
Citation: Hu, S.; Pang, Y.; He, Y.;

Yang, Y.; Zhang, H.; Zhang, L.; Zheng,

B.; Hu, C.; Wang, Q. An Enhanced

Version of MDDB-GC Algorithm:

Multi-Density DBSCAN Based on

Grid and Contribution for Data

Stream. Processes 2023, 11, 1240.

https://doi.org/10.3390/pr11041240

Academic Editors: Zhibin Lin

and Xiong Luo

Received: 6 March 2023

Revised: 5 April 2023

Accepted: 14 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

An Enhanced Version of MDDB-GC Algorithm: Multi-Density
DBSCAN Based on Grid and Contribution for Data Stream
Shuo Hu 1,2, Yonglin Pang 1, Yong He 3, Yuan Yang 1 , Henian Zhang 2, Linmeng Zhang 1, Beiyi Zheng 4,
Caiyun Hu 5 and Qing Wang 1,*

1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
230199163@seu.edu.cn (S.H.); 220223362@seu.edu.cn (Y.P.); yangyuan@seu.edu.cn (Y.Y.);
lomenzhanglin@163.com (L.Z.)

2 Nanjing South New Town Development and Construction Management Committee, Nanjing 210022, China;
zhanghenian@ucas.edu.cn

3 Nanjing South New Town Development and Construction (Group) Co., Ltd., Nanjing 210007, China;
zihan_zhang_seu@163.com

4 Nanjing Library, Nanjing 210002, China; tangguo5202008@126.com
5 School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; hcy10632023@163.com
* Correspondence: w3398a@263.net

Abstract: With the continuous enrichment of big data technology application scenarios, the clustering
analysis of a data stream has become a research hotspot. However, the existing data stream clus-
tering algorithms usually have some defects, such as inability to cluster arbitrary shapes, difficulty
determining some important parameters, and “static” clustering. In this study, a novel algorithm
MDDSDB-GC is innovated. It selected MDDB-GC as the original algorithm that cannot deal with a
data stream. In MDDSDB-GC, the calculation methods of contribution, grid density, and migration
factor are effectively improved, and other parts are adjusted accordingly. The experiments show that
MDDSDB-GC retains the advantage of MDDB-GC and obtains the ability to cluster an analysis for a
data stream. At the same time, it effectively overcomes the above conventional defects, and its overall
performance is better.

Keywords: data stream; clustering analysis; DBSCAN; MDDSDB-GC; contribution; grid density

1. Introduction

This paper presents an improved version of the MDDB-GC clustering data stream
algorithm. Specifically, it begins with an overview of recent developments in data stream
clustering algorithms, highlighting their respective advantages and disadvantages as well
as common challenges. To address these issues, an enhanced variant of the MDDSDB-GC
algorithm is proposed, followed by a detailed description of its steps. The accuracy and
practicality of the proposed algorithm are then evaluated through rigorous experiments.

1.1. Concept and Characteristics of Data Streams

People are living in an age of data explosion with the arrival of high-tech communica-
tion and information. In many applications, data with randomness, high speed, continuous
arrival, and infinity are called data streams. The data stream can be understood from both
narrow and broad perspectives.

From the narrow perspective, data stream is when a large quantity of data become
changeful and grow infinitely. For example, the data packets processed by routers and
sensor network data are typical representatives of this data stream data. In a broad sense,
data stream refers to the large-scale data set that can only perform linear scanning opera-
tions, such as customer click stream, collection of web pages, multimedia data, financial
transactions, scientific observation data, etc.

Processes 2023, 11, 1240. https://doi.org/10.3390/pr11041240 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-2266-6682
https://doi.org/10.3390/pr11041240
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041240?type=check_update&version=2


Processes 2023, 11, 1240 2 of 18

The data stream has characteristics that differ from static data, which can be summa-
rized as follows:

Data streams are too large to be stored in a memory or hard disk way, which can
only save some data sets or approximate statistical information. Similarly, the analysis of
data flow can only be scanned once, and the data cannot be scanned as many times as the
traditional data clustering algorithm.

(1) High dimension. The data stream may have a high dimension, and high-dimensional
data processing is more complex than low-dimensional data.

(2) Velocity. Since the data stream is fast to arrive, it is unrealistic and inaccurate to obtain
the results by accurately analyzing a single data element, but is more accurate by
analyzing the summary information of some data elements or data sets.

(3) Temporality. The data streams arrive based on chronological order, and the historical
data will be gradually deleted with the decay of time. Therefore, the data elements in
the data stream cannot be accessed randomly, but can be read once or several times
according to the time order.

(4) Persistence. A continuous stream of data will grow in an indefinite way. The result of
the data stream processing will not be the final one due to the endless characteristics,
thus, the data stream processing technology shall be a continuous process.

1.2. Requirements for Data Stream Clustering

In the advent of big data, in many application scenarios, such as in the industrial field
and transportation field, the demand for cluster analysis of data streams is huge. However,
due to the characteristics of the data stream, the traditional algorithm is not enough to meet
the high demand of the clustering algorithm. The traditional clustering algorithm is based
on the database operation mode where the database can store all data and support complex
query operations. However, in the data stream environment, these methods are not feasible.
Therefore, a data stream clustering algorithm must have the following characteristics at the
same time [1]:

Firstly, limited storage capacity. The data stream clustering algorithm cannot store
all the data objects that need to be processed, and it shall ensure a reasonable capacity by
selectively abandoning the data.

Secondly, linear and one-time scanning. The data stream clustering algorithm should
only perform linear and one-time scanning, and at least achieve incremental processing of
linear scanning.

Thirdly, good real-time performance for the processing and analysis of data records.
The updating speed of massive data in the data stream is very fast, and the requirement for
the completion speed of calculation and analysis is very high.

Fourthly, some operations which can be used in database applications, in a data stream
environment are failed to be used (such as Blocking and Sort).

In addition, the data stream clustering algorithm should also have some other
characteristics:

Insensitivity to the input order of data. Data arrival in the data stream is an uncontrol-
lable factor, and the data stream clustering algorithm can only process passively according
to the order of arrival of data.

(1) Adaptability to any shape. The shape and number of data classes in data streams
often change over time. Therefore, the data stream clustering method should have
good adaptability to the clustering of arbitrary shapes.

