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Abstract: Wind power forecasting is a typical high-dimensional and multi-step time series prediction
problem. Data-driven prediction methods using machine learning show advantages over traditional
physical or statistical methods, especially for wind farms with complex meteorological conditions.
Thus, effective use of different data sources and data types will help improve power forecasting
accuracy. In this paper, a multi-source data fusion method is proposed, which integrates the static
information of the wind turbine with observational and forecasting meteorological information
together to further improve the power forecasting accuracy. Firstly, the characteristics of each time
step are re-characterized by using the self-attention mechanism to integrate the global information
of multi-source data, and the Res-CNN network is used to fuse multi-source data to improve the
prediction ability of input variables. Secondly, static variable encoding and feature selection are
carried out, and the time-varying variables are combined with static variables for collaborative
feature selection, so as to effectively eliminate redundant information. A forecasting model based on
the Encoder-Decoder framework is constructed with LSTM as the basic unit, and the Add&Norm
mechanism is introduced to further enhance the input variable information. In addition, the self-
attention mechanism is used to integrate the global time information of the decoded results, and the
Time Distributed mechanism is used to carry out multi-step prediction. Our training and testing data
are obtained from an operating wind farm in northwestern China. Results show that the proposed
method outperforms a classic Al forecasting method such as that using the Seq2Seq+attention model
in terms of prediction accuracy, thus providing an effective solution for multi-step forecasting of
wind power in wind farms.

Keywords: wind power forecasting; multi-source data fusion; self-attention; multi-step prediction

1. Introduction

With the increasing installed capacity of wind power generation, the volatility, random-
ness, and intermittency of wind power generation bring new risks and challenges to the
stable operation of the power grid [1-3]. In the absence of greater breakthroughs in energy
storage technology, a large number of energy storage devices will significantly increase the
system cost of grid operation [4]. On the premise of not increasing the cost significantly,
improving the accuracy of wind power forecasting becomes an effective way to reduce
the risk of new energy generation to the grid. Accurate power forecasting will contribute
to renewable energy accommodation and avoid economic losses caused by power grid
assessment. In addition, it provides data reference for electricity market transactions and
daily operation and maintenance. Therefore, improving the accuracy of power forecasting
will further promote the steady development of wind turbines.

In order to meet the needs of power grid dispatching, electricity market transactions,
daily operation, and maintenance, demand for accurate wind power forecasting at different
time scales is growing rapidly [5]. Forecasting methods can be divided mainly into the

Processes 2023, 11, 1429. https:/ /doi.org/10.3390/pr11051429

https://www.mdpi.com/journal /processes


https://doi.org/10.3390/pr11051429
https://doi.org/10.3390/pr11051429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11051429
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11051429?type=check_update&version=2

Processes 2023, 11, 1429

20f17

physical method, the statistical method, and the combination method [6,7]. In recent years,
with the rapid development of deep learning, the deep learning model has been applied to
a variety of scenes. such as Computer Vision [8,9], Natural Language Processing [10,11],
and Neural Engineering [12,13]. A large number of scholars have applied deep learning to
the power forecasting scene and achieved significant results. In analyzing the development
trend, the data-driven forecasting methods based on deep learning have gradually become
the power forecasting mainstream model [14], constantly refreshing the SOTA model with
higher accuracy.

Models based on the recurrent neural network (RNN) were first developed in wind
power forecasting to replace the traditional time series models. Traditional time series
models such as ARMAJ15] and Hidden Markov Models (HMM) [16,17] have their limi-
tations: either they can only deal with the single variable and lose the enhancement of
multivariate fusion on the prediction effect, or they can only deal with short series problems,
which has obvious limitations for multi-step prediction and long series problems in power
prediction scenarios. The RNN and its improved LSTM (Long Short-term Memory) model
or the GRU (Gate Recurrent Unit) model have solved the above problems significantly.
References [18-20] combine the multivariate prediction ability of the LSTM network and
the GRU network with the characteristics of dealing with long-term dependence; the LSTM
network and the GRU network are used in wind power forecasting to further improve the
prediction accuracy.

