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Abstract: Attempting to address optimization problems in various scientific disciplines is a funda-
mental and significant difficulty requiring optimization. This study presents the waterwheel plant
technique (WWPA), a novel stochastic optimization technique motivated by natural systems. The
proposed WWPA’s basic concept is based on modeling the waterwheel plant’s natural behavior while
on a hunting expedition. To find prey, WWPA uses plants as search agents. We present WWPA’s
mathematical model for use in addressing optimization problems. Twenty-three objective functions
of varying unimodal and multimodal types were used to assess WWPA’s performance. The results
of optimizing unimodal functions demonstrate WWPA’s strong exploitation ability to get close to
the optimal solution, while the results of optimizing multimodal functions show WWPA’s strong
exploration ability to zero in on the major optimal region of the search space. Three engineering
design problems were also used to gauge WWPA’s potential for improving practical programs.
The effectiveness of WWPA in optimization was evaluated by comparing its results with those of
seven widely used metaheuristic algorithms. When compared with eight competing algorithms,
the simulation results and analyses demonstrate that WWPA outperformed them by finding a more
proportionate balance between exploration and exploitation.

Keywords: metaheuristic optimization; evolutionary optimization; exploration; exploitation; waterwheel
plant; WWPA

1. Introduction

Optimization is finding the optimal settings for a system’s design parameters to mini-
mize or maximize the fitness function. At the same time, all of the constraints are met [1,2].
Optimization difficulties exist in every industry, academic discipline, and study area. Ex-
act algorithms are one type of optimization strategy, whereas heuristic and metaheuristic
algorithms are another [3–5]. Because it requires fewer sophisticated calculations, the former
category takes less time to complete, but it may be less useful and practical. As opposed to
the former, the second class of algorithms (metaheuristics) exhibits some random/stochastic
behavior and makes an “informed search choice” for some “wise areas” [6].
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The above theorem inspires scientists to develop cutting-edge algorithms and improve
existing ones. Since optimization exists in many disciplines, including cloud computing
activities [7], face identification [8], power [9,10], and engineering challenges [11], it has
recently attracted a lot of attention from researchers. According to the No Free Lunch
(NFL) hypothesis [12], no algorithm can identify the best solution in all cases, and many
optimization algorithms have been published. In other words, an algorithm that succeeds
in finding the best answer to one kind of problem does not succeed in solving another.

Because metaheuristic algorithms use a form of random search, it is impossible to
guarantee that they always find the global optimum. However, due to their closeness
to the global optimal solution, metaheuristic algorithms’ solutions are regarded as quasi-
optimal [13]. To find a workable answer, metaheuristic algorithms need strong search
capabilities in both global and local problem-solving spaces. Combining exploration
with the global search process may improve the algorithm’s capacity to find the primary
optimum region and break out of local optima. The algorithm’s capacity to converge on
potentially superior solutions in promising areas is improved by the search process at the
local level, which incorporates the idea of exploitation [14]. While searching for an optimal
solution, metaheuristic algorithms thrive when they balance exploration and exploitation.
Thus, an algorithm that better balances exploration and exploitation when comparing the
performance of many metaheuristic algorithms on an optimization problem [15] provides
a better quasi-optimal solution. Many metaheuristic algorithms have been developed to
improve the quality of results obtained for optimization problems.

Optimization methods can be categorized as either deterministic or stochastic. Solving
linear, convex, continuous, differentiable, and low-dimensional optimization problems is
applicable within the capabilities of both gradient-based and non-gradient-based determin-
istic techniques [16]. Optimization problems that are non-linear, non-convex, discontinuous,
non-differentiable, and/or high-dimensional are unfortunately outside the scope of de-
terministic techniques. Deterministic methods provide bad results in this optimization
problem, because they become mired in local optimum solutions [17].

Optimizing problems are notoriously challenging to solve using deterministic meth-
ods; thus, academics have responded to stochastic processes. An effective random search
in the problem-solving space employing random operators and trial-and-error procedures
characterizes metaheuristic algorithms, one of the most popular stochastic approaches [18].
Metaheuristic algorithms have gained popularity for handling optimization problems due
to their effectiveness in solving problems that are non-linear, non-convex, discontinuous,
non-differentiable, NP-hard, complex, and high-dimensional. They also require no differ-
entiable information about the objective function or constraints and are not dependent on
the problem type [19].

Considering the many metaheuristic algorithms that have already been developed,
whether there is still a need to introduce even more metaheuristic algorithms is the key
question that drives metaheuristic algorithm research. The NFL theorem [20] answers
this topic by showing that there is no universally superior metaheuristic method for
optimization. Even if a metaheuristic algorithm addresses one set of optimization problems,
it does not mean that it works just as well for solving another set of optimization problems.
The NFL theorem states that an algorithm may succeed in addressing one optimization
problem while failing to solve a different one. So, when applied to optimization problems,
a metaheuristic algorithm’s output may be taken at face value. As a result, the NFL
theorem motivates researchers to create cutting-edge metaheuristic algorithms that can
more efficiently solve optimization problems.

This paper’s innovative contribution is the design of a new metaheuristic algorithm
for addressing optimization problems in various scientific disciplines; the method is called
Waterwheel Plant Algorithm (WWPA). The following are the most significant contributions
of this work:

• Modeling natural waterwheel behavior inspired the development of WWPA.
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• The method used by waterwheel plants to locate their insect food, capture it, and then
move it to a more convenient location before devouring it inspired the essential idea
of WWPA.

• We provide a mathematical model of the WWPA implementation processes throughout
the two exploration and exploitation stages.

• Twenty-three benchmark functions were used to measure WWPA’s efficiency in vari-
ous optimization tasks.

• Three engineering problems were considered in evaluating the effectiveness of the
proposed WWPA.

• Well-known algorithms were used as benchmarks against which the proposed WWPA
method was evaluated.

• A statistical analysis was performed to confirm the significant difference of the pro-
posed approach when compared with the other competitor algorithms.

The following is how the rest of the paper is laid out: In Section 2, we present our
literature review. Section 3 then presents the mathematical model and the introduction to
the proposed Waterwheel Plant Algorithm (WWPA). Simulation and effectiveness studies
for optimization problems in addition to the assessment of how well the proposed WWPA
performed in handling practical problems are then described in Section 4. Section 5
summarizes the results, and suggestions for further research are offered.

2. Literature Review

When dealing with practical problems, it is common to encounter a large number of
local optimum solutions, since the search space is typically complicated. An optimization
method is more likely to converge too quickly because of this, leading to an increased risk
of local optimizations. Many optimization algorithms attempt to address this problem by
employing methods that broaden the population’s genetic makeup. Local optima may be
avoided by using these methods, although the convergence performance may suffer. Conse-
quently, creating a powerful metaheuristic algorithm for optimization necessitates striking
a balance between exploration and exploitation. As a result of striking this equilibrium, the
optimization algorithm’s convergence speed is enhanced, and the search space is explored
more thoroughly, allowing the local optima to be avoided. Metaheuristic algorithms draw
inspiration from various sources, including evolutionary occurrences, natural phenomena,
animal life in nature, biological sciences, physics, game rules, and human relationships.