(2) Tracking ability of data clustering. The application requirements of some data stream
environments are not to query the distribution and change of “past” data, but the
data model is updated in real time and used in subsequent processing.

1.3. The Introduction of the Existing Data Stream Clustering Algorithms

The algorithm of incremental feature applies to data stream clustering analysis, and the
representation of clustering should be concise and accurate. New data should be processed



Processes 2023, 11, 1240 3 of 18

quickly and effectively and be robust regarding noise and abnormal data. Since a data
stream can be regarded as an infinite process that changes over time, the implicit clustering
may change over time, so the previously generated clustering is no longer applicable to
the current situation, resulting in a decrease in clustering quality. Following is a quick
introduction to a few potential data stream clustering methods.

Several scholars have proposed various algorithms to improve the clustering quality
of data streams. Jia Dongli and other experts [2] have suggested dynamically adjusting
window size and incorporating micro-cluster structures for better clustering results. Wan
Xingui [3] has proposed a distributed data stream clustering method that combines online
and offline parts, while Mei Yingyinyin and Liang Yuefang [4] have proposed an algorithm
that integrates data stream clustering into intrusion detection with improved clustering
based on attenuation sliding window density. In addition, Mansheng Xiao and Yongxiang
Hu [5] have introduced the IU-IFCM algorithm that uses an improved fuzzy C-means
technique for interval data clustering, and Niu Liyuan [6] has proposed the DBS-Stream
algorithm, which is a distributed real-time density clustering algorithm for data streams
based on Clu-Stream and DBSCAN. Moreover, Yingfeng Tang and other scholars [7] have
introduced a clustering method for distributed data streams in intelligent transportation
systems that utilizes grid blocks to enable incremental clustering and merging, and Wu
Dechao [8] has optimized the traditional K-means clustering algorithm using the Canopy
algorithm and the “maximum and minimum principle” in Hadoop to improve efficiency
and accuracy. Experts Sun and Chen [9] proposed a weight attenuation WDSMC-based
fuzzy micro-cluster clustering technique for data streams to address time and capacity
limitations. This technique utilizes the improved fuzzy C-means algorithm with weights,
micro-cluster structures, and weight time attenuation to enhance clustering quality. Finally,
Hadali [10] has proposed a novel algorithm for clustering big data with varying densities
using the MapReduce framework in Hadoop, which leverages local density to address
clustering challenges and exhibits superior scalability.

In addition, Li Mingyang [11] proposed a new two-stage clustering method based
on the improved DBSCAN and DP algorithm (TSCM) in 2019. The improved DBSCAN
uses a well-known internal clustering validation index without labels, called Silhouette,
using bat optimization to regulate the parameter determination procedure using the fitness
function. The cluster centers in the decision graph are automatically selected according
to the initial cluster. The final clustering is obtained by DP and has a determined cluster
center. Compared with DP and DBSCAN, TSCM can effectively overcome the manual
intervention of cluster center selection in DP and parameters setting in DBSCAN. The
clustering performance is significantly improved. Nooshin Hanafi [12] lately proposed an
improved DBSCAN. Compared to the original DBSCAN algorithm, large dataset processing
is better suited to it. The program then suggested a technique to precisely compute each
sample density based on a condensed set of data, known as the operational set, and it
would update on a regular basis. This algorithm can detect clusters of various forms and
does not require prior clusters.

1.4. Summary of Existing Data Stream Clustering Algorithms

In conclusion, the data stream clustering algorithms that are now in use are the data
stream clustering algorithm based on grid and density and the data stream clustering
method based on K-means and K-center points.

On the one hand, the data stream clustering algorithm based on the clustering idea of
K-means and K-center points is formed by improving them to adjust for the data stream’s
properties (such as one-time scanning). Although the design of these algorithms adapts to
the characteristics of the data stream and achieves good results, the partition-based method
determines two common shortcomings. First, it is necessary to determine the number of
clusters k through prior knowledge, which is usually difficult to achieve. Second, their
clustering results also tend to be spherical, which is difficult to be competent in the face of
complex arbitrary clustering.



Processes 2023, 11, 1240 4 of 18

On the other hand, the grid- and density-based data stream clustering method converts
the data in the data stream or the summary data reflecting the data stream into a “static”
data set at a specific moment, and then carries out the subsequent clustering calculation
based on this “static” data set. The obtained clustering results are static results for this data
set. This method, which employs a data-stream-oriented static clustering algorithm, was
created primarily to satisfy the demands of the “query” on the distribution of “previous”
data and distribution changes. However, its shortcomings are that it does not pay attention
to the automatic analysis of clustering changes, and the analysis results are applied to the
subsequent processing. When dealing with data stream applications with high real-time
requirements, it often cannot meet the requirements.

Given the defects of the above two types of data stream clustering algorithms, the
goal of this study is to try to innovate a data stream clustering algorithm with better
performance. This algorithm can realize dynamic data stream clustering analysis without
prior knowledge and can find arbitrary shape clustering.

2. Original Algorithm MDDB-GC

In this work, we aim to improve the multi-Density DBSCAN clustering algorithm
based on grid and contribution, also known as the MDDB-GC algorithm. To provide
context, we first provide a brief introduction to the conventional DBSCAN, multi-density
DBSCAN, and MDDB-GC algorithms.

According to the previous research results, we found that the multi-density DBSCAN
clustering algorithm based on grid and contribution proposed by Lin-meng Zhang [13],
namely, the GCMDDBSCAN (In this article, we adopt MDDB-GC to refer to the proposed
algorithm.) algorithm, has relatively good characteristics, but there are also some defects,
which are suitable for optimization and improvement as the original algorithm of the
target algorithm. The advantages of the MDDB-GC algorithm are: prior knowledge is not
necessary, arbitrary shape clustering can be found, anti-interference of noise, multi-density
clustering can be effectively distinguished, and large-scale data sets can be processed. The
defect of the MDDB-GC algorithm is that the three important parts of the algorithm, i.e.,
the calculation methods of contribution, grid density, and migration factor, cannot meet
the basic requirements of the data stream analysis algorithm. Therefore, it is necessary to
improve the algorithm to realize the data stream clustering analysis.

