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Abstract: This paper investigates common (slack) due-date assignment single-machine scheduling
with controllable processing times within a group technology environment. Under linear and convex
resource allocation functions, the cost function minimizes scheduling (including the weighted sum
of earliness, tardiness, and due-date assignment, where the weights are position-dependent) and
resource-allocation costs. Given some optimal properties of the problem, if the size of jobs in each
group is identical, the optimal group sequence can be obtained via an assignment problem. We then
illustrate that the problem is polynomially solvable in O(℘3) time, where ℘ is the number of jobs.
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1. Introduction

Classical scheduling problems consider fixed job processing times. However, schedul-
ing problems with controllable processing times (C̃PT, i.e., resource allocation) have re-
ceived extensive attention (see Lu et al. [1], Liu et al. [2]). In 2018, Li and Wang [3] studied
single-machine scheduling with deteriorating jobs and C̃PT. For the general linear deterio-
ration function, they proved that the weighted sum minimization of the makespan and total
resource consumption costs can be solved in polynomial time. Lu and Liu [4] delved into
single-machine scheduling with C̃PT and position-dependent workloads. For scheduling
and total resource consumption costs, they performed bicriterion analysis for the problem.
In 2019, Geng et al. [5], and Sun et al. [6] investigated two-machine flow-shop problems
with learning effects and C̃PT. Under common due-date assignment and no-wait con-
straints, Geng et al. [5] proved that irregular objective minimization is solved in polynomial
time. Under slack due-date assignment and no-wait constraints, Sun et al. [6] proved that
irregular objective minimization is solved in polynomial time. In 2020, Liu and Jiang [7]
studied scheduling with learning effects and C̃PT on a two-machine no-wait flow-shop
setting. Under common and slack due date assignments, they provided bicriterion analysis
for scheduling and resource-consumption costs. In 2021, Lu et al. [8] considered a single-
machine due-date assignment problem with C̃PT and learning effects. Zhao [9], and Lv
and Wang [10] revisited no-wait flow-shop problems with learning effects and C̃PT. Under
a slack (different) due-window assignment, Zhao [9] (Lv and Wang [10]) performed bicrite-
rion analysis of scheduling (including earliness–tardiness penalties, due-window starting
times, and the due-window size of all jobs) and resource-consumption costs. Zhao [9], and
Lv and Wang [10] proved that several scheduling and resource-consumption costs can
be solved in polynomial time. In 2022, Tian [11] addressed single-machine due-window
assignment scheduling with C̃PT. Under linear and convex resource allocation functions,
the objective is to minimize generalized earliness and tardiness penalties. For common
and slack due-window assignments, they demonstrated that the problem could be solved
in polynomial time. In 2023, Wang et al. [12] explored single-machine scheduling with
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C̃PT. Under linear and convex resource allocation functions, the objective was to minimize
the weighted sum of general earliness–tardiness and resource-consumption costs where
weights are position-dependent. They demonstrated that the problem was polynomially
solvable.

In addition, the study of group technology (GT) is very important (see Liu [13]). In
2018, Wang et al. [14] considered single-machine scheduling with shortened job processing
times. Under GT and ready times, they proved that some special cases of the makespan
minimization could be solved in polynomial time. In 2019, Huang [15] scrutinized the
scheduling with deteriorating jobs and GT, and proved that bicriterion single-machine
minimization is polynomially solvable, where primary (secondary) criterion is the total
weighted completion time (maximal cost). Liu et al. [16] focused on single-machine
scheduling GT and deterioration effects. For makespan minimization with ready times,
they proposed heuristic and branch-and-bound algorithms, and tested them via randomly
instances. In 2021, Wang et al. [17] examined single-machine scheduling with GT and
due-date assignment. For common, slack, and different due-date assignments, they proved
that irregular objective minimization could be solved in O(n log n) time, where n is the
number of jobs. In 2022, Wang et al. [18] investigated single-machine scheduling with GT
and a shortened proportional linear processing time. For the general problem of makespan
minimization, they proposed a heuristic algorithm and a branch-and-bound algorithm to
solve the problem. In 2023, Chen et al. [19] scrutinized the single-machine problem with
GT and a controllable learning effect. In due-window assignments, the objective is to
minimize the total cost comprising due-window related penalties and investment costs.
They proved that the problem could be solved in polynomial time.

To our knowledge, scheduling with GT and C̃PT are concurrently widely reflected
in real production (see Shabtay et al. [20], Zhu et al. [21], Wang et al. [22]). Wang and
Liang [23], and Liang et al. [24] explored single-machine scheduling with GT, convex
C̃PT, and deterioration effects. In 2023, Yan et al. [25] studied single-machine scheduling
with GT and C̃PT. Under learning effects and limited resource availability, the goal is
to minimize the total completion time. These authors proved that some special cases
of the problem could be solved in polynomial time. For a general case of the problem,
they also proposed heuristic and branch-and-bound algorithms. Chen et al. [26] worked
on single-machine scheduling with GT and C̃PT. In different due-date assignments and
for a special case, they proved that the problem could be solved in polynomial time.
In view of the importance of GT and C̃PT, in this article, we continue the work of the
concurrent single-machine scheduling with GT and C̃PT for a common due-date assign-
ment (ΞCON ; for details, see Gordon et al. [27]) and slack due-date assignment (ΞSLK; see
Gordon et al. [28], Liu et al. [29]). Our objective is to minimize the sum of scheduling
(including the weighted sum of earliness, tardiness, and due-date assignments where

weights are position-dependent (P̃DW; see Wang et al. [30], and Wang et al. [31])) and
resource-allocation costs. This paper’s contributions are as follows:

• We scrutinize the single-machine due-date assignment problem with the group tech-
nology and controllable processing times.