Natural swarming phenomena, such as those seen in insects, fish, birds, mammals, and
plants and animals, have inspired the development of new metaheuristic algorithms that
use swarm intelligence to solve problems. Metaheuristic algorithms can be categorized into
five classes based on the type of motivation employed in their development: swarm-based,
evolutionary-based, physics-based, human-based, and game-based. The most well-known
swarm-based algorithms include Particle Swarm Optimization (PSO) [21], Ant Colony
Optimization (ACO) [22], and Artificial Bee Colony (ABC) [23,24]. The PSO design is based
on the analogy of animal flocks foraging for food. The ability of ants to find the quickest route
from their colony to a food supply significantly influenced the development of ACO. The
design of ABC is based on a simulation of the behavior of foraging bee colonies. Swarm-
based algorithms include Golden Jackal Optimization (GJO) [25], Coati Optimization
Algorithm (COA) [26], Marine Predator Algorithm (MPA) [27], and Mountain Gazelle
Optimizer (MGO) [28].

The biological sciences, genetics, Darwin’s theory of evolution, survival of the fittest,
and natural selection inspired the development of evolutionary-based metaheuristic algo-
rithms. Some of the most well-known evolutionary-based methods are Genetic Algorithm
(GA) [29] and Differential Evolution (DE) [30]. These approaches are built on models of the
reproductive process and use the chance operations of selection, crossover, and mutation.
Artificial Immune Systems (AISs) are designed using models of the human immune sys-
tem to fight off infections and other microorganisms [31]. Cultural Algorithm (CA) [32],
Evolution Strategy (ES) [33], and Genetic Programming (GP) [32] are further examples
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of evolutionary-based metaheuristic algorithms [34,35]. Metaheuristic algorithms with a
physics foundation are motivated by physical phenomena, forces, laws, and other notions.
One of the most well-known physics-based strategies is called “Simulated Annealing”
(SA) [36]. Modeling the metal annealing process, where the metal is melted under heat
and then gently heated to form a perfect crystal, led to the development of SA. Several
algorithms that take their inspiration from Newton’s laws of motion and physical forces
have been developed. These include Spring Search Algorithm (SSA) [37], which uses the
tension force of a spring and Hooke’s law; Momentum Search Algorithm (MSA) [38]; and
Gravitational Search Algorithm (GSA) [39].

Water Cycle Algorithm (WCA) was developed to simulate the many physical changes
in the natural water cycle [40]. Multi-Verse Optimizer (MVO) [41], Archimedes Opti-
mization Algorithm (AOA) [42], Equilibrium Optimizer (EO) [43], Electro-Magnetism
Optimization (EMO) [44], Nuclear Reaction Optimization (NRO) [45], and Lichtenberg
Algorithm (LA) [46] are some well-known metaheuristics in the past decade. There have
been advancements in artificial intelligence (AI) that take cues from human behavior in
areas such as communication, thinking, and social interaction to create human-based meta-
heuristic algorithms. The most popular human-based strategy is Teaching–Learning-Based
Optimization (TLBO) [47]. The design inspiration for TLBO came from observing class-
room interactions between educators and their pupils. Poor and Rich Optimization’s (PRO)
central concept is that economically disadvantaged and privileged social groups may and
should work together to better their economic standing [48,49].

Examples of other human-based metaheuristic algorithms include Gaining–Sharing
Knowledge-based algorithm (GSK) [50], War Strategy Optimization (WSO) [51], Teamwork
Optimization Algorithm (TOA) [52], Coronavirus Herd Immunity Optimizer (CHIO) [53],
Driving Training-Based Optimization (DTBO) [54], and Ali Baba and the Forty Thieves
(AFT) [55,56]. The strategies of players, coaches, and officials, as well as the regulations of
various games, have inspired the creation of game-based metaheuristic algorithms. Volley-
ball Premier League (VPL) [57,58] and Football Game-Based Optimization (FGBO) [59] are
examples of algorithms whose central idea is the mathematical modeling of competitions
in various game leagues.

Multiple metaheuristic algorithms have been proposed in recent years, with each
employing a unique strategy for overcoming these problems. A contemporary example
of a metaheuristic that takes inspiration from nature is Butterfly Optimization Algorithm
(BOA) [60]. BOA acts as a butterfly might when looking for food and trying to mate.
BOA’s exploration and exploitation methods are relatively straightforward. In BOA, the
butterfly can either aimlessly flit around in the search space to accomplish exploration or
go straight to the best butterfly to accomplish exploitation. Switch probabilities determine
the relative weights of exploration and exploitation. Using traditional benchmark functions
and engineering design challenges, BOA was proven to work. The results and performance
of BOA are positive overall. Stochastic Fractal Search (SFS) is a relatively new metaheuristic
that takes its cues from fractals in nature [61]. During the optimization phase, SFS primarily
uses diffusion and update processes. While the first method guarantees that the search space
is exploited, the second method expands its scope with regular updates. In addition, SFS
employs Levy flight and Gaussian methods to generate new particles [62,63]. Utilizing these
methods, the algorithm’s convergence rate may be sped up. Good performance and robust
exploratory capabilities were seen in tests on SFS using both confined and unconstrained
standard benchmark functions. Optimal Baleen Whale Algorithm: To accomplish its goals
of exploration and exploitation, WOA [64] employs several methods. Some approaches
use movement around a randomly chosen solution to enhance discovery. The opposite is
true for alternative solutions, which spiral towards the optimal option to meet their needs.
Achieving a happy medium between exploration and exploitation is dependent on WOA’s
use of two adaptive parameters. WOA has been rigorously examined and verified compared
with industry-standard benchmark functions and restricted engineering design challenges.
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Stochastic Paint Optimizer (SPO) [65] is an optimization technique influenced by art.
SPO is a population-based optimizer that draws inspiration from the beauty of color and
the painting method. To identify the ideal color, the SPO optimization algorithm considers
the search area on a canvas and applies several color combinations. Great exploration and
exploitation in SPO are provided by four straightforward color combination rules that
do not require any internal parameters. Well-known mathematical benchmark functions
were used to assess the algorithm’s performance, and the results were compared with more
modern, well-researched methods to confirm the accuracy of the findings. In [66], the authors
developed the multi-objective version of this method for global engineering problems.
Principles such as employing an external archive of a specified size set the suggested
method apart from the original SPO. Moreover, this method offers the leader selection
function for performing multi-objective optimization. Adding chaos to the framework of
metaheuristic algorithms is one of the effective methods that can be used to increase the
performance of these algorithms. In [67], ten chaotic maps are used to introduce chaos into
SPO. The primary contributions of this research are the proposals of chaotic versions and
the identification of the optimal chaotic version of SPO. The analysis of certain mathematical
and engineering problems revealed that some chaotic SPO variations improve upon the
functionality of the standard SPO.

In addition, several extensions of WOA have been developed and used for a wide
range of optimization problems. Harris Hawks Optimization (HHO) [68] is a brand-new
optimizer that takes its cues from hawks’ method of hunting. HHO employs four tactics
to ambush its target during the exploitation stage. During this stage, it takes a cue from
hawks, as they hunt by perching in various places, waiting for the right moment to strike.
HHO uses an adaptable equation similar to WOA’s to iterate between the exploration and
exploitation phases. To verify HHO’s reliability, it was subjected to rigorous testing against
various reference functions and limited technical design challenges. HHO was shown to be
both competitive and promising.