In recent years, forecasting models adopting the encoding—decoding architecture
further improve the accuracy of the multi-layer LSTM model. The representative models
include the Seq2Seq+attention model [21], the AutoEncoder model [22], and the evolution
model based on it. At the same time, the wide application of the attention mechanism has
become an effective method to improve the accuracy of prediction, and the fusion method
of attention + various models [23,24] has become the main research direction.

As the size of data continues to grow, the training efficiency of the deep learning
models has been noticed and studied by many researchers. Recursive models such as
the LSTM model are basically used in the encoding-decoding architecture, which greatly
limits the training speed of the model when the data dimension increases and the dataset
increases. Therefore, the TCN model, the Transformer model, and improved models of the
above models have emerged. References [25,26] use time convolution instead of the LSTM
model for power forecasting. References [27,28] describe a series of Transformer models
with different attention mechanisms instead of LSTM units.

In addition, considering the non-stationary nature of the wind speed series, the combi-
nation model based on signal decomposition and the prediction ability of the deep learning
model has become trending model used to improve the accuracy of power prediction.
References [29-31] use wavelet transform, frequency analysis, and variational mode decom-
position, respectively, to decompose the signal and complete the power forecasting function
in combination with the deep learning model. The comparison of different prediction
methods is shown in Table 1.

This paper develops an innovative deep learning method to predict wind power in a
wind farm at short term. Different from the above research methods, various data sources
in the power forecasting scene will be analyzed in depth. The role of static variables and
time-varying variables in the prediction process of wind power is explored to provide
methods and ideas for feature engineering during the modeling process. A forecasting
model based on the Encoder-Decoder framework is constructed with LSTM as the basic
unit, and the Add&Norm mechanism is introduced to further enhance the input variable
information. In addition, the self-attention mechanism is used to integrate the global time
information of the decoded results, and the Time Distributed mechanism is used to carry
out multi-step prediction.

This paper is organized as follows: Section 2 introduces the data sources used in the
power forecasting process; fundamental concepts and architecture employed in our study
are briefly introduced in Section 3, including self-attention, feature fusion, feature selection
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and multi-step prediction; Section 4 describes the proposed power forecasting architecture
and implementation steps in details; Section 5 uses real world data obtained from a wind
farm in China to carry out numerical experiments, and results are analyzed; conclusive

remarks and suggestions on future research directions are given in Section 6.

Table 1. Comparison of prediction methods.

Methods Refs Advantages Disadvantages
(1) Historical states have low correlation
(1)  Structure of the model is simple. and cannot learn long-distance
ARMA, HMM [9-11] (2) Fast training. dependencies.
(3)  Short sequence prediction. (2) Multi-step prediction error
accumulation.
(1) Multivariable inputs. (1) Notin Parallel. .
(2) Medium- and long-sequence (2) Long-distance dependencies
RNN, LSTM, GRU [12-14] prediction. paﬂll islong.
(3) Higher historical state correlation (3 Mu t1—step.pred1ct10n error
accumulation.
(1) Multivariable inputs.
edium- and long-sequence ot in parallel.
seq2eq, (2)  Medi d long-seq (1) Not in parallel
AutoEncoder, [15-18] prediction. (2) Multi-step prediction error
attention mechanism (3) Long-distance dependencies accumulation.
path is shorter
(1) Multivariable inputs.
(2) Long-sequence prediction.
TCN, Transformfer, [19-22] (3)  The complexity of algorithm is low. (1) Time lag of multi-step prediction.
attention mechanism (4) Long-distance dependencies
path is shorter
1)  Multivariable inputs. ) . i
Signal EZ; Long-sequence ;)re diction. (1) Time lag of. mt.lltl—.step prediction.
decomposition + [23-25] (3) Long-distance dependencies (2) Uncertainties in signal

deep learning

path is shorter decomposition.

2. Data Resources in Power Forecasting

This paper explores the methods and best practices to further improve the wind power
forecasting accuracy based on data-driven models combined with advanced algorithms
for dealing with time series problems in deep learning. In the process of machine learning
modeling, there are many types of variables. According to the state, it can be divided
into static variables and dynamic variables; according to the data type, it can be divided
into numerical variables and symbolic variables; according to the time state, it is divided
into historical variables and future variables. In the task of power forecasting, all the
above variable types exist, and effectively using different types of data becomes the key to
improving the accuracy of the model.