• Under ΞCON , and ΞSLK, the goal is to minimize the sum of scheduling (including the
weighted sum of earliness, tardiness, and due-date assignment, where weights are

P̃DW) and resource-allocation costs.
• The optimal properties of a special case are presented, and we prove that the problem

could be solved in polynomial time.

The rest of this article is organized as follows: In Section 2, we present the model. In
Sections 3 and 4, we analyze the linear and convex resource functions, respectively. In
Section 5, a numerical example is presented. In Section 6, we conclude the paper.
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2. Problem Formulation

A set of ℘ jobs to be processed on a single-machine are divided into ℵ groups
G̃1, G̃2, . . . , G̃ℵ, where a number of jobs belong to group G̃i is ℘i and ℘1 +℘2 + . . .+℘ℵ = ℘.
All jobs and the machine are available at Time 0. Machine setup time s̃i is incurred before
the jobs are processed in G̃i. There is not setup time between jobs in the same group,
and jobs within each group must be processed consecutively. Let Jih be the hth job in G̃i,
i = 1, . . . ,ℵ; h = 1, . . . ,℘i. For a linear resource function, the actual processing time of Jih is

pih = aih − bihuih, 0 ≤ uih ≤ ūih <
aih
bih

, (1)

where aih and bih are the normal processing time and positive compression rate of job
Jih, respectively (the normal processing time means that the processing time without any
resource allocation), uih is the amount of a nonrenewable resource allocated to Jih, and ūih
denotes the maximal amount of the resource allocated to Jih. For a convex resource function,

pih =

(
θih
uih

)`

, (2)

where θih is a workload of Jih (` > 0 is a given constant).
Let Cih = and dih be the completion time and due date, respectively, of Jih in G̃i. For

the ΞCON assignment, we assumed that dih = di; for the ΞSLK assignment, we assumed that
dih = pih + qi, where qi denotes common flow allowance for G̃i. Let Eih = max{0, dih − Cih}
and Tih = max{0, Cih − dih} denote the earliness and tardiness, respectively, of job Jih. Let
[r] be a scheduled job (group) in the rth position, Ji[r] a scheduled job in the rth position in
G̃i. Our goal was to find group sequence $ and internal job sequence ϕi within G̃i, the set
of due-dates d̃ = {d1, d2, . . . , dm} ( flow allowances q̃ = {q1, q2, . . . , qm}) and the resource
allocation ũ = {uih|i = 1, . . . ,ℵ; h = 1, 2, . . . ,℘i} such that cost function

H($, ϕi|i = 1, . . . ,ℵ, d̃/q̃, ũ) =
ℵ
∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + γdi/qi) +
ℵ
∑
i=1

℘i

∑
h=1

gihuih

=
m

∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi) (3)

is minimized, where αih and βih are position-dependent weights for earliness and tardiness
costs, i.e., αih and βih are not related to job Jih, but to position h in group G̃i, γ ≥ 0 is a given
constant, and gih is the cost of one unit of the allocated resource to job Jih. With three field
notations, this problem is denoted as follows:

1
∣∣∣pih = aih − bihuih, ΞCON/ΞSLK, GT, P̃DW

∣∣∣ ℵ∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi) (4)

and

1

∣∣∣∣∣pih =

(
θih
uih

)`

, ΞCON/ΞSLK, GT, P̃DW

∣∣∣∣∣ ℵ∑i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi) (5)

where 1 stands for the single-machine, field {pih, ΞCON/ΞSLK, GT, PDW} denotes the
characteristics of jobs and groups, and ∑ℵi=1 ∑℘i

h=1(αihEi[h] + βihTi[h] + gihuih + γdi/qi) is
the cost function. The notations and symbols used in this article are listed in Table 1.
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Table 1. Symbols.

Symbol Definition

℘ (resp. ℵ) number of jobs (resp. groups)
G̃i group i, i = 1, . . . ,ℵ
℘i Number of jobs in G̃i
Jih Job h in G̃i
aih and bih Normal processing time and compression rate, respectively, of Jih
θih Workload of Jih
uih and ūih Amount and maximal amount, respectively, of the assigned resource to Jih
pih Actual processing time of Jih
s̃i setup time of G̃i
Cih and dih Completion time and due date, respectively, of Jih
Eih and Tih Earliness and tardiness, respectively, of Jih
di and qi Common due date and flow allowance, respectively, of G̃i

αih and βih)
Position-dependent weights of earliness and tardiness, respectively, in the
hth position in G̃i

gih Unit resource cost for Jih

3. Linear Resource Function

There exists an optimal sequence that does not include idle machine times. Let S̃i be
the starting time of G̃i, for a given job sequence ϕi within G̃i; completion times of Ji[h] is

Ci[h] = S̃i + s̃i +
h

∑
l=1

pi[l] (6)

Lemma 1. For a given job sequence ϕi and resource allocation within group G̃i, under ΞCON and
ΞSLK assignments, if the values of di and qi, respectively, are within the starting and ending times
of G̃i, there exists an optimal value at which di and qi are equal to the completion time of some job
(i = 1, . . . ,ℵ).