Since the MDDB-GC algorithm is developed from the improvement of conventional
DBSCAN and multi-density DBSCAN algorithms (MD-DBSCAN), the conventional DB-
SCAN, multi-density DBSCAN, and MDDB-GC algorithms are briefly introduced in
the following.

2.1. Introduction to Conventional DBSCAN Algorithm

DBSCAN is a density-based clustering algorithm. Clusters with any shapes may be
identified in spatial databases with “noise”, which defines clusters as the maximum set
of points related to density. The method splits regions with sufficiently high density into
clusters, and clusters with arbitrary shapes can be found there.

The idea of the algorithm based on DBSCAN is to start with any point p in dataset
D to find all the points that can be reached from p density concerning ε and MinPts in D.
If P is a core point, then all points in its neighborhood area belong to the same cluster of
P. P is temporarily marked as noise if it is not the core point, that is, if no object can be
reached from the density of P, which will serve as inspection objects of the following round
(referred to as seed points), and extend their cluster by continuously finding points that
can be reached from the seed point density until a complete cluster is found. The program
then repeats the procedure described above for the next item in D. When all seed points are
examined, a cluster is expanded. At this stage, the algorithm will expand another cluster if
there are any unprocessed points in D, otherwise, unprocessed points in D are considered
noise. Then, in 2012, K. Dominik and K. Jens [14] suggested a modified version of the
most widely used and referenced clustering method, known as DBSCAN, to cope with



Processes 2023, 11, 1240 5 of 18

the non-equidistant sampling density and clutter of radar data while retaining all of its
previous benefits. In addition, it is resistant to clutter and performs an optimum separation
of items using a variety of sampling resolutions.

Although DBSCAN can find clusters of different shapes and sizes, it has trouble
finding clusters of different densities because of its parameter Eps. Ahmed Fahim [15]
introduces a novel technique for finding clusters of various densities that begins with any
item and computes the local density of each object as the sum of distances to its k1-nearest
neighbors. This technique is known as cluster initiator. Then, considering any object is
reachable from a cluster initiator and has a local density similar to the local density of
the cluster initiator is assigned the same cluster. The method needs a threshold for SR
(Similarity Ratio). The proposed method solves the problem of different densities, shapes,
and sizes, giving a superior ability of detection for different densities. Hou SiZu [16]
proposed an improved DBSCAN as well, in order to adapt to varied densities. To create
a density threshold that is appropriate for the data density, first preprocess the data and
determine the density surrounding each data item. Additionally, before the clustering
process was complete, a density threshold was employed to increase the effectiveness of
the proposed technique in grouping data with various densities and arbitrary shapes. Chen
Jungan [17] proposed a clustering algorithm based on artificial immune system, which
uses a deviation factor model to describe the data distribution. It calculates the deviation
factor based on the maximum and average distance, overcoming the difficulty of finding
non-spherical shapes or varied size and density.

2.2. Multi-Density DBSCAN Algorithm

The advantages of the conventional DBSCAN algorithm are as follows: Firstly, it can
effectively shield the interference of noise data. Secondly, it can cluster arbitrary shape
spatial distribution data sets. Because of these outstanding advantages, the DBSCAN
algorithm has high practical application value. However, the conventional DBSCAN
algorithm has two shortcomings. First, the clustering result is highly dependent on the
parameter setting and is especially sensitive to the parameter Eps. The accurate Eps value
needs to be set based on prior knowledge to obtain better clustering results. Second, when
the spatial distribution of data sets presents multiple different density regions and the
density difference between each other is large, the conventional DBSCAN will not be able
to cluster correctly because of the global unique Eps value.

Given the defects of the conventional DBSCAN algorithm, G. Esfandani and H. Abol-
hassani [18] in 2010 proposed MSDBSCAN, using a new definition for core point and dense
area. In multi-variant density data sets, the MSDBSCAN can locate clusters and offers
scale independence. After that, the multi-density DBSCAN algorithm proposed by Wesam
Ashour and Saad Sunoalla [19] in 2011 achieved better clustering results because it effec-
tively solved the global unique Eps value limitation and the parameter setting dependence
problem to a certain extent.

In Wesam Ashour’s research, the average distance between data points and the average
distance inside a cluster, which are described as follows, replace the parameter Eps in this
multi-density DBSCAN method.

Definition 1. (Data point P’s average distance value, DSTp) The average spatial distance between
data point P and its closest k data points, or the average distance value DSTp of data point P, for a
given constant k (k is a natural integer).

Definition 2. (AVGDST, average distance within a cluster) For a given constant k (k is a natural
number), the average value of DSTp of all data points within a cluster, i.e., average distance
AVGDST within this cluster.

As can be seen, the real density status at data point P and a particular cluster are better
described by the average distance value of the data point P and the average distance value



Processes 2023, 11, 1240 6 of 18

inside the cluster. This algorithm divides mainly based on the two average distance values
and distinguishes the classification of different densities, thus realizing the clustering of
the whole data set.

2.3. Introduction of MDDB-GC Algorithm

There are still some defects in the multi-density DBSCAN algorithm. In the clustering
process, like the conventional DBSCAN algorithm, it is still necessary to scan the entire
data set to calculate and find the set of k nearest data points of a data point. Therefore,
there are a large number of invalid calculations. The computing efficiency is low, and it
is incapable of handling massive data sets. Therefore, some scholars [20] introduced the
idea of a grid clustering algorithm and combined it with the concept of “contribution” to
propose an improved algorithm MDDB-GC.

MDDB-GC algorithm is an improved algorithm based on a multi-density DBSCAN
algorithm by introducing gridding technology, contribution, and migration factor. This
improvement is mainly reflected in the following three aspects: (1) The use of grid-boxing
techniques and tree index structures enhances the ability to process large-scale datasets.
After introducing grid technology, the main analysis object of the MDDB-GC algorithm is
transformed from a large number of data points to a certain number of grids, so it is more
efficient to deal with large-scale data sets. At the same time, when calculating the set of
adjacent data points, it does not need to scan the entire data set, and only needs to use the
tree index structure to search the adjacent grid; (2) The formula for grid density may be
generated based on the idea of “contribution”, and the geographical distribution of the
data points in the grid can be completely taken into account. This allows the clustering
outcomes to be maximized without adding more grids; (3) Migration factors can optimize
boundary data points. The fixed grid division method is simple and easy, but boundary
data points are often misjudged as noise points and then ignored, and for better clustering,
the migration factor is concerned with border data points.

