annual cost and CO, emissions are reduced by 5.35% and
12.80%, respectively, which guarantees low economic and environmental impacts. The total
numbers of column T1 and T3 trays in the methanol distillation sequence are reduced due
to the optimization, indicating that the equipment cost plays a key role in reducing the
total annual cost. The NSGA-III algorithm provides a new way to optimize the methanol
distillation system in the industry.
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Nomenclature

GA Genetic algorithm

NSGA Non-dominated sorting genetic algorithm

TAC Total annual cost [million$]

T1 The pre-run column

T2 The high-pressure column

T3 The atmospheric column

RR4 The mole reflux ratio of T1

RR; The mole reflux ratio of T2

RR3 The mole reflux ratio of T3

¢; Measured values of selected key quantities

¢; Predicted model values of selected key quantities

k The values of RRy, RRy, and RR3

Kyin The minimum value of k

Kinax The maximum value of k

P The population size

S Solution accuracy

Xg The global optimal solution

X The local optimal solution

f1(x) The global minimum of total annual cost [million$]

fa(x) The global minimum of CO, emissions [kt/year]

Nr; The total number of the ith column trays

NFE; The feed plate of the ith column

Ce The annual operating cost [million$]

Cc The equipment investments [million$]

Ppayback The payback period

Mis The annual consumption of low-pressure steam [t/year, 1 MPa]
Mecw The annual consumption of cooling water [t/year, 20 °C]
E The annual power consumption [kW-h/year]

Cp The pump cost [million$]

Cy The column cost [million$]

D The column diameter [m]

N The total number of trays

CHE The heat exchanger cost [million$]

A The heat exchanger area [m?2]

[CO2]emissions  The CO, emissions [kt/year]

Qe The amount of fuel burnt [kW]

o The ratio of molar masses of CO, and C

NHV The net heating value of fuel with carbon content of C% [k] /kg]
ObjV The matrix of storing the objective function value

CVV The matrix of storing the constraint violation value

IGD The indicator generational distance

u The point set uniformly distributed on the real Pareto surface
Ul The number of individuals

Q The optimal Pareto solution set

d (v, Q) The minimum Euclidean distance from individual v to population
HV The hypervolume index
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6 The measurement of volume

IS1 The number of non-dominated solution sets

Vi The super volume formed by the reference point

TOPSIS The technique for order preference by similarity to an ideal solution
Appendix A

Table A1l. Crude methanol feed data.

Component Mass Fraction

carbon monoxide 0.0233
carbon dioxide 0.0002
hydrogen 0.0001
nitrogen 0.0019
methane 0.0001
methanol 0.8902
water 0.0767
dimethyl ether 0.0020
n-butanol 0.0046
acetone 0.0007
ethanol 0.0002
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