Proof. For the ΞCON assignment, it was assumed that Ci[ki ]
< di < Ci[ki+1], where ki is the

kith position of group G̃i, we have

Hi =
℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi)

=
ki

∑
h=1

αihEi[h] +
℘i

∑
h=ki+1

βihTi[h] +
℘i

∑
h=1

gihuih + γ℘idi

=
ki

∑
h=1

αih(di − Ci[h]) +
℘i

∑
h=ki+1

βih(Ci[h] − di) +
℘i

∑
h=1

gihuih + γ℘idi (7)

If di = Ci[ki ]
,

H′i =
ki

∑
h=1

αih(Ci[ki ]
− Ci[h]) +

℘i

∑
h=ki+1

βih(Ci[h] − Ci[ki ]
) +

℘i

∑
h=1

gihuih + γ℘iCi[ki ]
(8)

If di = Ci[ki+1],

H′′i =
ki

∑
h=1

αih(Ci[ki+1] − Ci[h]) +
℘i

∑
h=ki+1

βih(Ci[h] − Ci[ki+1]) +
℘i

∑
h=1

gihuih + γ℘iCi[ki+1] (9)

Then
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Hi − H′i =
ki

∑
h=1

αih(di − Ci[ki ]
) +

℘i

∑
h=ki+1

βih(Ci[ki ]
− di) + γ℘i(di − Ci[ki ]

)

= (di − Ci[ki ]
)

(
γ℘i +

ki

∑
h=1

αih −
℘i

∑
h=ki+1

βih

)
(10)

and

Hi − H′′i =
ki

∑
h=1

αih(di − Ci[ki+1]) +
℘i

∑
h=ki+1

βih(Ci[ki+1] − di) + γ℘i(di − Ci[ki+1])

= (di − Ci[ki+1])

(
γ℘i +

ki

∑
h=1

αih −
℘i

∑
h=ki+1

βih

)
(11)

Thus, if Ci[ki ]
< di < Ci[ki+1] and γ℘i +∑ki

h=1 αih−∑℘i
h=ki+1 βih ≥ 0, we have Hi−H′i ≥

0; if γ℘i + ∑ki
h=1 αih − ∑℘i

h=ki+1 βih ≤ 0, we have Hi − H′i ≥ 0, hence, we can see that di

coincides with some job completion time of G̃i.
For the ΞSLK method, this result can be similarly obtained.

Lemma 2. For a given job sequence ϕi within G̃i, under ΞCON/ΞSLK assignment, there exists
an optimal di = Ci[ki ]

/(qi = Ci[ki−1]) where ki satisfies the following inequality: ∑℘i
h=ki+1 βih −

∑ki
h=1 αih ≤ γ℘i ≤ ∑℘i

h=ki
βih −∑ki−1

h=1 αih.

Proof. For the ΞCON assignment, from Lemma 1, it was assumed that di = Ci[ki ]
; we then

have

Hi =
ki

∑
h=1

αih(Ci[ki ]
− Ci[h]) +

℘i

∑
h=ki+1

βih(Ci[h] − Ci[ki ]
) +

ni

∑
h=1

gihuih + γ℘iCi[ki ]
(12)

With the technique of small perturbations, if di = Ci[ki ]
+ ε (ε� 0),

H′i =
ki

∑
h=1

αih(Ci[ki ]
+ ε− Ci[h]) +

℘i

∑
h=ki+1

βih(Ci[h] − Ci[ki ]
− ε) +

ni

∑
h=1

gihuih + γ℘i(Ci[ki ]
+ ε) (13)

if di = Ci[ki ]
− ε,

H′′i =
ki−1

∑
h=1

αih(Ci[ki ]
− ε− Ci[h]) +

℘i

∑
h=ki

βih(Ci[h] − Ci[ki ]
+ ε) +

℘i

∑
h=1

gihuih + γ℘i(Ci[ki ]
− ε) (14)

Hi − H′i = −ε

(
γ℘i +

ki

∑
h=1

αih −
℘i

∑
h=ki+1

βih

)
≤ 0 (15)

Hi − H′′i = ε

(
γ℘i +

ki−1

∑
h=1

αih −
℘i

∑
h=ki

βih

)
≤ 0 (16)

Hence, ki satisfies γ℘i + ∑ki
h=1 αih −∑℘i

h=ki+1 βih ≥ 0 and γ℘i + ∑ki−1
h=1 αih −∑℘i

h=ki
βih ≤

0, i.e., ∑℘i
h=ki+1 βih −∑ki

h=1 αih ≤ γ℘i ≤ ∑℘i
h=ki

βih −∑ki−1
h=1 αih.