3. Proposed Algorithm: MDDB-GC Algorithm

In this section of the study, a systematic presentation of the MDDB-GC research content
will be provided, which encompasses the genesis of the research idea and a comprehensive
exposition of the grid’s contributions and other significant factors.

3.1. Main Idea

This study hopes to create a data stream clustering algorithm with better performance
that can achieve dynamic, without prior knowledge, and can find arbitrary shape clus-
tering. The MDDB-GC algorithm proposed by scholars has the advantages of no prior
knowledge, discovering arbitrary shape clustering, resisting noise interference, effectively
distinguishing multi-density clustering, and processing large-scale data sets. However,
the algorithm has three important parts, namely, the calculation method of contribution,
grid density, and migration factor, which cannot meet the basic requirements of the data
stream analysis algorithm. Therefore, the MDDB-GC algorithm is selected as the original
algorithm, and the calculation methods of contribution, grid density, and migration factor
are effectively improved. At the same time, the other parts are adjusted to innovate the new
algorithm. The new algorithm is an improved MDDB-GC algorithm for the data stream,
abbreviated as the MDDSDB-GC algorithm (Multi-Density DBSCAN clustering algorithm
based on grid and contribution for Data Stream).

3.2. Grid Division

The number of separated grids affects both the computational cost of the grid-based
clustering technique and the final clustering result. Moreover, computational complexity
and clustering effect are usually opposite. The finer the partition granularity is, the greater
the number of grids, and the better the clustering effect, but the computational complexity
greatly increases. On the contrary, the rougher the partition granularity is, the less the



Processes 2023, 11, 1240 7 of 18

number of grids, and the computational complexity is greatly reduced, but the clustering
effect becomes worse. In this algorithm, a relatively simple fixed grid division method can
be used to complete the grid division.

Definition 3. (Grid element) In a given d-dimensional data space S, each dimension is divided into
L equal-length and disjoint left-closed and right-open regions, so that the data space S is divided into
Ld equal-size and disjoint hyperrectangular elements. Each such super-rectangular element is a grid
element corresponding to the division (hereinafter referred to as grid).

To achieve grid division, it is necessary to standardize the data points in d-dimensional
data space S, such as changing the value line of each dimension’s data points into the range
(0,1]. The range space is then evenly split into L segments on each dimension, and the value
of L may be found by using the following equation.

L = int
(

m ∗ d√N
)

(1)

In Equation (1), N is the total number of data points, int(x) is the integer of x, m is
the adjustment coefficient, and the value range is usually (0, 1]. The larger the value of m
is, the finer the partition granularity. The specific value of m needs to be determined by
considering the computational complexity and clustering effect.

In this algorithm, due to the role of contribution and migration factor, the clustering
effect can be improved without increasing the computational complexity to some extent,
so the selection of m value can be appropriately reduced to reduce the operation time.
A large number of experiments show that for data stream clustering analysis, m can be
valued [0.2, 0.6].

3.3. Tree Index Structure: SP-Tree

SP-Tree is called Spatial Partition Tree. When dealing with multi-dimensional or
even high-dimensional large-scale data sets, effective tree index structure is a crucial
auxiliary factor. This algorithm implements data and region queries by SP-Tree to improve
calculation efficiency. In this algorithm, three SP-Trees are created under spatial grid
division, corresponding to the indexed non-empty grid, dense grid, and sparse grid.

Definition 4. (SP-Tree) d-dimensional dataset S generates SP-Tree structure under partition P
as follows:

(1) SP-Tree has a (d + 1) layer, where d is the latitude of the dataset.
(2) There is only one path from the root node to the leaf node, and this path corresponds

to a grid that needs an index.
(3) The -layer node is the -dimensional interval number of the indexed grid and refers to

the (+ 1) layer node in addition to the (d + 1) layer.

The leaf nodes of the (d + 1) layer correspond to the grid information of the index. In
this algorithm, the leaf node contains information such as the location of data points in the
grid, the migration factor of data points, and the cumulative contribution.

Figure 1a shows the grid structure of two-dimensional data space under a certain
division. Each dimension is divided into five interval segments. The gray-black grid is the
grid that needs an index. Figure 1b shows the SP-Tree structure that requires an index grid.
The SP-Tree is divided into three layers. The index grid’s X- and Y-dimensional interval
numbers are located in the top two levels. The leaf node layer is the bottom layer. The data
of the index grid are stored in each leaf node.



Processes 2023, 11, 1240 8 of 18

Processes 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

grid. The SP-Tree is divided into three layers. The index grid’s X- and Y-dimensional in-

terval numbers are located in the top two levels. The leaf node layer is the bottom layer. 

The data of the index grid are stored in each leaf node. 

 

Figure 1. Schematic diagram of SP-Tree structure in 2D data space. (a) Two-dimensional Grid Struc-

ture with Indexable Grids; (b) SP-Tree Index Structure with Leaf Nodes Containing Indexed Grid 

Data. 

In this algorithm, the grid data information, in addition to the original information, 

extended to the data stream clustering analysis, needs to add two important pieces of in-

formation. Among them, the original information pertains to the total number of data 

points in the grid, their locations, their migration factors within each dimension, their k 

closest neighbors and their separation, as well as the grid’s overall contribution. Two new 

important pieces of information are the new Boolean value of the migration factor and the 

pointer list of migrating dense grids. 

In this algorithm, the information in the grid is obtained through the query operation 

of SP-Tree. Finding the adjacent data point set of a data point and calculating the cumu-

lative contribution of the grid are realized through the traversal operation of SP-Tree 

(depth-first search). The migration operation of a data point determined by the migration 

factor is realized through the insertion and deletion of SP-Tree. 

3.4. Contribution and Its Improvement 

Most grid-based clustering algorithms take the number of data points contained in 

the grid as the density of the grid when calculating the grid density. Although this ap-

proach is straightforward, the quality of clustering is somewhat diminished. The main 

reason is that this simplification dilutes or even eliminates the spatial position of data 

points in the grid during the subsequent calculation process, ignoring their influence on 

the surrounding grid. As a result, some data points in the same category may be divided 

into different categories or mistaken for noise points. This effect is more pronounced for 

some data points distributed near the grid boundary. Figure 2 can intuitively explain this 

problem. Figure 2a,c have the same grid density expression in the counting method 

(shown in Figure 2b), but the actual data distribution is quite different. 