There are abundant data resources involved in the power forecasting process, in-
cluding spatial information on the wind turbine, wind turbine operation time series data,
observation information within the wind farm, and Numerical Weather Prediction (NWP).
Next, the data will be disassembled according to the above classification method. The
demonstration of data disaggregation is shown in Table 2.
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Table 2. Analysis of variable types in power forecasting.

Types Description Case
Longitude and latitude of wind
. . Numerical variables turbine, historical statistical Such as daily power generation, etc.
Static variables . .
information
Symbolic variables Wind turbine ID Such as 1, 2, etc.
Wind turbine operation data, .
. . . . Such as wind speed, power,
Dvnamic variables Time-varying variables meteorological mast data, temperature. etc
y and NWP data P T
Time-invariant variables Date data Such as month, day, hour, etc.
Wind turbine operation data, Such as wind speed. power.
Historical variables meteorological mast data, and peed, p !

Time state

Future variables

meteorological reanalysis data temperature, etc.

Weather forecast data, date data,

predicted time step Suchas1,2,3, etc.

Static variables include spatial information about the wind turbine such as longitude
and latitude, as well as historical statistical information such as monthly, weekly, and
daily electric quantity information. The above variables are numerical static variables. In
addition, the wind turbine ID is a typical symbolic static variable.

Dynamic variables include dynamic time-varying and dynamic time-invariant vari-
ables. The dynamic time-varying variables are wind turbine operation data, meteorological
mast data, and NWP data, such as wind speed, power, temperature, and atmospheric pres-
sure, which are constantly changing over time. We can easily know the time information
for each prediction regarding dynamic time-invariant variables such as date data, although
they are changing over time.

The classification of time state includes historical variables and future variables. His-
torical variables are wind turbine operation data, meteorological mast data, etc. Future
variables are weather forecast data, date information, etc.

3. Analysis of Key Problems in Power Forecasting
3.1. Self-Attention

In the time series forecasting problem, the prerequisite of the model is that the current
state is related to the multi-order historical time state. The LSTM model can theoretically
memorize quite a long historical time state, which in turn gives very good prediction results
in time series prediction. It can be seen that the predictive ability of input variables can
be further enhanced by characterizing the dependence between the current state and the
historical N time steps, and no longer learn this dependence in the form of recursion. The
self-attention [32] mechanism is an effective feature representation method. It is essentially
a method of reflecting the degree of correlation or similarity at different time steps by
calculating the inner product of the matrices. The final attention matrix is then obtained by
the inner product of the similarity matrix and the value matrix.

The general framework of the attention mechanism is shown in Figure 1, where the
input variable is Source, the target variable is Query, and the input variable Source is
abstracted into the form of key-value pairs of Key-Value. The essence of the attention
mechanism is to calculate the correlation or similarity between the Key matrix in the input
variable Source and the target variable Query to obtain the weight coefficient of each Key
and the corresponding Value, and then perform weighted summation through the Key
query Value to obtain the final attention matrix.
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Input variables: Source

Figure 1. Attention common architecture.

The self-attention mechanism is derived from the attention framework above and uses
the inner product of the matrices to calculate the similarity. The specific calculation process
is shown in Figure 2. First, the matrices Q, K, and V are obtained by a linear transformation
of the input variables. Then, the inner product of the matrix Q and K is calculated and
scaled, and the weights are normalized by rows. Finally, the final attention matrix is
obtained by the inner product operation with the matrix V. The calculation formula is as
shown in Formula (1). In order to increase the diversity of self-attention, the self-attention
process can be performed many times to obtain the Mul-head-attention matrix.

t

Vi

Attention(Q, K, V) = softmax( % 1)

Mask(opt.)

MatMul

7
Q K \Y,

Figure 2. Self-attention computing architecture.