For the ΞSLK assignment, the result can similarly be obtained.

Remark 1. If ki does not satisfy inequality ∑℘i
h=ki+1 βih − ∑ki

h=1 αih ≤ γ℘i ≤ ∑℘i
h=ki

βih −

∑ki−1
h=1 αih, we can set ki = 0.



Processes 2023, 11, 1271 6 of 14

For the ΞCON assignment, from Equation (6), Lemma 2, and di = Ci[ki ]
= S̃i + s̃i +

∑ki
l=1 pi[l], we have

H(ΞCON) =
ℵ
∑
i=1

(
ki

∑
h=1

αih(di − Ci[h]) +
℘i

∑
h=ki+1

βih(Ci[h] − di) + γ℘idi +
℘i

∑
h=1

gi[h]ui[h]

)

=
ℵ
∑
i=1

(
ki

∑
h=1

αih(Ci[ki ]
− Ci[h]) +

℘i

∑
h=ki+1

βih(Ci[h] − Ci[ki ]
) + γ℘iCi[ki ]

+
℘i

∑
h=1

gi[h]ui[h]

)

=
ℵ
∑
i=1

(
ki

∑
h=1

αih

(
ki

∑
l=1

pi[l] −
h

∑
l=1

pi[l]

)
+

℘i

∑
h=ki+1

βih

(
h

∑
l=1

pi[l] −
ki

∑
l=1

pi[l]

))

+ γ
ℵ
∑
i=1

℘i

(
S̃i + s̃i +

ki

∑
l=1

pi[l]

)
+
ℵ
∑
i=1

℘i

∑
h=1

gi[h]ui[h]

=
ℵ
∑
i=1

℘i

∑
h=1

ξih pi[h] + γ
ℵ
∑
i=1

℘i

(
S̃i + s̃i

)
+
ℵ
∑
i=1

℘i

∑
h=1

gi[h]ui[h] (17)

where

ξih =

{
∑h−1

l=1 αil + γni, h = 1, 2, . . . , ki,
∑ni

l=h βil , h = ki + 1, ki + 2, . . . ,℘i.
(18)

For the ΞSLK assignment, from Equation (6), Lemma 2, and qi = Ci[ki−1] = S̃i + s̃i +

∑ki−1
l=1 pi[l], we have

H(ΞSLK) =
ℵ
∑
i=1

(
ki

∑
h=1

αih(di[h] − Ci[h]) +
℘i

∑
h=ki+1

βih(Ci[h] − di[h]) + γ℘iqi +
℘i

∑
h=1

gi[h]ui[h]

)

=
ℵ
∑
i=1

ki

∑
h=1

αih(pi[h] + Ci[ki−1] − Ci[h]) +
ℵ
∑
i=1

℘i

∑
h=ki+1

βih(Ci[h] − pi[h] − Ci[ki−1])

+
ℵ
∑
i=1

γ℘iCi[ki−1] +
ℵ
∑
i=1

℘i

∑
h=1

gi[h]ui[h]

=
ℵ
∑
i=1

(
ki

∑
h=1

αih

(
ki−1

∑
l=1

pi[l] −
h−1

∑
l=1

pi[l]

)
+

℘i

∑
h=ki+1

βih

(
h−1

∑
l=1

pi[l] −
ki−1

∑
l=1

pi[l]

))

+ γ
ℵ
∑
i=1

℘i

(
S̃i + s̃i +

ki−1

∑
l=1

pi[l]

)
+
ℵ
∑
i=1

℘i

∑
h=1

gi[h]ui[h]

=
ℵ
∑
i=1

℘i

∑
h=1

ξih pi[h] + γ
ℵ
∑
i=1

℘i

(
S̃i + s̃i

)
+
ℵ
∑
i=1

℘i

∑
h=1

gi[h]ui[h] (19)

where

ξih =

 ∑h
l=1 αil + γni, h = 1, 2, . . . , ki − 1,

∑ni
l=h+1 βil , h = ki, ki + 1, . . . ,℘i − 1,

0, h = ℘i.
(20)

Since ki values are independent of $ and ϕi (i = 1, . . . ,ℵ), from Lemmas 1 and 2, if
pih = aih − bihuih, the cost objective can be expressed:

H(ΞCON/ΞSLK) =
ℵ
∑
i=1

℘i

∑
h=1

a[i][h]

(
ξ[i]h + γ

ℵ
∑

r=i+1

(
℘[r]

))
+ γ

ℵ
∑
i=1

(
℘[i] ×

i

∑
r=1

s̃[r]

)

+
ℵ
∑
i=1

℘i

∑
h=1

(
g[i][h] − b[i][h]

(
ξ[i]h + γ

ℵ
∑

r=i+1

(
℘[r]

)))
u[i][h] (21)
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where for the ΞCON assignment,

ξ[i]h =

{
∑h−1

l=1 α[i]l + γ℘[i], h = 1, 2, . . . , ki,
∑ni

l=h β[i]l , h = ki + 1, ki + 2, . . . ,℘i.
(22)

For the ΞSLK assignment,

ξ[i]h =


∑h

l=1 α[i]l + γ℘[i], h = 1, 2, . . . , ki − 1,
∑℘i

l=h+1 β[i]l , h = ki, ki + 1, . . . ,℘i − 1,
0, h = ℘i.