 

Figure 1. Schematic diagram of SP-Tree structure in 2D data space. (a) Two-dimensional Grid
Structure with Indexable Grids; (b) SP-Tree Index Structure with Leaf Nodes Containing Indexed
Grid Data.

In this algorithm, the grid data information, in addition to the original information,
extended to the data stream clustering analysis, needs to add two important pieces of
information. Among them, the original information pertains to the total number of data
points in the grid, their locations, their migration factors within each dimension, their k
closest neighbors and their separation, as well as the grid’s overall contribution. Two new
important pieces of information are the new Boolean value of the migration factor and the
pointer list of migrating dense grids.

In this algorithm, the information in the grid is obtained through the query operation
of SP-Tree. Finding the adjacent data point set of a data point and calculating the cumulative
contribution of the grid are realized through the traversal operation of SP-Tree (depth-first
search). The migration operation of a data point determined by the migration factor is
realized through the insertion and deletion of SP-Tree.

3.4. Contribution and Its Improvement

Most grid-based clustering algorithms take the number of data points contained in the
grid as the density of the grid when calculating the grid density. Although this approach is
straightforward, the quality of clustering is somewhat diminished. The main reason is that
this simplification dilutes or even eliminates the spatial position of data points in the grid
during the subsequent calculation process, ignoring their influence on the surrounding
grid. As a result, some data points in the same category may be divided into different
categories or mistaken for noise points. This effect is more pronounced for some data
points distributed near the grid boundary. Figure 2 can intuitively explain this problem.
Figure 2a,c have the same grid density expression in the counting method (shown in
Figure 2b), but the actual data distribution is quite different.

Processes 2023, 11, x FOR PEER REVIEW 8 of 19 
 

 

grid. The SP-Tree is divided into three layers. The index grid’s X- and Y-dimensional in-

terval numbers are located in the top two levels. The leaf node layer is the bottom layer. 

The data of the index grid are stored in each leaf node. 

 

Figure 1. Schematic diagram of SP-Tree structure in 2D data space. (a) Two-dimensional Grid Struc-

ture with Indexable Grids; (b) SP-Tree Index Structure with Leaf Nodes Containing Indexed Grid 

Data. 

In this algorithm, the grid data information, in addition to the original information, 

extended to the data stream clustering analysis, needs to add two important pieces of in-

formation. Among them, the original information pertains to the total number of data 

points in the grid, their locations, their migration factors within each dimension, their k 

closest neighbors and their separation, as well as the grid’s overall contribution. Two new 

important pieces of information are the new Boolean value of the migration factor and the 

pointer list of migrating dense grids. 

In this algorithm, the information in the grid is obtained through the query operation 

of SP-Tree. Finding the adjacent data point set of a data point and calculating the cumu-

lative contribution of the grid are realized through the traversal operation of SP-Tree 

(depth-first search). The migration operation of a data point determined by the migration 

factor is realized through the insertion and deletion of SP-Tree. 

3.4. Contribution and Its Improvement 

Most grid-based clustering algorithms take the number of data points contained in 

the grid as the density of the grid when calculating the grid density. Although this ap-

proach is straightforward, the quality of clustering is somewhat diminished. The main 

reason is that this simplification dilutes or even eliminates the spatial position of data 

points in the grid during the subsequent calculation process, ignoring their influence on 

the surrounding grid. As a result, some data points in the same category may be divided 

into different categories or mistaken for noise points. This effect is more pronounced for 

some data points distributed near the grid boundary. Figure 2 can intuitively explain this 

problem. Figure 2a,c have the same grid density expression in the counting method 

(shown in Figure 2b), but the actual data distribution is quite different. 

 

Figure 2. The spatial position of data points is ignored due to the counting method. (a,c) The
distribution of data points on the grid; (b) Spatial Position on Grid Density.

To better overcome the above problems and improve the quality of clustering, the
algorithm uses “contribution” to calculate the grid density. The data point is no longer an



Processes 2023, 11, 1240 9 of 18

isolated “point” in the idea of contribution, but rather is changed into a “body” that affects
the surrounding grid. Here, “body” refers to the set of data points that have an impact on
the grid and must be taken into account. For the sake of simplicity, the algorithm’s “body”
is defined as a grid-equivalent rectangular region.

Definition 5. (Contribution of data points to a grid) The degree of influence of data points to a
grid is the contribution of data points to this grid. The purpose of this contribution is to provide the
dimensions of the area that overlaps the grid and the data point’s volume. It is clear that a data point
only affects its own grid and its neighboring grids.

Based on the concepts of “body” and “contribution”, the original calculation method
of contribution can be deduced. It is found that in the analysis of multi-dimensional or
high-latitude data streams, the original calculation method of contribution will lead to
a huge calculation cost and cannot be competent. Specifically, when the contribution
of a data object needs to be calculated, 2d (d is the data set dimension) grid units need
to be calculated in the worst case. When d is multidimensional or even high latitude,
the calculation amount is very large. Given this, the “contribution” calculation method
is improved in this algorithm, and the calculation amount is greatly reduced under the
premise of less loss of accuracy. The improvement is to change the selection method of
grid units related to data objects so that the number of grid units related to data objects is
changed from 2d to d + 1. The following is divided into two parts: the original calculation
method of contribution degree and the improved calculation method for comparison.

(1) Original calculation method of contribution

Figure 3 depicts the reference graph obtained through the original contribution algo-
rithm.The contribution formula of data point P to a grid is as follows:

C =
Nd

∏
i=1

U(i) (2)Processes 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 3. In the original calculation method, the schematic diagram of the contribution of data point 

P in two-dimensional space. 