3.2. Feature Fusion

Since there are many data sources in power forecasting, including time series data
of wind turbine operation, time series data of meteorological mast, and time series data
of meteorological forecast, the effective fusion of features from different data sources will
improve the prediction performance significantly. CNN network, as an effective method
for image feature extraction, has obtained very good results since it was proposed and
applied. It has become a basic unit structure in the field of image and video. In this paper,
data from different sources are used as separate channels for feature fusion with CNN
networks to obtain multiple feature maps on the basis of multi-source data. In addition,
the risk of gradient disappearance is further reduced through residual connections, which
significantly improves the feature representation after fusion of multiple sources of data.
The feature fusion process based on CNN network is shown in Figure 3.
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Channel2 ... .. feature map..__‘ ~~~~~~~ feature map
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feature map feature map
0 %

residual connection
Figure 3. The CNN feature fusion process.

3.3. Feature Selection

Feature selection has always been a very important technical tool in the process of
data mining or machine learning. On the one hand, it can reduce the influence of invalid
features to speed up the model training process. On the other hand, it can reduce the
impact of multi-collinearity on the accuracy of the model by eliminating invalid variables,
so as to ensure that the model can still obtain better prediction results with fewer input
variables. The existing methods of feature selection are based on ranking the importance
of different variables over the entire time horizon to obtain the effect of feature selection.
However, feature selection methods that assign weights to features at each time step are
very rare. An effective method for feature selection is provided in the TFT (Temporal
Fusion Transformers) model [33] proposed by Bryan Lim et al. of the Google research team.
The framework for feature selection in this paper is shown in Figure 4. The core idea is to
use the Gated Residual Network (GRN) as a non-linear unit and apply the add-attention
mechanism for feature selection. First, the d-dimensional vector of each time step is input
into the GRN to add non-linear representation and the forgetting function. Then, the
features of all time steps are input into the GRN to calculate the variable weights, and the
weights are normalized by softmax. Finally, the elemental Hadamard product operation is
performed between the weights and the feature selection results of each time step to obtain
the final feature selection results.

| weight of
| | y feature
"' selection

T T softmax

GRN GRN GRN
M (my) _ =
! ‘ = =l cC.__
Input variables Flattened . Static_
information

Figure 4. Feature selection framework.

The GRN is the key point in the feature selection process described above. The network
structure of the GRN is shown in Figure 5. Its calculation expression is as follows.

GRNy, (a,c) = LayerNorm(a +GLU ,(n;)) )
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m= Wl,wn2 +b1,w (3)
M= ELU(W, ,a+ W3 yc+ bz,w) )

where LayerNorm is the process of Residual connection and Layer Normalization.
a represents input features, c is the static context information of input, GLU is the gate linear
unit, ELU is the exponential linear unit, and w is the weight information. The calculation
of GLU is as follows:

GLUw () = 0(W ¥ + by )e(Ws v + b5,w) ®)

!

Add&Norm

; _____ Dropout

v

Residual
connection

Figure 5. The GRN structure.

Similar to the forget gate in LSTM, o(-) is the sigmoid activation function; ® is the
elemental Hadamard product. The feature oblivion effect is obtained by performing a non-
linear transformation and a linear change of the input followed by an elemental Hadamard
product operation.

3.4. Multi-Step Prediction

Power forecasting is divided into ultra-short-term prediction, short-term prediction,
and medium- and long-term prediction. The short-term prediction requires a point-by-
point forecast for the next 72 h at 15 min data resolution. Even forecasting the power for the
next 24 h at 15 min data resolution requires a 96-point multi-step prediction process. The
multi-step forecasting problem has always been a difficult problem in time series prediction,
which restricts the further improvement of the accuracy of the model. Multi-step prediction
methods can be divided into recursive prediction and direct prediction.