Many researchers have recently developed hybrid optimization algorithms, which
combine the best features of two or more optimization techniques to address the short-
comings of using only one [69]. For example, in [70,71], a novel hybrid optimizer dubbed
PSOSCA was developed by fusing the PSO algorithm with Sine Cosine Algorithm and the
Levy flight technique. The Levy flight strategy uses random wanderings to expand the
search area. Using these random walks, you may rest assured that much ground is covered
and local maxima are more effectively avoided. Sine Cosine Algorithm (SCA) [72,73] im-
proves PSO’s ability to discover and exploit new areas by using position update equations.
PSOSCA has benefits and is successful against most PSO variations, as evidenced by the re-
sults of tests. Standard benchmark functions and real-world, resource-limited engineering
challenges were used to verify the efficacy of the new hybrid, PSOSCA.

In addition to the previous optimization algorithms, recent efforts contributed to the
emergence of more advanced algorithms. These algorithms include Keshtel Algorithm
(KA) [74] and its application in [75], Social Engineering Optimizer (SEO) [76] and its ap-
plication in [77], Red Deer Algorithm (RDA) [78] and its application in [79], and the tabu
search-based hybrid metaheuristic approach [80]. Despite the promising performance
achieved by these algorithms, according to the No Free Lunch theorem, there is an op-
portunity to develop more algorithms to improve the overall performance of optimizing
machine learning models for various applications.

An examination of current optimization techniques reveals that no metaheuristic
algorithm is predicated on simulating the organic behavior of waterwheel machinery. The
hunting behavior of plants has been studied, and the results indicate that it is an intel-
ligent process with significant potential for use in developing a new optimizer. In this
study, a new swarm-based metaheuristic method is developed and presented in the next
section to fill this knowledge gap by mathematically simulating the natural behaviors of
waterwheel plants. In this research paper, we present a new metaheuristic optimization
approach, WWPA, which takes its cues from the coordinated efforts of swarms of indi-
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vidual organisms working toward a common objective. WWPA seeks to find a middle
ground between guaranteeing rapid convergence and preventing inertia between potential
local optima. Methods for improving exploitation performance, striking a healthy balance
between exploration and exploitation, expanding the search space, and diversifying the
present population all contribute to this goal. This paper’s primary contribution is the
development of a novel optimization algorithm, referred to as Waterwheel Plant Algorithm
(WWPA), which gives a fresh perspective on the problem space of optimization. Compared
with other swarm-based and evolutionary-based algorithms, preliminary research indi-
cates that WWPA is competitive, promising, and can even exceed them. The proposed
algorithm’s efficacy was tested and confirmed with real-world, time-limited engineering
design challenges as added proof of efficiency.

3. The Proposed Methodology

The proposed Waterwheel Plant Optimization Algorithm (WWPA) is presented in this
section. The section presents the algorithm’s inspiration and the corresponding mathemati-
cal model.

3.1. Inspiration of WWPA

A wide petiole bears the traps of the waterwheel plant (also referred to as Aldrovanda
vesiculosa), which resemble little (1/12 inches) transparent flytraps [81,82]. The traps are
protected against damage or false triggers caused by accidental contact with other aquatic
plants by a ring of bristles that resemble hair and surround the trap. Similar to the teeth of a
flytrap, the trap’s outer edges are coated with many hook-like teeth that interlock as the trap
closes around its prey. About 40 long trigger hairs (think of the 6–8 trigger hairs within a
Venus flytrap trap) are located within the trap and are responsible for closing the clamshell
when triggered once or more times. In addition to the trigger hairs, these predators have
acid-secreting glands that help them digest food. The unfortunate victim is ensnared by
the trap’s interlocking teeth and mucus sealant, which together seal around it and push it
down to the base of the trap, close to the hinge. Much of the water is then digested in juices
as the trap drives the rest out. Each Aldrovanda trap may catch two-to-four meals before it
gives up, similar to a flytrap. Figure 1 shows a picture of the waterwheel plant.

Figure 1. Image of the waterwheel plant [81]. (a) Lateral view of a free-floating shoot with numerous
traps. (b) Frontal view with open and closed traps. (c) Single open trap. (d) Schematic drawing of an
open trap.
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3.2. The Mathematical Model of WWPA

This section discusses how to set up WWPA and then details how to update the water-
wheel’s location throughout exploration and exploitation using a model of the waterwheel’s
actual behavior.

3.2.1. Initialization

The proposed WWPA is a population-based technique that, via iteration, may deliver
an appropriate solution based on the search power of its population members in the
universe of possible solutions to the problem. Because of their position in the search space,
the waterwheels that comprise the WWPA population each have their values of the problem
variables. Accordingly, each waterwheel represents a possible solution to the problem, which
may be mathematically represented by a vector. The WWPA population, which includes all
the waterwheels, may be represented by matrix (1). The waterwheels’ positions in the search
space are randomly initialized at the outset of WWPA implementation using (2).

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1
⋮

Pi
⋮

PN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1,1 ⋯ p1,j ⋯ p1,m
⋮ ⋱ ⋮ ⋰ ⋮

pi,1 ⋯ pi,j ⋯ pi,m
⋮ ⋰ ⋮ ⋱ ⋮

pN,1 ⋯ pN,j ⋯ pN,M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

pi,j = lbj + ri,j.(ubj − lbj), i = 1, 2, ..., N, j = 1, 2, ..., m (2)

where the number of waterwheels and the number of variables are denoted by N and m,
respectively; ri,j is a random number in the interval [0, 1]; lbj and ubj are the lower bound
and upper bound of the j-th problem variable; P is the population matrix of waterwheel
locations; Pi is the i-th waterwheel (a candidate solution); and pi,j is its j-th dimension
(problem variable).

Each waterwheel represents a potential solution to the problem, so the objective
function can be calculated for each. It has been shown that a vector may be used to
effectively represent the values that have been determined to constitute the objective
function of the problem (3).

F =

⎡
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⎢
⎢
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⎢
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F1
⋮
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
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⎢
⎢
⎢
⎢
⎢
⎣

F(X1)

⋮

F(Xi)

⋮

F(XN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

where F is the vector of all the objective function values and Fi is the estimated value for
the i-th waterwheel. The objective function evaluations are the key metrics for selecting the
best solutions. Therefore, the best candidate solution (i.e., the best member) corresponds to
the highest value of the objective function, and the lowest value corresponds to the worst
candidate solution (i.e., the worst member). Because the waterwheels move across the
search space at different rates in each iteration, the best answer must also vary over time.