(2) Improved calculation method of contribution 

The improved data point P contribution formula to a grid is as follows: 

𝐶CubeX = ∏  

𝑑

𝑖=1

(1 −
∣  offset 

𝑖
∣

2𝛿𝑖
) (5) 

 𝐶𝐶 CubeI =
∣  offset 

𝑖
∣

∑  𝑑
𝑖=1 ∣  offset 𝑡𝑖 ∣

⋅ (1 − 𝐶Cube X )    (6) 

Figure 4 shows the contribution of data point P to the grid affected by the two-di-

mensional space. After the improvement, the number of grids that can be affected by the 

data point P is reduced to 𝑑 + 1 (i.e., three, because 𝑑 = 2 here), namely, the grid CubeX 

where the data point P is located, i.e., the gray cross-line grid in the center of Figure 4, and 

the other two related grid units CubeI sharing a connection surface with the grid unit 

CubeX in the 𝑖-dimensional space, i. e., the two gray grids in Figure 4. The corresponding 

contribution calculation is realized by Equations (5) and (6), especially when 
∑  𝑑

𝑖=1 |𝑜𝑓𝑓𝑠𝑡𝑖| = 0, all 𝐶𝐶CubeI 
= 0. 

 

Figure 4. In the improved calculation method, in two-dimensional space, the contribution of data 

point P is calculated. 

  

Figure 3. In the original calculation method, the schematic diagram of the contribution of data point
P in two-dimensional space.

In Equation (2), C denotes the contribution of data point P to the grid, i denotes the
dimension index of the dataset being processed, and U(i) denotes the component of the
contribution sought on dimension i.

When Di = Ki, U(i) = 1− offset i
2δi

(3)



Processes 2023, 11, 1240 10 of 18

When Di 6= Ki, U(i) =
offset i

2δ1
(4)

Equations (3) and (4), the absolute distance between the data point P and the grid’s
center point O, is represented by the term offseti, while 2δ1 denotes the width of the grid
in the number i-dimension. Di represents the number of the calculated grid in the i-
dimension, and Ki represents the number of the grid where the data point P is located in
the i-dimension.

(2) Improved calculation method of contribution

The improved data point P contribution formula to a grid is as follows:

CCubeX =
d

∏
i=1

(
1− | offset i |

2δi

)
(5)

CC CubeI =
| offset i |

∑d
i=1 | offset ti |

· (1− CCube X ) (6)

Figure 4 shows the contribution of data point P to the grid affected by the two-
dimensional space. After the improvement, the number of grids that can be affected by
the data point P is reduced to d + 1 (i.e., three, because d = 2 here), namely, the grid
CubeX where the data point P is located, i.e., the gray cross-line grid in the center of
Figure 4, and the other two related grid units CubeI sharing a connection surface with
the grid unit CubeX in the i-dimensional space, i. e., the two gray grids in Figure 4. The
corresponding contribution calculation is realized by Equations (5) and (6), especially when
∑d

i=1 |o f f sti| = 0, all CCCubeI = 0.

Processes 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 3. In the original calculation method, the schematic diagram of the contribution of data point 

P in two-dimensional space. 

(2) Improved calculation method of contribution 

The improved data point P contribution formula to a grid is as follows: 

𝐶CubeX = ∏  

𝑑

𝑖=1

(1 −
∣  offset 

𝑖
∣

2𝛿𝑖
) (5) 

 𝐶𝐶 CubeI =
∣  offset 

𝑖
∣

∑  𝑑
𝑖=1 ∣  offset 𝑡𝑖 ∣

⋅ (1 − 𝐶Cube X )    (6) 

Figure 4 shows the contribution of data point P to the grid affected by the two-di-

mensional space. After the improvement, the number of grids that can be affected by the 

data point P is reduced to 𝑑 + 1 (i.e., three, because 𝑑 = 2 here), namely, the grid CubeX 

where the data point P is located, i.e., the gray cross-line grid in the center of Figure 4, and 

the other two related grid units CubeI sharing a connection surface with the grid unit 

CubeX in the 𝑖-dimensional space, i. e., the two gray grids in Figure 4. The corresponding 

contribution calculation is realized by Equations (5) and (6), especially when 
∑  𝑑

𝑖=1 |𝑜𝑓𝑓𝑠𝑡𝑖| = 0, all 𝐶𝐶CubeI 
= 0. 

 

Figure 4. In the improved calculation method, in two-dimensional space, the contribution of data 

point P is calculated. 

  

Figure 4. In the improved calculation method, in two-dimensional space, the contribution of data
point P is calculated.

3.5. Grid Density and Its Improvement

The cumulative grid contribution is often used as the grid density in the traditional
contribution-based approach.

Definition 6. (Grid’s cumulative contribution) The cumulative contribution of this grid is the total
of all contributions made by the data points in both this grid and the grid that is next to it.

In the conventional algorithm, the grid density is calculated by the grid cumulative
contribution method in Figure 5, which is effectively compared with the example in Figure 2.
It can be seen that the “unfortunate” data points in Figure 5a are cut apart by grids because
the mutual influence of each other’s contribution does not lead to the disparity in grid



Processes 2023, 11, 1240 11 of 18

density; in Figure 5b, the data points and noise points are shown through the cumulative
contribution of the grid. Therefore, in order to more properly portray the actual distribution
of data points in the grid, the cumulative contribution as the grid density should be used.

Processes 2023, 11, x FOR PEER REVIEW 11 of 19 
 

 

3.5. Grid Density and Its Improvement 

The cumulative grid contribution is often used as the grid density in the traditional 

contribution-based approach. 

Definition 6. (Grid’s cumulative contribution) The cumulative contribution of this grid is the 

total of all contributions made by the data points in both this grid and the grid that is next to it. 

In the conventional algorithm, the grid density is calculated by the grid cumulative 

contribution method in Figure 5, which is effectively compared with the example in Figure 

2. It can be seen that the “unfortunate” data points in Figure 5a are cut apart by grids 

because the mutual influence of each other’s contribution does not lead to the disparity in 

grid density; in Figure 5b, the data points and noise points are shown through the cumu-

lative contribution of the grid. Therefore, in order to more properly portray the actual 

distribution of data points in the grid, the cumulative contribution as the grid density 

should be used. 

 

Figure 5. In the conventional algorithm, the grid cumulative contribution is used as the grid density 

diagram. (a) No cumulative contribution results; (b) Under cumulative contribution results. 