The recursive prediction method is a single-step prediction which predicts only one
state at a time, and then uses the predicted state as input to predict the second future state.
The recursive prediction method is simply divided into two architectures: single variable
and Encoder-Decoder. The specific calculation process is shown in Figures 6 and 7. The
typical representative of the Encoder—Decoder architecture is the Seq2Seq-+attention model.
When the Seq2Seq-+attention model is used for prediction, the input of the decoder is the
hidden vector of the output of the encoder and the result of the previous prediction. After
the attention mechanism is added, the difference in each prediction time step is increased,
and the prediction accuracy has improved substantially.
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Figure 6. Recursive prediction process in univariate framework.
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Input

Figure 7. Recursive prediction process in Encoder-Decoder architecture.

The recursive prediction method is based on the correlation characteristics of the time
series data context for recursive prediction. However, there are significant limitations, the
prediction error of the previous step will affect the accuracy of the next step, and there is a
risk of error accumulation. In addition, the prediction process is a serial process which will
affect the operation efficiency.

The direct prediction method is to predict the state of a future period from the historical
state directly. The specific structure is shown in Figure 8. Before the attention mechanism
was widely used, the direct prediction method had different implementations according to
different models. If the traditional model that only receives a single sample input, such as
the Xgboost model, is used, to achieve the effect of multi-step prediction, the prediction
time step needs to be taken as the input before the model can learn what time step the
current prediction task is. If a neural network model is used, the neurons of the last fully
connected layer can be set as the number of prediction steps, and the result of multi-step
prediction can be achieved directly.

X 41 Xivo oo K
1 [
DNN

S

A -

Input

Figure 8. Direct prediction architecture.
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The direct prediction method is simple, but it ignores the context of time series data.
This problem can be effectively solved by adding an attention layer after the output layer of
the model. By calculating the correlation or similarity at different times, the characteristics
of different time steps can be globally characterized, so that each time step contains the
state characteristics of all time steps. Therefore, the problem of context correlation in the
prediction process can be alleviated to a certain extent. At the same time, the attention
mechanism can capture medium- and long-distance dependencies in a short path, and
it has gradually become a very important method in multi-step prediction.The specific
structure is shown in Figure 9.

x1+1 xt+2 xt+m

[ TimeDistributed-DNN ]

T

‘ attention ]
\ | |

N
il timeinformation |
Model :
] A 4 i Prediction time stepw

“es ‘: g 1+ ooo xm i
Xk Kiknl X Y o e )}

a

~

Future-knowable

Input
P variables

Figure 9. Direct prediction architecture with atention..

4. Power Forecasting Framework

Based on the research of the above problems, the structure of the wind farm level short-
term power forecasting model is designed, as shown in Figure 10. The main components
of the model are the static variable module, the historical dynamic variable module, the
future dynamic variable module, Encoder—Decoder architecture, the attention module, etc.

Step 1. The static variable module is mainly used for feature selection and variable
coding of static variables. The detailed static variable processing is shown in Figure 11.

The static variables include wind turbine ID, longitude and latitude, and monthly
and daily statistical electric quantity. First, the discrete wind turbine ID is processed by
embedding, and the rest of the variables are transformed linearly. Here, the dimension of
embedding and linear transformation is the same, and we give the dimension of hidden
layer as 50. Every static variable is mapped to 50 dimensions. Then, the two parts of
features are channel-connected and use the feature selection framework introduced in
Section 3.3 to select features; finally, in order to increase the diversity of each static variable,
the GRN network is used to encode the covariates for each variable, and eventually the
feature representation of the static variable is obtained. The static variable can be expressed
as Xgtatic € RK*N where K is the time step and N is the variable dimension. After the above
process, the static variable is changed from Xgatic € RN to xgparic € RKN*0 The two
static covariate coding results are denoted as xg 1 and X 2.

Step 2. The historical dynamic variable module includes multi-source data representa-
tion and multi-source data fusion. The detailed processing is shown in Figure 12.