3.2.2. Phase 1: Position Identification and Hunting of Insects (Exploration)

Due to their acute sense of smell, waterwheels are formidable predators that can track
out the source of pests. Whenever an insect comes into the range of a waterwheel, the
waterwheel starts to attack it. It then attacks and hunts the bug after pinpointing its location.
Using a simulation of this behavior of waterwheels, WWPA models the initial stage of
its population update process. The exploration capacity of WWPA of finding the optimal
region and escaping from local optima is enhanced by modeling the waterwheel attack on
the insect, which causes considerable shifts in the position of the waterwheel in the search
space. To determine the new location of the waterwheel, the equation below is used in
conjunction with the simulation of the waterwheel’s approach to the insect. If the value
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of the goal function is increased by moving the waterwheel to this location, the former
location is abandoned in favor of the one described below.

Ð→
W =

Ð→r 1.(
Ð→
P (t)+ 2K) (4)

Ð→
P (t + 1) =

Ð→
P (t)+

Ð→
W.(2K +

Ð→r 2) (5)

On the other hand, the position of the waterwheel can be changed using the following
equation in case the solution does not improve for three consecutive iterations:

Ð→
P (t + 1) = Gaussian(µP, σ)+Ð→r 1

⎛

⎝

Ð→
P (t)+ 2K
Ð→
W

⎞

⎠
(6)

where Ð→r 1 andÐ→r 1 are random variables with values in the ranges [0, 2] and [0, 1], respec-
tively. In addition, K is an exponential variable with values in the range [0, 1], and

Ð→
W is a

vector that indicates the diameter of the circle in which the waterwheel plant searches for
promising areas.

3.2.3. Phase 2: Carrying the Insect in the Suitable Tube (Exploitation)

A waterwheel captures an insect and transports it to a feeding tube. The second step
of population update in WWPA is modeled after this simulated behavior of waterwheels.
WWPA’s exploitation power is increased during the local search, and better solutions are
converged upon near the ones that have already been discovered, thanks to the model of
transporting the insect to the appropriate tube leading to the creation of small changes in
the position of the waterwheel in the search space. For each waterwheel in the population,
WWPA’s designers first determine a new random location as a “good position for consum-
ing insects,” mimicking the waterwheels’ natural activity. Therefore, if the goal function
value is higher at this new site, the waterwheel is moved instead of the prior location, as
shown in the following equations:

Ð→
W =

Ð→r 3.(K
Ð→
P best(t)+ r3

Ð→
P (t)) (7)

Ð→
P (t + 1) =

Ð→
P (t)+K

Ð→
W (8)

where Ð→r 3 is a random variable with values in the range [0, 2],
Ð→
P (t) is the current solution

at iteration t, and
Ð→
P best is the best solution.

Similar to the exploration phase, if the solution does not improve for three iterations,
the following mutation is applied to guarantee to avoid local minima:

Ð→
P (t + 1) = (

Ð→r 1 +K) sin(
F
C

θ) (9)

where F and C are random variables with values in the range [−5, 5]. In addition, the value
of K decreases exponentially using the following equation:

K = (1+
2 ∗ t2

Tmax
+ F) (10)

3.3. Pseudocode of the Proposed WWPA

As an iterative method, WWPA is presented. After the first and second phases of
WWPA have been implemented, the final step is to adjust the locations of all waterwheels.
The values of the goal function are compared; then, the best solution candidate is revised.
The waterwheels’ locations are then changed for the following iteration, and this process
repeats itself until the algorithm reaches its final iteration. A schematic representation of
the inspiration of the proposed methodology is shown in Figure 2. In addition, Algorithm 1
presents the steps of the procedure involved in putting WWPA into practice. Upon comple-
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tion of the algorithm execution, WWPA offers the most promising candidate solution that
it has stored throughout the iterations.

Algorithm 1 : The proposed WWPA.

1: Initialize waterwheel plants’ positions Pi(i = 1, 2, ..., n) for n plants, objective function
fn, iterations Tmax, parameters of r,Ð→r 1,Ð→r 2,Ð→r 3, f , c, and K

2: Calculate fitness of fn for each position Pi
3: Find best plant position Pbest
4: Set t = 1
5: while t ≤ Tmax do
6: for (i = 1 ∶ i < n + 1) do
7: if (r < 0.5) then
8: Explore the waterwheel plant search space using:

Ð→
W =

Ð→r 1.(
Ð→
P (t)+ 2K)

Ð→
P (t + 1) =

Ð→
P (t)+

Ð→
W.(2K +

Ð→r 2)

9: if Solution does not change for three iterations then

10:
Ð→
P (t + 1) = Gaussian(µP, σ)+Ð→r 1(

Ð→
P (t)+2K
Ð→
W

)

11: end if
12: else
13: Exploit the current solutions to get best solution using:

Ð→
W =

Ð→r 3.(K
Ð→
P best(t)+ r3

Ð→
P (t))

Ð→
P (t + 1) =

Ð→
P (t)+K

Ð→
W

14: if Solution does not change for three iterations then
15:

Ð→
P (t + 1) = (

Ð→r 1 +K) sin( F
C θ)

16: end if
17: end if
18: end for
19: Decrease the value of K exponentially using:

K = (1+ 2∗t2

(Tmax)3 + f)

20: Update r,Ð→r 1,Ð→r 2,Ð→r 3, f , c
21: Calculate objective function fn for each position Pi
22: Find the best position Pbest
23: Set t = t + 1
24: end while
25: Return the best solution Pbest

Figure 2. The inspiration of the proposed methodology.
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3.4. Complexity Analysis

This section assesses the WWPA proposal’s computational complexity. The complexity
of WWPA calculation was determined to be O(tmax × n), but it is O(tmax × n × d) for the
d-dimension. The details of calculating this complexity are listed in the following. The level
of complexity is defined for iterations with a maximum of tmax and n agents:

• Initialize parameters of WWPA: O(1).
• Calculate fn for each agent: O(n).
• Find the best agent: O(n).
• Update agents’ positions in exploration: O(tmax × n).
• Update agents’ positions in exploitation: O(tmax ×m).
• Update K: O(tmax).
• Update parameters, t = t + 1: O(tmax).
• Find the best position Pbest: O(tmax).
• Obtain global best agent xGbest: O(1)

4. Experimental Results

In this section, we present the evaluation of the proposed WWPA with two tests to
demonstrate its worth: a benchmark function test and a test replicating a real-world engi-
neering challenge. Although the benchmark function test is useful, it is important to utilize
suitable, adequate, and diverse types of benchmark functions owing to the randomness of
the computation results produced by the stochastic optimization method. This study em-
ployed 23 regularly used benchmark function tests of varying properties [83]. To guarantee
that a proposed optimization method can also achieve higher performance in engineering
applications, it is necessary to conduct several actual engineering verification tests and use
a set of benchmark functions. Real-world engineering problems are optimization problems
with many constraints, making them ideal for comparing algorithms’ relative effectiveness.
Designing a pressure vessel, a tension/compression spring, and a welded beam are all
employed in verification engineering problems. Mechanics and structural design are the
appropriate areas of study for these three engineering problems.

4.1. Benchmark Function Test

This work employed 23 benchmark test functions widely used in optimization algo-
rithms. Unimodal benchmark functions F1 to F7 were included in the conducted exper-
iments. Benchmark functions F8 to F13 were part of the multimodal set, whereas F14 to
F23 were part of the multimodal set fixed in dimensions. Tables 1–3 provide a summary
of the test functions and their corresponding parameters. In these tables, D and Fun refer
to the number of dimensions and the mathematical function, respectively. Range shows
the interval of the search space, and fmin refers to the optimal value that the corresponding
functions can achieve. Figure 3 displays the illustrative 3D models of typical functions
included in the comparison results.