(23)

Lemma 3. In the given group sequence and job sequence within each group, optimal resource
allocation ũ∗($, ϕ1, . . . , ϕℵ) is

u∗[i][h] =


ū[i][h], if g[i][h] − b[i][h]

(
ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

))
< 0,

u[i][h] ∈ [0, ū[i][h]], if g[i][h] − b[i][h]
(

ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

))
= 0,

0, if g[i][h] − b[i][h]
(

ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

))
> 0.

(24)

Proof. Let the derivative of Equation (21) with respect to u[i][j] be equal to 0, and the result
can be obtained.

For a given group order $, from Equation (21), ∑ℵi=1 ∑℘i
h=1 a[i][h]

(
ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

))
+∑ℵi=1 ∑℘i

h=1

(
g[i][h] − b[i][h]

(
ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

)))
u[i][h] is dependent only on the inter-

nal job sequence, while term γ ∑ℵi=1

(
℘[i] ×∑i

r=1 s̃[r]
)

is independent of the internal job
sequence within each group. Now, we prove that the optimal sequence within each group
can be obtained with the following lemma.

Lemma 4. Given group order $, optimal job sequence ϕ∗i ($) within G̃i($) is obtained in O(℘3
i )

time.

Proof. For a given G̃[i], let x[i]jh be a binary variable, i.e., if J[i]j in G̃[i] is assigned to hth

position, x[i]jh = 1; otherwise, x[i]jh = 0, j, h = 1, . . . ,℘[i]. Let

ϑ
[i]
jh =



g[i]jū[i]j + (a[i]j − b[i]jū[i]j)
(

ξ[i]h + γ ∑ℵr=i+1

(
n[r]

))
,

if g[i]j − b[i]j
(

ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

))
≤ 0;

a[i]j
(

ξ[i]h + γ ∑ℵr=i+1

(
n[r]

))
,

if g[i]j − b[i]j
(

ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

))
> 0.

(25)

As in Wang et al. [22], optimal job sequence ϕ∗i ($) can be obtained with the assignment
problem (ÃP):

Min
℘[i]

∑
j=1

℘[i]

∑
h=1

ϑ
[i]
jh x[i]jh (26)

s.t.

℘[i]

∑
j=1

x[i]jh = 1, h = 1, . . . ,℘[i], (27)

℘[i]

∑
h=1

x[i]jh = 1, j = 1, . . . ,℘[i], (28)
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x[i]jh ∈ {0, 1}, j, h = 1, . . . ,℘[i]. (29)

The above ÃP is solvable in O(n3
[i]) time; hence, determining the total complexity of

ϕi($) (i = 1, . . . ,ℵ) is bounded by ∑ℵi=1 O(℘3
[i]) = O(℘3).

For

1
∣∣∣pih = aih − bihuih, ΞCON/ΞSLK, GT, P̃DW

∣∣∣ ℵ∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi),

from Lemmas 1–4, the complexity of determining the optimal group sequence is still an
open problem, so we discuss a special case, i.e., ℘i = N̂, i = 1, . . . ,ℵ.

Lemma 5. For

1|pih = aih − bihuih, ΞCON/ΞSLK, GT, PDW|
ℵ
∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi),

if ℘i = N̂ (i = 1, . . . ,ℵ), the optimal group sequence $∗ is obtained by ÃP in O(℘3) time.

Proof. From Equation (21), cost function (3) is determined by both the group and job
sequences. Optimal job sequence ϕ∗i can be obtained with Lemma 4, and the cost function
with ϕ∗i is just dependent on the ith group position in $. In ni = N̂ (i = 1, . . . ,ℵ), term

γ ∑ℵi=1

(
℘[i] ×∑i

r=1 s̃[r]
)
= γN̂ ∑ℵi=1

[
(ℵ − i + 1)s̃[r]

]
. Let yir be a binary variable. If group

G̃i is assigned to rth position, yir = 1; otherwise, yir = 0, i, r = 1, · · · ,ℵ. Let

χir =



∑N̂
j=1

(
gi[j]ūi[j] + (ai[j] − bi[j]ūi[j])

(
ξij + γ(ℵ − r)N̂

))
+ γN̂(ℵ − r + 1)s̃i,

if gi[j] − bi[j]

(
ξij + γ(ℵ − r)N̂

)
≤ 0;

∑N̂
j=1

(
ai[j]

(
ξij + γ(ℵ − r)N̂

))
+ γN̂(ℵ − r + 1)s̃i,

if gi[j] − bi[j]

(
ξ[i]j + γ(ℵ − r)N̂

)
> 0.

(30)

As in Shabtay et al. [20], optimal group sequence $∗ was obtained with the following
ÃP:

Min
ℵ
∑
i=1

ℵ
∑
r=1

χiryir (31)

s.t.

ℵ
∑
i=1

yir = 1, r = 1, . . . ,ℵ, (32)

ℵ
∑
r=1

yir = 1, i = 1, . . . ,ℵ, (33)

yir ∈ {0, 1}, i, r = 1, . . . ,ℵ. (34)

The above ÃP is solvable in O(ℵ3) ≤ O(℘3) time.