The main data sources include wind turbine operation data such as power, wind
speed, wind direction, rotational speed, pitch angle, ambient temperature, wind measure
mast operation status, etc., as well as meteorological mast data within the wind field, such
as wind speed, wind direction, and temperature at different heights. The meteorological
reanalysis data adopt ERA5 data, such as decomposition wind speed, temperature, and
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humidity at different heights. As different data sources have different data dimensions, the
Mul-head-attention layer is used to normalize the dimensions, while the global information
integration is carried out to characterize the features at each time step twice. The hidden
dimension of the Mul-head-attention layer is set to 50, expressed as dod4el = 50. Then, the
features from different data sources represented by the Mul-head-attention layer are used

as separate channels.

x xl+2 x

1+1

t

t+m

t t

TimeDistributed-DNN ‘

T

Mul-head-attention ‘

)
[
4 N
Encoder- \ Add&Norm ]
Decoder ~ ¥ J
4
| GLU
5 /)
4 N
L Channel connection
/—T—\
»  LSTM-Encoder t »  LSTM-Decoder |
_ J _ /)
N N
[ Feature selection ‘ [ Feature selection ‘
)
4 1
\ Y
[ Res-CNN fusion layer ‘ Channel connection ‘
i i ; , i) , . S
i | Covariate | i N .
i | encoding | i E Mul-head-attention layer ‘ ‘ embedding
e 1 1 - '
Feature || ' Y - N
i [selectionj? Wind Anemometer ‘ r\é\;‘;a;]h;"s ‘ Weather ~ time. ‘ P'redlctlon J
PN | turbine data tower data | | Y | forecast data| | information | \tlmestep/
R 4 \__data ;% - N

static historical dynamic future dynamic
variables variables variables
Figure 10. Model architecture of power forecasting.
Static
wind turbine ID context 1
Embedding Map
(dim=50)
( . . channel- feature
| static variables —> . GRN
connected selection network
— linear Static
transformation context 2
Numerical

(dim=50)
variables

Figure 11. Processing of static variable module.
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+

Figure 12. Processing of historical dynamic variable module.

Multihead(Q, K, V) = concat(headyy, head at, headnwp) (6)

where headyr is the characterization result of wind turbine operation data; head st is the
characterization result of meteorological mast data; headnwp is the characterization result
of meteorological reanalysis data.

headwr= selfattention(x WTWiQ, XWTW}(,XWTWY) ?)
where the projections are parameter matrices W? € Rdmodelxdwt WK o Rdmodelxdwt
WY € Rdmodelxdwt A dditionally, the Res-CNN layer is used to fuse multi-source features,
which in turn leads to feature enrichment. The multi-source features are denoted as
historical_feature.

Step 3. Input data of the future dynamic variable module include future weather
forecast data (here, ERA5 data are used as prediction data), time information such as
month, day, and hour, and prediction time steps such as values from 1 to 96 similar to
position information. The time information and prediction time step are embedding-coded,
and then channeled to the future weather forecast data.

future_feature = concat(x nyyp, €dtime) 8)

Step 4. The Encoder—Decoder architecture includes the Encoder-Decoder process, the
GLU, and the residual connection section. First, the feature selection is needed before encoding
and decoding. Historical dynamic variables and future dynamic variables enter the feature
selection framework together with static variables to achieve the feature selection function.

GRNy (f;, ¢) = LayerNorm(f;+GLUy (n,)) 9)

where f; is the feature extracted by the upper network, such as historical_feature and
future_feature. c is static covariate coding result such as xs. 1. The feature selection results
of historical dynamic variables and future dynamic variables are denoted as historical_fs
and future_fs. Then, the static variables are used as the initial state of the encoding LSTM
layer, and the historical dynamic variables are used as the input to encode; the encoded last
hidden variable is used as the initial state of the decoding LSTM, and the future dynamic
variable is used as the input for decoding. The dimension of the LSTM model output space
is 50. The output results of the encoder and the decoder are connected by channels to
obtain Istm_feature.

Istm_feature = concat(Lstm (historical_fs,x . ,),

Lstm (future_fs, state_h, state_c)) (10)

Subsequently, the Istm_feature is input to GLU to realize the characteristic memory
and forgetting process. Finally, the residuals are connected and normalized by Layer
Normalization.
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Step 5. The attention module uses the Mul-head-attention layer to characterize the
characteristics of different time steps and obtains the relationship between each time step
and the global time, which improves the prediction accuracy.

Step 6. The fully connected layer with Time Distributed is used to predict each
prediction time step, and the multi-step power forecasting result is obtained.