The population size was 50, and the number of iterations was 500 to solve the bench-
mark test functions. Algorithms such as Particle Swarm Optimization (PSO) [84], Genetic
Algorithm (GA) [85], Differential Evolution (DE) [86], Whale Optimization Algorithm
(WOA) [87], Grey Wolf Optimization (GWO) [88], JAYA algorithm [89], and the Fire Hawk
Optimizer (FHO) algorithm [90] were contrasted with the proposed optimization algorithm.
Table 4 displays the sources from which these algorithms were derived. Table 5 displays
the algorithms’ parameter settings that were employed in the performance comparisons.

The optimal solution and statistical data show that the proposed WWPA performed
much better than PSO and GA. However, popular optimization methods such as PSO and
GA did not perform well compared with other algorithms when tested against benchmark
functions. In addition, compared with DE and GWO, although the algorithm still had
benefits, its performance dropped in terms of fixed-dimension multimodal benchmark,
likely due to the algorithm’s linear search route, more flexible parameter selection approach,
and the insertion of empirical parameters.
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It is also evident that the suggested WWPA achieved higher performance in six
functions than WOA due to WWPA’s less complicated search algorithm. WOA is highly
effective, although its search procedure is time-consuming and laborious. Researchers
found that DE’s success may be primarily attributed to its adaptable coding strategy and
ability to address zero–one problems. Predation rules in nature inspired the development
of two new natural heuristic optimization algorithms, WOA and GWO. In the next section,
we demonstrate the results of a detailed performance comparison with the competing
optimization methods. In conclusion, the proposed WWPA improved the performance
when benchmark functions were tested.

Table 1. Description of unimodal benchmark functions.

Function D Range

f1(w) = ∑
n
i=1 w2 30 [−100, 100]

f2(w) = ∑
n
i=1 ∣wi ∣+∏

n
i=1 ∣wi ∣ 30 [−10, 10]

f3(w) = ∑
n
i=1(∑

i
j=1 wi)

2 30 [−100, 100]
f4(w) = maxi{∣wi ∣, 1 ≤ i ≤ D} 30 [−100, 100]
f5(w) = ∑

D−1
i=1 [100(wi+1 −w2

i )
2
− (wi − 1)2

] 30 [−30, 30]
f6(w) = ∑

D
i=1(wi + 0.5)2 30 [−100, 100]

f7(w) = ∑
D
i=1 iw4

i + rand[0, 1] 30 [−1.28, 1.28]

Table 2. Description of multimodal benchmark functions.

Function D Range fmin

f8(w) = ∑
D
i=1 −wi sin (

√

∣wi ∣) 30 [−500, 500] −12,569.487
f9(w) = ∑

D
i=1[w

2
i − 10 cos(2πwi)+ 10] 30 [−5.12, 5.12] 0

f10(w) = −20 exp(−0.2
√

∑
D
i=1 w2

i )− exp( 1
d ∑

D
i=1 cos(2πwi))+ 20+ η 30 [−32, 32] 0

f11(w) =
1

4000 ∑
D
i=1 w2

i −∏
D
i=1 cos( wi√

i
)+ 1 30 [−600, 600] 0

f12(w) =
π
D{10 sin2

(πyi)+∑
D−1
i=1 (yi − 1)2

[1+ 10 sin2
(πyi + 1)+ (yD − 1)2 30 [−50, 50] 0

+∑
D
i=1 u(wi, 10, 100, 4)]}

yi = 1+
wi + 1

4
, u(wi, h, k, m) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

k(wi − h)m wi > h
0 −h < wi < h
k(−wi − h)m wi < −h

f13(w) = 0.1{10 sin2
(3πyi)+∑

D−1
i=1 (wi − 1)2

[1+ 10 sin2
(3πyi + 1)] 30 [−50, 50] 0

+ (wn − 1)2
[1+ sin2

(2πwn)]}+∑
n
i=1 u(wi, 5, 100, 4)

Table 3. Description of multimodal-based fixed-dimension benchmark functions.

Function D Range fmin

f14(w) = (
1

500 +∑
25
j=1

1
j+∑2

i=1(wi−hij)6 )

−1
2 [−65, 65] 1

f15(w) = ∑
11
i=1[hi −

w1(b2
i +biw2)

b2
i +biw3+w4

]

2
4 [−5, 5] 0.00030

f16(w) = 4w2
1 − 2.1w4

1 +
1
3 w6

1 +w1w2 − 4w2
2 + 4w4

2 2 [−5, 5] −1.0316

f17(w) = (w2 −
5.1
4π2 w2

1 +
5
π w1 +−6)

2
+ 10(1− 1

8π ) cos w1 + 10 2 [-5, 5] 0.398

f18(w) = [1+ (w1 +w2 + 1)2
(19− 14w1 + 3w2

1 − 14w2 + 6w1w2 + 3w2
2)] 2 [−2, 2] 3

× [30+ (2w1 − 3w2)
2w(18− 32w1 + 12w2

1 + 48w2 − 36w1w2 + 27w2
2)]

f19(w) = −∑
4
i=1 bi exp(−∑3

i=1 hij(wj − pij)
2
) 3 [1, 3] −3.86

f20(w) = −∑
4
i=1 bi exp(−∑6

i=1 hij(wj − pij)
2
) 6 [0, 1] −3.32

f21(w) = −∑
5
i=1[(w − hi)(w − hi)

T
+ bi]

−1
4 [0, 10] −10.1532

f22(w) = −∑
7
i=1[(w − hi)(w − hi)

T
+ bi]

−1
4 [0, 10] −10.4028

f23(w) = −∑
10
i=1[(w − hi)(w − hi)

T
+ bi]

−1
4 [0, 10] −10.5363
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Figure 3. Three-dimensional images of typical functions: F1, F2, F3, F4, F5, and F7.

Table 4. The source of inspiration of the competitor algorithms.

Algorithm Inspiration

GWO Behavior of gray wolves when hunting prey
PSO Foraging behavior of birds
WOA Predation behavior of whales
GA Evolutionary laws of organisms in nature
DE Similar to GA
JAYA Social behavior of a bee colony
FHO Foraging behavior of hawks and fireflies

Table 5. The configuration parameters of the competing algorithms used in comparisons.

Algorithm Parameter Setting N

GWO r1, r2 ∈ (0, 1) 50
PSO w = 0.68; c1, c2 = 0.5 50
WOA b = 1, p ∈ (0, 1) 50
GA Pc = 0.8, Pm = 0.2, gap = 0.9 50
DE F0 = 0.5, CR = 0.9 50
Proposed WWPA r2, r3, r4 ∈ [0, 1] 50
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4.2. Evaluation Using the Benchmark Functions

The proposed optimization algorithm was implemented in Python and utilized in all
conducted experiments. The experiments were conducted on a machine with the following
specifications: Intel i7 CPU, 16 GB of RAM, and Microsoft Windows 10. We performed a
statistical analysis of the data acquired by comparing the mean and relative standard deviation.
The results for unimodal and multimodal benchmark functions are shown in Table 6.