Via Lemmas 1–5 and the above analysis, for ℘i = N̂ (i = 1, . . . ,ℵ), the following
algorithm (i.e., Algorithm 1) is presented to solve
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1
∣∣∣pih = aih − bihuih, ΞCON/ΞSLK, GT, P̃DW

∣∣∣ ℵ∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi).

Theorem 1. If ℘i = N̂ (i = 1, . . . ,ℵ), Algorithm 1 solves

1|pih = aih − bihuih, ΞCON/ΞSLK, GT, P̃DW|
ℵ
∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi)

in O(℘3) time.

Algorithm 1: Linear resource function

Step 1. Calculate ki by Lemma 2.

Step 2. For each possible position of each group in $, calculate ϑ
[i]
jh with Equation (25) for

j, h = 1, . . . , N̂, where for the ΞCON assignment, ξ[i]h is given by Equation (22), and for the ΞSLK
assignment, ξ[i]h is given by Equation (23).

Step 3. Solve ÃP (26)–(29) to find internal job sequence ϕ∗ir within G̃i if this group is assigned to
the rth position in $.
Step 4. Calculate χir with Equation (30) with ϕ∗ir for i, r = 1, . . . ,ℵ.
Step 5. Solve ÃP (31)–(34) to find optimal sequences $∗ and ϕ∗i .
Step 6. Compute optimal resource allocation u∗ih($

∗, ϕ∗1 , . . . , ϕ∗ℵ) with Equation (24).
Step 7. For the ΞCON and ΞSLK assignments, calculate d∗i = Ci[ki ] and q∗i = Ci[ki−1], respectively,
with Lemma 2.

Proof. With Lemmas 1–5, the correctness of Algorithm 1 can be confirmed. Steps 1, 6, and
7 need O(℘) time; Steps 2 and 3 need O(℘3) time; Steps 4 and 5 need O(ℵ3) ≤ O(℘3) time.
Thus, the total computational time is O(℘3).

4. Convex Resource Function

Similar to Section 3, for problem

1

∣∣∣∣∣pih =

(
θih
uih

)`

, ΞCON/ΞSLK, GT, P̃DW

∣∣∣∣∣ ℵ∑i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi),

we have

H(ΞCON/ΞSLK) =
ℵ
∑
i=1

℘i

∑
h=1

(
ξ[i]h + γ

ℵ
∑

r=i+1

(
℘[r]

))( θ[i][h]

u[i][h]

)`

+ γ
ℵ
∑
i=1

(
℘[i] ×

i

∑
r=1

s̃[r]

)

+
ℵ
∑
i=1

℘i

∑
h=1

g[i][h]u[i][h], (35)

where for the ΞCON assignment, ξ[i]h is given by Equation (22), and for the ΞSLK assignment,
ξ[i]h is given by Equation (23), i, h = 1, . . . ,℘i.

Lemma 6. Under the given group and job sequences

1

∣∣∣∣∣pih =

(
θih
uih

)`

, ΞCON/ΞSLK, GT, P̃DW

∣∣∣∣∣ ℵ∑i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi),

the optimal resource allocation ũ∗($, ϕ1, . . . , ϕℵ) is

u∗[i][h] =

 `
(

ξ[i]h + γ ∑ℵr=i+1

(
℘[r]

))
g[i][h]


1

`+1

×
(

θ[i][h]

) `
`+1 , (36)
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where for the ΞCON assignment, ξ[i]h is given by Equation (22), and for the ΞSLK assignment, ξ[i]h
is given by Equation (23), i, h = 1, . . . ,℘i.

Proof. From Equation (35), H is a convex function of u[i][h]; hence, let

∂H
∂u[i][h]

= g[i][h] − `

(
ξ[i]h + γ

ℵ
∑

r=i+1

(
℘[r]

)) (
θ[i][h]

)`
(

u[i][h]

)`+1 = 0,

and the result of Equation (36) can be obtained.

By ubstituting Equation (36) into Equation (35), it follows that

H($, ϕ1, . . . , ϕℵ, ũ∗) =
(
`
−`
`+1 + `

1
`+1

) ℵ
∑
i=1

℘[i]

∑
j=1

(
ξ[i]h + γ

m

∑
r=i+1

(
℘[r]

)) 1
`+1 (

g[i][h]θ[i][h]
) `

`+1

+ γ
ℵ
∑
i=1

(
℘[i] ×

i

∑
r=1

s̃[r]

)
(37)

For the ΞCON assignment, let

ξih =

{
∑h−1

l=1 αil + γ℘i, h = 1, . . . , ki,
∑ni

l=h βil , h = ki + 1, ki + 2, . . . ,℘i,
(38)

For the ΞSLK assignment, let

ξih =

 ∑h
l=1 αil + γn[i], h = 1, . . . , ki − 1,

∑ni
l=h+1 βil , h = ki, ki + 1, . . . ,℘i − 1,

0, h = ℘i.
(39)

Lemma 7. Given group order $, optimal job sequence ϕ∗i (i = 1, . . . ,ℵ) within G̃i can be obtained
by matching the smallest and second smallest ξih to the job with the largest and second largest gihθih,
respectively, and so on.