5. Case Analysis
5.1. Dataset Introduction

A wind farm in northwestern China is used to verify the model; the scale of the
wind farm is 23 Wind turbines, data range from May 2022 to October 2022, and the data
duration is about 180 days. Data sources include operation data of wind turbines, data of
meteorological mast, and meteorological reanalysis data.The data are shown in Table 3.

Table 3. Dataset description.

Datasets Source of Data Data Resolution (min)
Operating data of wind turbines Scada 15
Meteorological mast Observation sensors 15
Meteorological reanalysis data ERA5 60

The scatter plot of one wind turbine is shown in Figure 13. The model architecture in
Section 3 is used to complete the field-level short-term power forecasting function; that is, it
is used to predict the future 24 h with a point-by-point prediction at a temporal resolution
of 15 min. A deep learning model is established for the whole wind farm, and the short-
term power prediction results of each wind turbine are obtained by distinguishing the
characteristics of different wind turbines through the information of the wind turbine ID,
longitude, and latitude.

. raw data M

e abnormal data
2000 4

1500

power

1000

500 4

wind speed

Figure 13. Wind power scatter diagram.

5.2. Hardware Environment

The model verification is based on the Tensorflow framework and implemented by
Keras. Tensorflow version 2.10.0 and Keras version 2.10.0 are implemented; GPU resources
are NVIDIA Tesla GPU, there are 4 blocks in total, and each block has 32 GB of memory.

5.3. Benchmark Model and Evaluation Criteria

The TFT model and the Seq2Seq-+attention model are used as benchmark models to
compare with the model proposed in this paper. In the modeling process of the TFT model,
the historical variables do not use the Res-CNN network for feature fusion, but only connect
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multi-source data channels to verify the promotion effect of feature fusion on the model.
The Seq2Seqg+attention model retains the feature fusion part of the Res-CNN network
and replaces the attention part of this paper with the additive attention mechanism in the
Seq2Seq+attention model to compare the similarities and differences between recursive
and direct prediction. The biggest difference among the three models is multi-source data
fusion and the multi-step prediction strategy. The difference is shown in Table 4.

Table 4. Description of the benchmark model.

Multi-Step Prediction

Model Feature Fusion or Not .
Mechanism
Proposed Model Y direct prediction
TFT N direct prediction
Seq2Seq Y recursive prediction

The model evaluation criteria include Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). The calculation of RMSE and MAE is shown below:

1 A
RMSE = /=3 (v;~ §;) (11)
i=1
18
MAE =_ |y~ il (12)
i=1

5.4. Analysis of Prediction Results

This validation is based on the real wind turbine dataset from May 2022 to October 2022,
and the data duration is about 180 days. The historical data of two days is used to predict the
power of the next day. In order to increase the sample size, the time window method was
used to construct the sample, and the sliding time step was 15 min. Since the number of wind
turbines is 23, the total sample size is approximately 23 x (180 x 24 x 60/15) = 397,440. A
total of 80% of the data is used for model training, with a sample size of about 317,952. A total
of 20% of the data is used for model testing, with a sample size of about 79,488. The prediction
performance of the three models will be tested on the test set.

5.4.1. Comparison of Convergence Rates in Training Sets

For the convenience of comparison, this section takes a single wind turbine as the
original dataset for model training. The convergence speed of the three models under the
same dataset of a single wind turbine is compared. The model parameters are shown in
Table 5, and the loss function changes during model training are shown in Figure 14.
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Table 5. Performance comparison of single wind turbine model.

Models Parameters Value
Feature selection: dimension 50
Multi-head-attention: head dimension 50
Res-CNN: filters number 20
LSTM: hidden layer size 50
Proposed Model Dropout 0.1
Learning rate 0.01
Optimizer Adam
Batch size 32
Epochs 100
Feature selection: dimension 50
LSTM: hidden layer size 50
Dropout 0.1
TFT Learning rate 0.01
Optimizer Adam
Batch size 32
Epochs 100
Feature selection: dimension 50
Multi-head-attention: head dimension 50
Res-CNN: filters number 20
LSTM: hidden layer size 50
Seq2Seq Dropout 0.1
Learning rate 0.01
Optimizer Adam
Batch size 32
Epochs 100

The model training results are shown in Table 6.