Table 6. Statistical results of the 23 benchmark functions.

Func Criterion WWPA PSO DE WOA GWO GA FHO JAYA

F1 Mean 0.000 0.000 0.000 1.41 × 10−30 0.000 0.000 0.000 0.000
StDev 0.000 0.000 0.000 4.91 × 10−30 0.000 0.000 0.000 0.000

F2 Mean 0.000 0.042 0.000 1.06 × 10−21 0.000 0.000 0.000 0.000
StDev 0.000 0.045 0.000 2.39 × 10−21 0.029 0.000 0.000 0.000

F3 Mean 0.000 70.126 0.000 5.39 × 10−07 0.000 0.000 4.143 0.000
StDev 0.000 22.119 0.000 2.93 × 10−06 79.150 0.000 10.519 0.000

F4 Mean 0.000 1.086 0.000 0.073 0.000 0.000 0.000 0.000
StDev 0.000 0.317 0.000 0.397 1.315 0.000 0.000 0.000

F5 Mean 0.000 96.718 0.000 27.866 26.813 28.373 0.180 0.185
StDev 0.000 60.116 0.000 0.764 69.905 0.583 10.631 10.829

F6 Mean 0.124 0.000 0.000 3.116 0.817 3.933 0.000 0.000
StDev 0.156 0.000 0.000 0.532 0.000 0.432 0.000 0.000

F7 Mean 0.000 0.123 0.005 0 .001425 0.002 0.023 0.008 0.096
StDev 0.000 0.045 0.001 0.001 0.100 0.022 0.008 0.098

F8 Mean −6433.047 −4841.290 −11,080.100 −5080.76 −6123.100 −4080.182 −6728.933 −6728.933
StDev 1083.840 1152.814 574.700 695.797 −4087.440 551.650 381.863 293.741

F9 Mean 0.000 46.704 69.200 0.000 0.311 0.000 151.389 116.453
StDev 0.000 11.629 38.800 0.000 47.356 0.000 12.042 9.263

F10 Mean 0.000 0.276 0.000 7.404 0.000 0.000 0.007 0.005
StDev 0.000 0.509 0.000 9.898 0.078 0.000 0.003 0.002

F11 Mean 0.000 0.009 0.000 0.000 0.004 0.000 0.013 0.010
StDev 0.000 0.008 0.000 0.000 0.007 0.000 0.022 0.017

F12 Mean 0.147 0.007 0.000 0.340 0.053 0.556 0.035 0.027
StDev 0.358 0.026 0.000 0.215 0.021 0.064 0.106 0.082

F13 Mean 0.000 0.007 0.000 1.889 0.654 2.130 0.001 0.001
StDev 0.000 0.009 0.000 0.266 0.004 0.175 0.002 0.001

F14 Mean 0.998 3.627 0.998 2.112 4.042 0.998 0.998 0.768
StDev 0.000 2.561 0.000 2.499 4.253 0.000 0.000 0.000

F15 Mean 0.001 0.001 0.000 0.001 0.000 0.002 0.001 0.001
StDev 0.000 0.000 0.000 0.000 0.001 0.010 0.000 0.000

F16 Mean −1.032 −1.032 −1.032 −1.03163 −1.032 −1.032 −2.032 −1.563
StDev 0.000 6.25 × 10−16 0.000 4.2 × 10−07

−1.032 0.000 0.000 6.25 × 10−16

F17 Mean 0.398 0.398 0.398 0.398 0.398 0.398 0.398 0.306
StDev 0.000 0.000 0.000 2.7 × 10−05 0.398 0.001 0.000 2.7 × 10−05

F18 Mean 3.000 3.000 3.000 3.000 3.000 3.000 3.000 2.308
StDev 0.000 0.000 0.000 4.22 × 10−15 3.000 0.000 0.000 0.000

F19 Mean −3.862 −3.863 N/A −3.85616 −3.863 −3.863 −2.863 −2.202
StDev 0.000 0.000 N/A 0.003 −3.863 0.000 0.000 0.000

F20 Mean −3.263 −3.266 N/A −2.98105 −3.287 −3.251 −4.259 −3.276
StDev 0.063 0.061 N/A 0.377 −3.251 0.082 0.077 0.059

F21 Mean −5.549 −6.865 −10.153 −7.04918 −10.151 −6.037 −3.855 −2.966
StDev 1.518 3.020 0.000 3.630 −9.140 2.000 1.341 1.032

F22 Mean −6.425 −8.457 −10.403 −8.18178 −10.402 −6.768 −4.175 −3.211
StDev 2.258 3.087 0.000 3.829 −8.584 2.630 3.110 2.392

F23 Mean −6.727 −9.95291 −10.536 −9.34238 −10.534 −5.795 −8.260 −6.954
StDev 2.459 1.783 0.000 2.415 −8.559 2.640 3.201 2.462

On the other hand, Figure 4 shows the convergence curves for six standard functions.
As shown in the figure, it can be noticed that WWPA has faster convergence than other
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competitors. Moreover, a non-parametric test called Wilcoxon rank sum was used at the
5% level of significance to make a fair comparison between WWPA and other algorithm
results in each independent run. Table 6 shows the results of such parameters. From this
table, it can be seen that the p-values for almost all functions are less than 0.05.

Figure 4. Convergence curves of the presented and compared algorithms for functions f1, f2, f3 , f4,
f5, and f11.

ANOVA and Wilcoxon Rank Sum

The ANOVA test on benchmark function f6 is shown in Table 7. On the other hand,
we give, in this section, a statistical analysis comparing WWPA’s results with those of com-
peting algorithms so that we can establish whether or not WWPA does offer a substantial
advantage [91,92]. The Wilcoxon rank sum test was used because it is a non-parametric
statistical test for comparing means across many groups. The statistical significance of
WWPA’s advantage over the other algorithms was established by utilizing the Wilcoxon
rank sum test and an associated p-value. Table 6 statistically compares WWPA’s outcomes
with competing algorithms’ findings. According to these outcomes, WWPA has a statisti-
cally significant advantage over the comparable algorithm when the p-value is less than 0.05.
The Wilcoxon signed rank test results for benchmark function f6 based on the proposed
WWPA against the compared algorithms are introduced in Table 8. The performance of the
proposed continuous WWPA for the benchmark functions is confirmed by the results of
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the algorithm when it was applied to this situation and compared with the algorithms that
are considered state of the art.

Table 7. ANOVA test results of the F6 function.

F6 SS DF MS F (DFn, DFd) p-Value

Treatment 401.7 6 66.96 F (6, 203) = 1332 p < 0.0001
Residual 10.21 203 0.05028
Total 411.9 209

Table 8. Wilcoxon test results of the F6 function.