Proof. From Equation (37),
(
`
−`
`+1 + `

1
`+1

)
is a given constant, γ ∑ℵr=i+1

(
℘[r]

)
and γ ∑ℵi=1(

℘[i] ×∑i
r=1 s̃[r]

)
are independent of the internal job sequence within each group. Accord-

ing to Hardy et al. [32], the optimal job sequence for G̃i is obtained by matching the smallest
and second smallest ξih to the job with the largest and second largest gihθih, respectively,
and so on.

For

1

∣∣∣∣∣pih =

(
θih
uih

)`

, ΞCON/ΞSLK, GT, P̃DW

∣∣∣∣∣ ℵ∑i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi),

the complexity of finding the optimal group sequence is still an open problem, but for the
special case ℘i = N̂, i = 1, . . . ,ℵ, the optimal $∗ is obtained in O(℘3) time.

Lemma 8. For

1

∣∣∣∣∣pih =

(
θih
uih

)`

, ΞCON/ΞSLK, GT, P̃DW

∣∣∣∣∣ ℵ∑i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi),



Processes 2023, 11, 1271 11 of 14

if ℘i = N̂ (i = 1, . . . ,ℵ), the optimal group sequence $∗ can be determined with ÃP in O(℘3)
time.

Proof. Similar to Lemma 5, from Equation (37), let

χir =
(
`
−`
`+1 + `

1
`+1

) N̂

∑
h=1

(
ξih + γN̂(ℵ − r)

) 1
`+1
(

gi[h]θi[h]

) `
`+1

+ γN̂(ℵ − r + 1)s̃i, (40)

The optimal group sequence $∗ can be obtained with ÃP (31)–(34), where χir is given by
Equation (40).

Similarly, for ni = N̂ (i = 1, . . . ,ℵ), the following algorithm (i.e., Algorithm 2) is
presented to solve

1

∣∣∣∣∣pih =

(
θih
uih

)`

, CON, GT, P̃DW

∣∣∣∣∣ ℵ∑i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi).

Theorem 2. If ℘i = N̂ (i = 1, . . . ,ℵ), Algorithm 2 solves

1|pih =

(
θih
uih

)`

, ΞCON/ΞSLK, GT, P̃DW|
ℵ
∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi)

in O(℘3) time.

Algorithm 2: Convex resource function

Step 1. Calculate ki by Lemma 2.
Step 2. For each group G̃i (i = 1, . . . ,ℵ), Lemma 7 is used to obtain internal job sequence ϕ∗i ,
where for the ΞCON assignment, ξih is given by Equation (38), and for the ΞSLK assignment, ξih is
given by Equation (39), i = 1, . . . ,ℵ, h = 1, . . . ,℘i.
Step 3. χir is computed with Equation (40) with ϕ∗i for i, r = 1, . . . ,ℵ.
Step 4. Solve ÃP (31)–(34) to determine the optimal group sequence $∗.
Step 5. Compute optimal resource allocation u∗ih($

∗, ϕ∗1 , . . . , ϕ∗ℵ) with Equation (36).
Step 6. For the ΞCON and ΞSLK assignments, calculate d∗i = Ci[ki ] and q∗i = Ci[ki−1], respectively,
using Lemma 2.

5. An Example

We only considered the ΞCON assignment problem where ℘ = 15, ℵ = 3, ℘1 = ℘2 =
℘3 = 5, ` = 2, γ = 4, s̃1 = 2, s̃2 = 3, s̃3 = 1; the parameters of job Jih (i = 1, 2, 3; h = 1, . . . , 5)

are given in Table 2, αih and βih of P̃DW (i = 1, 2, 3; j = 1, . . . , 5) are presented in Table 3.

Table 2. Job parameters.

G̃i G̃1 G̃2 G̃3

Jih J11 J12 J13 J14 J15 J21 J22 J23 J24 J25 J31 J32 J33 J34 J35

aih 14 15 13 16 11 13 16 17 18 17 16 19 23 21 18
bih 2 3 3 1 2 2 3 4 5 3 4 4 5 6 3
ūih 4 3 4 10 5 6 5 4 3 5 3 4 4 3 5
θih 15 13 9 10 17 15 11 19 20 9 16 15 21 15 18
gih 4 5 6 2 7 3 6 5 3 4 5 7 8 9 11



Processes 2023, 11, 1271 12 of 14

Table 3. Position-dependent weights.