Table 6. Performance comparison of single wind turbine model.

Types Proposed Model TFT Seq2Seq
parameters 1.292 million 2.426 million 2.041 million
MAE 0.0841 0.0989 0.0998
RMSE <0.1 Time required 9.97 min 19.32 min 37.8 min
MAE 0.0641 0.0833 0.0875
Optimal model RMSE 0.0677 0.0853 0.0878
Time required 21.67 min 27.48 min 81.2 min

It can be seen from the comparison in Table 2:

(1) In terms of model complexity, the parameters of the proposed model are signifi-
cantly less than the comparison model, and the proposed model is simpler, which reduces
the risk of model overfitting.

(2) In terms of the convergence speed of the model, by setting the RMSE of the training
set less than 0.1 for the first time as the criterion, the model in this paper has the fastest
convergence speed. Both the proposed model and the TFT model use a direct prediction
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mechanism for multi-step prediction, while the Seq2Seq+attention model uses a recursive
prediction mechanism to accomplish multi-step prediction. It can be seen that the training
speed of the direct prediction mechanism is significantly faster than that of the recursive
prediction mechanism.

(3) In terms of the performance of the optimal model, the prediction effect of the
validation set is taken as the standard, and the proposed model in this paper obtains
the best prediction effect with the fastest speed. Under the same multi-step prediction
mechanism, the prediction effect of the proposed model using the Res-CNN network for
feature fusion is better than that of the TFT model, which verifies the improvement of the
prediction performance of the Res-CNN network feature fusion. Under the same Res-CNN
network feature fusion mechanism, the direct prediction mechanism of the proposed model
is better than the Seq2Seq+attention model, which verifies the effectiveness of the direct
prediction mechanism.

5.4.2. Comparison of Model Generalization Ability

To demonstrate the generalization ability of the model, the trained model is applied to
our testing dataset, and results are compared with the benchmark models. The performance
evaluation metric is calculated for each wind turbine, and the results are given in Table 7.

Table 7. Model generalization ability analysis.

Types Proposed Model TFT Seq2Seq

Time of training 3.2931 h 5.9437 h 14.625h
MAX 0.2011 0.2856 0.2908
RMSE MIN 0.0585 0.1029 0.0997
Mean 0.1243 0.1501 0.1487
MAX 0.0707 0.0891 0.0844
MAE MIN 0.0061 0.0106 0.0099
Mean 0.0176 0.0248 0.0234

According to Table 7, the proposed model performs the best in the power prediction
of multiple wind turbines in the wind farm, with an average RMSE of 0.0585. It is superior
to other comparison models and provides an effective method for power forecasting.

6. Conclusions

In this work, we tackle the multi-step prediction problem for wind power, and a
method based on multi-source data fusion and deep learning algorithmic architecture is
proposed. The following conclusions can be made through the comparative analysis using
operational wind farm data:

(1) The accuracy of the forecasting model can be further improved by making full use
of static variable information and combining it with time varying information for feature
selection. At the same time, more statistical static variables can integrate historical statistical
information into the model to improve the predictive ability of the model.

(2) Multi-source data fusion with Res-CNN can effectively improve the generalization
ability of the model, and using multi-source data fusion for feature engineering based on
the same dataset can increase the forecasting skill of the model.

(3) The direct prediction method combined with the self-attention mechanism can
achieve satisfactory skill in multi-step prediction problems. Compared with the recursive
prediction method, it has shown advantages in training speed and prediction accuracy.

The deep learning prediction model proposed in this paper achieves better results
than the Seq2Seq+attention model in our numerical experiment of wind farm power
forecasting. However, in the multi-step prediction problem of power forecasting, there is
still a significant time lag in the prediction results when there are extreme gusts. In addition,
there are still some important variables, such as division of working conditions, which have
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not been considered in this study, but they are believed to significantly affect performance
of such data-driven forecasting methods. These remain our further research questions.
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