F6 WWPA PSO GWO WOA GA FHO JAYA

Theoretical median 0 0 0 0 0 0 0
Actual median 0.000177 0.00003335 0.7487 0.4047 4.033 0.000227 0.0001225
Number of values 30 30 30 30 30 30 30
Sum of signed ranks (W) 465 465 465 465 465 465 465
Sum of positive ranks 465 465 465 465 465 465 465
Sum of negative ranks 0 0 0 0 0 0 0
P-value (two-tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes
Discrepancy 0.000177 0.00003335 0.7487 0.4047 4.033 0.000227 0.0001225

The residual plot shown in Figure 5 is a type of scatter plot used to visualize the
errors of a regression model. The residuals are the difference between the observed and
the predicted values and are used to detect outliers, influential observations, and trends in
the data. The residual plot shows the residuals on the vertical axis and the independent
variable on the horizontal axis. The figure shows that the points in a residual plot are
randomly dispersed around the horizontal axis, which refers to the appropriateness of
the proposed approach. In addition, the homoscedasticity plot shown in Figure 5 is a
type of graph used to visually assess a dataset’s homoscedasticity. Homoscedasticity
is the property of a dataset in which the variance of the data points is the same across
all values of the independent variable. This type of plot is typically used to detect any
type of heteroscedasticity, which is the opposite of homoscedasticity and occurs when the
variance of the data points is not the same across all values of the independent variable.
Homoscedasticity plots are typically created by plotting the residuals of a regression model
against the independent variable. The result of this plot shows the proposed algorithm’s
promising performance when applied to the benchmark functions.

Moreover, the QQ plot, or quantile–quantile plot, shown in Figure 5, is a graphical
tool used to compare two probability distributions by plotting their quantiles against each
other. It is often used to check if a given dataset follows a normal distribution. The QQ
plot consists in plotting the quantiles of the first dataset on the x-axis and the quantiles
of the second dataset on the y-axis. If the datasets come from the same distribution, then
the points in the plot should fall along a 45-degree line. Deviations from this line indicate
that the datasets come from different distributions. QQ plots can also be used to compare
the distributions of two samples or a sample and a theoretical distribution. On the other
hand, the heatmap plot shown in Figure 5 is a graphical representation of an optimization
algorithm’s performance. It shows the relative performance of the algorithm across a range of
different inputs and parameters. Heatmap plots are often used to visualize the performance
of an algorithm on a wide range of inputs and parameters, allowing different optimization
strategies to be easily compared. This heatmap plot is used to identify potential improvement
areas and potential bottlenecks in an optimization process. It is useful for helping to visualize
the progress of an optimization process over time. Figure 6 shows the box plot of the proposed
and competing algorithms for benchmark functions f1 to f7.
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Figure 5. Visualization of the analysis of the results of solving the benchmark functions.

Figure 6. Inspiration of the proposed methodology.
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4.3. Constrained Engineering Design Problems

In this part, we present how the algorithm’s capability was tested to solve two con-
strained optimization problems involving the design of a tension/compression spring and
a pressure vessel. We validated WWPA by solving two restricted optimization examples.
These examples involved the design of tension/compression springs [93] and pressure
vessels [94]. The two engineering problems are mathematically described in this section.
WWPA’s results were compared with GA, GSA, GWO, and PSO algorithms’ outcomes to
obtain the minimum cost.

4.3.1. Tension/Compression Spring Design Problem

Spring tension and compression design (TCSD) is depicted in Figure 7 [93]. The
method aims to reduce the space that a coil spring occupies when subjected to a fixed
tension or compression. As such, TCSD is classified as a continuous constraint problem.
The L-th design variable of the TCSD is the number of active coils in the spring; the d-th
variable is the diameter of the winding; and the w-th variable is the diameter of the wire.
TCSD may be stated in mathematical terms as follows:

Minimize
f (w, d, L) = (L + 2)w2d (11)

subject to the constraints

g1 = 1−
d3 + L

71, 785w4 ≤ 0

g2 =
d(4d −w)

w3(12, 566d −w)
+

1
5108w2 − 1 ≤ 0

g3 = 1−
140.45w

d2L
≤ 0

g4 =
2(w + d)

3
− 1 ≤ 0

(12)

where the three variables’ ranges are as follows:

0.05 ≤ w ≤ 2.0,

0.25 ≤ d ≤ 1.3,

2.0 ≤ L ≤ 15

(13)

Figure 7. Tension/compression spring design problem.

As the table above shows, WWPA was the most effective way to solve the tension/
compression spring design problem and produced the best possible solution. The results of
WWPA’s use in this topic are shown in Table 9. The table below compares the results of
WWPA, GA, PSO, DE, GWO, and WOA in finding the best cost and values for the design
factors. Table 10 displays the statistical outcomes of WWPA and other algorithms in solving
the tension/compression spring design problem. Twenty people, 500 maximum iterations,
and 20 separate runs were employed to find a solution to this challenge. From what we can
see in this table, WWPA performed as well as, if not better than, the average of the other
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optimizers. Furthermore, the optimal solution to the problem was found using WWPA
using the fewest possible function evaluations. After extensively exploring the search space,
the outcomes demonstrate that WWPA may rapidly converge toward the ideal aim.

Table 9. Comparison of the best solution to tension/compression spring design problem.

Algorithm
Design Variables

Optimal Cost
w d L

GA 0.05148 0.351661 11.632201 0.0127048
DE 0.051609 0.354714 11.410831 0.0126702

PSO 0.051728 0.357644 11.244543 0.0126747
GWO 0.05 0.3517424 14.0294939 0.0126763
WOA 0.051207 0.345215 12.004032 0.0126763

WWPA 0.05154655 0.35324699 11.4987948 0.0126698

Table 10. Descriptive statistics of tension compression.

GA PSO DE WWPA

Number of values 21 21 21 21
Minimum 0.01271 0.01268 0.01257 0.01267
Maximum 0.01351 0.01398 0.01367 0.01267
Range 0.0008 0.0013 0.0011 0
Mean 0.01274 0.01274 0.01271 0.01334
Std. deviation 0.000175 0.000284 0.00022 0.00135

4.3.2. Pressure Vessel Design Problem

The problem of the cylindrical vessel [94] is that it is capped at both ends by hemi-
spherical heads, as shown in Figure 8. The problem objective is minimizing the total cost,
which includes material, forming, and welding costs. Four variables in this design need
to be optimized. The first parameter is the thickness of the shell (Ts), and the second is the
thickness of the head (Th). The third and fourth parameters are the inner radius, R, and the
length of the cylindrical section, L, not including the head. The parameters of Ts and Th are
integer multiples of 0.0625 inches, the available thickness of steel plates, and R and L are
continuous values. The mathematical formulation of the problem can be described as follows:

Minimize

f (Ts, Th, R, L) =0.6224TsRL + 1.7781ThR2
+ 3.1661T2

s L + 19.84T2
h L (14)

subject to the constraints

g1 = −Ts + 0.0193R ≤ 0

g2 = −Th + 0.0095R ≤ 0

g3 = −πR2L − 4/3πR3
+ 1, 296, 000 ≤ 0

g4 = L − 240 ≤ 0

(15)

where the four variables’ ranges are as follows:

0 ≤ Ts ≤ 99, 0 ≤ Th ≤ 99,

10 ≤ R ≤ 200, 10 ≤ L ≤ 200
(16)

Many scholars have used numerous methods, including GA, PSO, and GWO, to
address this problem and provide a solution. Table 11 displays WWPA’s results on this
problem. The table presents the optimum values of the design variables for each optimiza-
tion method (WWPA, GA, PSO, and GWO). It is clear that WWPA is superior to previous
optimization methods and can determine the ideal design for a pressure vessel that is both
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technically possible and economically viable. Table 12 presents a statistical comparison of
WWPA and other algorithms’ solutions to the pressure vessel design problem across 30
iterations. Throughout 500 iterations, 20 people helped us find a solution to this problem.
Looking at this table, one can see that WWPA had the highest mean score compared with
the other strategies. When it came to identifying the perfect design with the fewest possible
fitness tests, WWPA also shone. WWPA’s comprehensive exploration and exploitation ap-
proaches helped identify the most promising configurations of design factors. Furthermore,
the quick convergence behavior of WWPA is demonstrated by the fact that optimal values
were found with a minimal number of fitness tests.