The following describes an improved method of grid density calculation: 

In the conventional algorithm based on contribution, the density of grid cells is com-

pleted by the “cumulative contribution”. However, this is not appropriate for clustering 

analysis of data stream. In the concept of “cumulative contribution”, the density of grid 

elements only increases and does not decrease, especially those high-density grids that 

are likely to remain “promoters” of clustering. Therefore, the timeliness of data should be 

emphasized in data stream clustering, and the contribution of old data to the grid should 

be gradually weakened. Therefore, this algorithm is improved by using a “gradual forget-

ting” approach to calculate the density of grid elements. 

In this algorithm, a fixed-size time window is used to process the data stream. Each 

time passing a time window, this algorithm updates the original grid density by attenua-

tion. The new density is calculated by the method shown in Equation (7). 

density 
𝑇

=  density 
new 

+ 휀 ⋅  density 
𝑇−1

 (7) 

where density
𝑇
 is the total density of a grid unit at the T time window, density 

new 
 is the 

cumulative contribution change brought by the new data points owned by the T time win-

dow, 휀 is the attenuation rate, and  density
𝑇−1

 is the total density of the grid unit at the 

time window of T − 1. This attenuation update operation is also conducive to removing 

the impact of accidental events on data stream clustering. 

To accurately distinguish dense and sparse grids, an accurate density threshold must 

be set first. Referring to some studies, the non-empty grid can be sorted according to its 

density from small to large, and the grid density at the first density surge is selected as the 

threshold, which is a more conservative selection scheme. If the prior knowledge can be 

Figure 5. In the conventional algorithm, the grid cumulative contribution is used as the grid density
diagram. (a) No cumulative contribution results; (b) Under cumulative contribution results.

The following describes an improved method of grid density calculation:
In the conventional algorithm based on contribution, the density of grid cells is

completed by the “cumulative contribution”. However, this is not appropriate for clustering
analysis of data stream. In the concept of “cumulative contribution”, the density of grid
elements only increases and does not decrease, especially those high-density grids that
are likely to remain “promoters” of clustering. Therefore, the timeliness of data should be
emphasized in data stream clustering, and the contribution of old data to the grid should be
gradually weakened. Therefore, this algorithm is improved by using a “gradual forgetting”
approach to calculate the density of grid elements.

In this algorithm, a fixed-size time window is used to process the data stream. Each
time passing a time window, this algorithm updates the original grid density by attenuation.
The new density is calculated by the method shown in Equation (7).

density T = density new + ε · density T−1 (7)

where densityT is the total density of a grid unit at the T time window, density new is the
cumulative contribution change brought by the new data points owned by the T time
window, ε is the attenuation rate, and densityT−1 is the total density of the grid unit at the
time window of T − 1. This attenuation update operation is also conducive to removing
the impact of accidental events on data stream clustering.

To accurately distinguish dense and sparse grids, an accurate density threshold must
be set first. Referring to some studies, the non-empty grid can be sorted according to
its density from small to large, and the grid density at the first density surge is selected
as the threshold, which is a more conservative selection scheme. If the prior knowledge
can be used to determine the noise rate of the data set, the number of data points can be
accumulated based on density sorting, and the density at the surge near the total number
of noise points can be selected as the threshold, which is more accurate.

3.6. Migration Factor and Its Improvement

Despite being precise and efficient, the grid density estimation technique based on
cumulative contribution may also confuse a few boundary points with noise points in
some adverse situations, resulting in a decline in clustering quality. In the extreme cases
shown in Figure 6, the contribution to the grids (1, 1) and (2, 2) is comparable owing to
the approximate symmetry of the spatial positions of the intra-class data points, and the
boundary data point P’s contribution to the grid (1, 1) is minimal due to its proximity to the
boundary line. In addition, the noise point Z makes a significant contribution to the grid
(2, 2) due to its proximity to the grid’s center. In conclusion, the boundary points indicated



Processes 2023, 11, 1240 12 of 18

above are misclassified as noise points because the density of the noise point grid is similar
to or even slightly greater than that of the boundary point grid. As a result, the migration
factor in this technique will treat the border points in sparse grids appropriately.

Processes 2023, 11, x FOR PEER REVIEW 12 of 19 
 

 

used to determine the noise rate of the data set, the number of data points can be accumu-

lated based on density sorting, and the density at the surge near the total number of noise 

points can be selected as the threshold, which is more accurate. 

3.6. Migration Factor and Its Improvement 

Despite being precise and efficient, the grid density estimation technique based on 

cumulative contribution may also confuse a few boundary points with noise points in 

some adverse situations, resulting in a decline in clustering quality. In the extreme cases 

shown in Figure 6, the contribution to the grids (1, 1) and (2, 2) is comparable owing to 

the approximate symmetry of the spatial positions of the intra-class data points, and the 

boundary data point P’s contribution to the grid (1, 1) is minimal due to its proximity to 

the boundary line. In addition, the noise point Z makes a significant contribution to the 

grid (2, 2) due to its proximity to the grid’s center. In conclusion, the boundary points 

indicated above are misclassified as noise points because the density of the noise point 

grid is similar to or even slightly greater than that of the boundary point grid. As a result, 

the migration factor in this technique will treat the border points in sparse grids appro-

priately. 

 

Figure 6. Difficult to distinguish between boundary point grids and noise point grids by cumulative 

contribution. 

(1) Original calculation method of migration factor 

Definition 7. (migration factor QY) For data points in sparse grids, the determination coefficient 

of whether it is necessary to move them from the grid to the adjacent grid is the migration factor. 

The migration factor’s range of values is [0,1], and the closer it is to 1, the more often data points 

are requested to be relocated to neighboring grids. The data point has a component for the migration 

factor on each dimension. The migration factor 𝑄𝑌𝑖 on the i-dimension is determined as: 

𝑄𝑌𝑖 = 𝐵 ×
𝐶𝑖

𝐿𝑖
 

= B ×
 offset 𝑡𝑖

2𝛿𝑖 −  offset 
𝑖

 

(8) 

In Equation (8), 𝐶𝑖—contribution of data point to adjacent grid element on the i-di-

mension, 

𝐿𝑖—contribution of data point to local grid element on the i-dimension. 

B—is a Boolean quantity whose value is 0 or 1. 
In Equation (8), B represents the precondition for the migration of data points. Spe-

cifically, when the data point is located in a sparse grid and the migration’s nearby grid is 

a dense grid, B is 1, otherwise, it is 0. The fraction ratio in the formula denotes the pro-

portion of the data point’s contribution to the grid in a particular dimension to its contri-

bution to the neighboring grid. The closer the spatial distribution of the data point is to 

Figure 6. Difficult to distinguish between boundary point grids and noise point grids by cumulative
contribution.