G̃i G̃1 G̃2 G̃3

αih 6 4 8 6 10 8 10 9 10 13 9 14 10 16 11
βih 10 11 14 8 12 13 12 15 11 14 16 17 11 18 12

For problem

1
∣∣∣pih = aih − bihuih, ΞCON , GT, P̃DW

∣∣∣ ℵ∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi),

from Algorithm 1 and Lemma 2, 8+ 12− (6+ 4+ 8) = 2 ≤ 4× 5 ≤ 14+ 8+ 12− (6+ 4) =
24; hence k1 = 3. Similarly, k2 = 3, k3 = 2. Values ϑ

[1]
jh are given in Table 4 when G̃1 was

scheduled at the rth position. Table 4 shows that the optimal job sequence was ϕ∗11 = {J11 →
J13 → J15 → J12 → J14}, similarly, ϕ∗12 = {J11 → J13 → J15 → J12 → J14}, ϕ∗13 = {J11 →
J13 → J15 → J12 → J14}; For group G̃2, we have ϕ∗21 = {J25 → J21 → J22 → J23 → J24},
ϕ∗22 = {J25 → J21 → J22 → J23 → J24}, ϕ∗23 = {J25 → J21 → J22 → J23 → J24}; For group
G̃3, we have ϕ∗31 = {J32 → J33 → J34 → J35 → J31}, ϕ∗32 = {J32 → J33 → J34 → J35 → J31},
ϕ∗33 = {J32 → J33 → J34 → J35 → J31}.

According to Step 4 of Algorithm 1, the values of χir are given in Table 5. From Table 5,
we have $∗ = {G̃2 → G̃3 → G̃1}. The optimal jobs sequences are ϕ∗21 = {J25 → J21 →
J22 → J23 → J24}, ϕ∗32 = {J32 → J33 → J34 → J35 → J31}, and ϕ∗13 = {J11 → J13 →
J15 → J12 → J14}. The optimal resource allocations corresponding to the sequence are
u∗25 = ū25 = 5, u∗21 = ū21 = 6, u∗22 = ū22 = 5, u∗23 = ū23 = 4, u∗24 = ū24 = 3, u∗32 = ū32 =
4, u∗33 = ū33 = 4, u∗34 = ū34 = 3, u∗35 = ū35 = 5, u∗31 = ū31 = 3, u∗11 = ū11 = 4, u∗13 =
ū13 = 4, u∗15 = ū15 = 5, u∗12 = ū12 = 3, u∗14 = ū14 = 10. The optimal due-dates are
d∗1 = C22 = 7, d∗2 = C34 = 18, and d∗3 = C13 = 38.

Table 4. Values ϑ
[1]
jh for G̃1 (bold numbers are the optimal solution).

h = 1 h = 2 h = 3 h = 4 h = 5

J11 376 412 436 376 328
J12 375 411 435 375 327
J13 84 90 94 84 76
J14 380 416 440 380 332
J15 95 101 105 95 87

Table 5. Values χir of the linear problem (bold numbers are the optimal solution).

r = 1 r = 2 r = 3

G̃1 1398 958 518
G̃2 758 538 318
G̃3 1265 925 585

Similarly, for problem

1

∣∣∣∣∣pih =

(
θih
uih

)`

, ΞCON , GT, P̃DW

∣∣∣∣∣ ℵ∑i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi),

k1 = 3, k2 = 3, k3 = 2. According to Lemma 7, for i = 1, the optimal job sequence is
ϕ∗1 = {J11 → J13 → J14 → J12 → J15}, for i = 2, the optimal sequence is ϕ∗2 = {J22 →
J21 → J25 → J24 → J23}, for i = 3, the optimal sequence is ϕ∗3 = {J33 → J34 → J31 →
J32 → J35}. According to Equation (40), the values of χir are shown in Table 6, where
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we have $∗ = {G̃1, G̃2, G̃3}. The optimal values of resource allocation corresponding
to the sequence are u∗11 = 18.8988, u∗13 = 12.1237, u∗14 = 19.1293, u∗12 = 15.9477, u∗15 =
16.2534, u∗22 = 11.7285, u∗21 = 19.3098, u∗25 = 13.2931, u∗24 = 22.8943, u∗23 = 16.9961, u∗33 =
13.0158, u∗34 = 11.3185, u∗31 = 16.1322, u∗32 = 12.4474, u∗35 = 26.3904. The optimal due dates
are d∗1 = C14 = 3.4544, d∗2 = C25 = 10.0560, and d∗3 = C34 = 17.4282.

Table 6. Values χir of the convex problem (bold numbers are the optimal solution).

r = 1 r = 2 r = 3

G̃1 690.1632 576.7474 492.4878
G̃2 751.6441 622.7040 465.1836
G̃3 1043.3726 910.8574 724.1781

6. Conclusions

In this article, we investigated single-machine group technology scheduling with
C̃PT. Under ΞCON/ΞSLK assignments, the goal is to find the job and group sequences,
resource allocation, and due-date assignment, such that the sum of scheduling and resource-
allocation costs is minimized. For ℘i = N̂ (i = 1, . . . ,ℵ), we demonstrated that this problem
is polynomially solvable. Future work could explore job (or flow) shop problems (see Guo
et al. [33], and Karacan et al. [34]) with group technology and controllable processing times
to study the general version of

1
∣∣∣pih, ΞCON/ΞSLK, GT, P̃DW

∣∣∣ ℵ∑
i=1

℘i

∑
h=1

(αihEi[h] + βihTi[h] + gihuih + γdi/qi),

where pih ∈
{

aih − bihuih,
(

θih
uih

)`}
(e.g., the proposed cuckoo search algorithm of Xie et al. [35]).

Future work could also consider problems regarding maintenance activity (see Wu et al. [36]).
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