Figure 8. Pressure vessel design problem.

Table 11. Comparison of the best solution to pressure vessel design problem.

Parameter GA PSO GWO WWPA

Ts 0.8125 0.8125 0.0812500 0.79103212
Th 0.4375 0.4375 0.434500 0.39222603
R 42.097398 42.0913 42.089181 40.88349963
L 176.65405 176.7465 176.758731 192.30335023
f 6059.9463 6061.0777 6051.5639 5925.01317

Table 12. Descriptive statistics of pressure.

GA PSO GWO WWPA

Number of values 22 22 22 22
Minimum 6063 6061 6052 5925.01317
Maximum 6157 6161 6150 12193.923
Range 94.43 99.67 98.64 0
Mean 6115 6103 6105 7374.8098
Std. deviation 25.87 30.43 28.56 1551.0449

4.4. Welded Beam Design Problem

One of the standard optimization problems in engineering is the welded beam design
problem [95,96], shown in Figure 9. Four design parameters are used to describe this
problem. These parameters are the weld width, w; the weld length, L; the main beam
depth, h; and the main beam thickness, d. The overall cost of fabricating the welded beam
can be minimized by imposing constraints on shear stress A, bending stress B, buckling
load P, and maximum end detection C.
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Figure 9. Welded beam design problem.

Minimize

f (w, L, d, h) = 1.10471w2L + 0.04811dh(14.0+ L) (17)

subject to the constraints

g1 = w − h ≤ 0

g2 = δ − 0.25 ≤ 0

g3 = τ − 13, 600 ≤ 0

g4 = σ − 30, 000 ≤ 0

g5 = 0.125−w ≤ 0

g6 = 6000− P ≤ 0

g7 = 0.10471w2
+ 0.04811hd(14+ L)− 0.5 ≤ 0

(18)

where

σ =
504, 000

hd2

Q = 6000(14+
L
2
)

D =
1
2

√

L2 + (w + d)2

J =
√

2wL(
L2

6
+

(w + d)2

2
)

δ =
65, 856

30, 000h.D3

τ =

√

α2 + (
α.β.L

D
)+ β2

α =
6000
√

2wL

β =
QD

J

P = 0.61432× 106 dh3

6
⎛

⎝
1−

d
√

30/48
28

⎞

⎠

(19)

where the four variables’ ranges are as follows:

0.1 ≤ w, h ≤ 2.0,

0.1 ≤ L, d ≤ 10
(20)
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Cost minimization is the goal of WWPA, GA, PSO, and WOA, and Table 13 shows
the ideal design variables corresponding to each method’s optimal cost. Compared with
other methods, WWPA’s optimal design was discovered while minimizing the number of
function evaluations. In the welded beam design problem, WWPA excelled, and the table
shows that it could identify the best possible optimum design factors. Table 14 shows the
statistical outcomes of WWPA and other algorithms in the welded beam design problem.
Throughout 20 runs and 500 iterations, 20 individuals were used. Compared with other
networks, WWPA ranked third in the overall average.

Table 13. Comparison of the best solution to the welded beam design.

Algorithm
Design Variable

Optimal Cost
W L d h

GA 0.205986 3.471328 9.020224 0.206480 1.728226
PSO 0.202369 3.544214 9.048210 0.205723 1.728024

WOA 0.205396 3.484293 9.037426 0.206276 1.730499
WWPA 0.20565049 3.46347811 9.06040273 0.20567511 1.7274679

Table 14. Descriptive statistics of the welded beam design problem.

Algorithm Best Average Standard Deviation Function Evaluation

PSO 1.728024 1.7422 0.01275 13770
GSA 1.879952 3.5761 1.2874 10750
WOA 1.730499 1.7320 0.0226 9900
WWPA 1.727467 1.7973 0.08323 4320

5. Conclusions and Future Perspectives

In this study, we introduce the waterwheel plant technique (WWPA), a novel swarm-
based optimization technique. The planned WWPA heavily draws on the tactics and
actions of waterwheel plants in the course of their search. Following an explanation of
how WWPA works, a mathematical model that can be used to help with optimization
issues is offered. Twenty-three objective functions from the categories of unimodal, high-
dimensional multimodal, and fixed-dimensional multimodal were used to evaluate the
effectiveness of the proposed method. The capabilities of the proposed algorithm were
further examined by comparing the optimization results acquired by WWPA and those
provided by seven other well-known algorithms: PSO, DE, WOA, GWO, GA, FHO, and
JAYA. The proposed WWPA was shown to have strong exploitation power in convergently
finding the global optimal solution as evidenced by the optimization results of unimodal
functions. These functions’ simulation results demonstrate that WWPA outperformed
eight other algorithms by a large margin when it came to fixing problems with a single
modality. The multimodal function simulation results show that the proposed WWPA has
strong exploration capability to test the search space and efficiently locate the ideal region.
The WWPA method was superior to seven competing algorithms in simulating real-world
scenarios involving multimodal optimization. The simulation results show that the proposed
WWPA outperformed other methods by a wide margin in solving optimization problems.
We also used WWPA to solve the difficulties of designing a pressure tank, a speed reducer, a
welded beam, and a tension/compression spring. When tackling design difficulties in the real
world, the simulation findings demonstrate that WWPA performed admirably.

The authors of this paper suggest several avenues for future investigation. The proposed
methodology has the potential to pave the way for creating binary and multi-objective variants
of WWPA, among other areas of study. In addition, the authors’ proposed directions for future
research include using WWPA to address optimization problems in a wide range of scientific
disciplines and real-world contexts, keeping in mind the potential of the planned WWPA for
facilitating numerous future endeavors. Feature selection, data mining, COVID-19 modeling,
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big data, artificial intelligence, power systems, machine learning, signal denoising, wireless
sensor networks, image processing, and other benchmark tasks are just some of the many
areas where this approach has been put to use. It is possible that in the future, new optimizers
that will perform better than WWPA in some real-world applications will be created; this is a
drawback shared by all stochastic optimization approaches, including the proposed WWPA.
In addition, the solutions to optimization problems obtained utilizing WWPA cannot be
guaranteed to be exactly equivalent to the global optimum because of the stochastic nature of
the solution approach.
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