(1) Original calculation method of migration factor

Definition 7. (migration factor QY) For data points in sparse grids, the determination coefficient
of whether it is necessary to move them from the grid to the adjacent grid is the migration factor.
The migration factor’s range of values is [0,1], and the closer it is to 1, the more often data points are
requested to be relocated to neighboring grids. The data point has a component for the migration
factor on each dimension. The migration factorQYion the i-dimension is determined as:

QYi = B× Ci
Li

= B × offset ti
2δi− offset i

(8)

In Equation (8), Ci—contribution of data point to adjacent grid element on the
i-dimension,

Li—contribution of data point to local grid element on the i-dimension.
B—is a Boolean quantity whose value is 0 or 1.
In Equation (8), B represents the precondition for the migration of data points. Specifi-

cally, when the data point is located in a sparse grid and the migration’s nearby grid is a
dense grid, B is 1, otherwise, it is 0. The fraction ratio in the formula denotes the proportion
of the data point’s contribution to the grid in a particular dimension to its contribution
to the neighboring grid. The closer the spatial distribution of the data point is to the grid
border, the higher the ratio. In the extreme cases of Figure 6, it is simple to estimate that
boundary point P has a high migration factor QYi, which is significantly different from the
noise point Z.

Data points are mapped in the relevant neighboring dense grid when their migration
factor exceeds the migration threshold for a certain dimension, that is, the data point is
“loaded” into the matching dense grid, but the computation procedure does not affect the
data point’s spatial coordinates, which is the migration operation of the data point.

(2) Improved calculation method of migration factor

The improved calculation formula is:

QYi = B× Ci
Li

= B × offset i
2δi− offset i

= B′ ∗A′

= B∗

(9)



Processes 2023, 11, 1240 13 of 18

In Equation (9) A
′
-The contribution of data points to adjacent dense grid element, B∗

is a new Boolean quantity whose value is 0 or 1.
It is the condition that determines whether a data point migrates in the data stream

clustering analysis, that is, when a data point in a sparse grid is impacted by a dense grid
next to it on dimension i, the B∗ value is 1, otherwise, it is 0. Similarly, when the migration
factor of a data point on dimension i is greater than the set migration threshold, the data
point is migrated.

In this algorithm, two new important pieces of information added to the grid data
information mentioned earlier in the introduction, namely the B∗ value and the pointer list
of migrating dense grids, are usually used together. In the migration analysis, we traverse
each dense grid, set the B∗ of the data points in the adjacent sparse grid affected by it on the
i-dimension to 1, and add the pointer of the dense grid to the pointer list of the migrated
dense grid.

If a data point’s migration factor to many adjacent dense grids exceeds the migration
threshold in data stream clustering analysis, this data point is mapped into the correspond-
ing multiple adjacent dense grids. It will be put into the cluster found first in accordance
with the principle of “whoever finds it first gets it”.

3.7. The Process of MDDSDB-GC

The algorithm’s steps are thoroughly explained below to ensure its completeness and
practicality. A detailed flow chart is provided in Figure 7 to enhance understanding of the
algorithm’s execution process.

Processes 2023, 11, x FOR PEER REVIEW 15 of 19 
 

 

(16) Repeat steps 14 and 15 until the non-clustered dataset W is cleared. 

(17) Eliminate clusters with a small number of members and classify the data points into 

noise points. 

(18) To determine whether there is a new time window or not, turn to step 4. 

(19) The whole clustering process ends. 

 

Figure 7. MDDSDB-GC algorithm flow chart. 

4. Experimental Validation 

4.1. Effectiveness Verification of MDDSDB-GC Algorithm 

After completing the expansion and improvement of the MDDSDB-GC algorithm, 

the effectiveness of the algorithm is verified. This verification adopts the experimental 

method of clustering analysis of standard (data stream) data set 1 and makes a judgment 

through the actual clustering results. To effectively reflect the dynamic change of cluster-

ing, the time sequence of clustering in standard data set 1 is adjusted to make the cluster-

ing dynamic change. Its change process includes the drift of the cluster, the emergence of 

new clusters, and the disappearance of old clusters. 

In this experiment, the MDDSDB-GC algorithm divides the x-axis and y-axis into 30 

segments, namely, the whole space is divided into 900 grids. Divided into 6 fixed time 

windows, each fixed time window contains 80,000 data points. Load 80,000 data points of 

first-time window while initialization with attenuation rate as 0.7. Therefore, after six time 

windows, data stream clustering analysis is completed. 

BEGIN

Load 

Data Set

init ial

Gridding and 

Adding

NO

YES

END

Make SP-tree

Flash new 

grid-density

 eliminate noise 

points 

Load the data 

points

Update SP-

tree

Traverse  

update 

determine

Mark noise points 

and Select  valid 

points 

Choose, add data point to a new 

cluster and Implement the Class 

Extension Function Collection

add  to the non-clustered 

Collection after compute.

points are assigned 

to a cluster.

Eliminate clusters with a small number of 

members and classify remaining data points as 

noise points.

Check  new time 

window

YES

YES

NO

NO

Figure 7. MDDSDB-GC algorithm flow chart.



Processes 2023, 11, 1240 14 of 18

(1) Load the data set in the new time window and judge whether the initialization process
is necessary. If so, go to the second step. If not, go to the fourth step. It should be
noted that the initialization process is only carried out when the data set in the first
time window is loaded. At this time, the grid has not been divided and the SP-tree
has not been established.

(2) Gridding the standardized new data set and adding the data points to the appropriate grid.
(3) Make a SP-tree sp-tree-grid that corresponds to a non-empty grid and move to step 7.
(4) With the SP-tree sp-tree-grid, the cumulative contribution of all non-empty grids is

multiplied by the attenuation rate to form a new grid density.
(5) Load the data points in the new dataset into the corresponding grid.
(6) Update SP-tree sp-tree-grid.
(7) Identify and eliminate noise points by distinguishing dense grids. The cumulative

contribution of non-empty grids is sorted by traversing the sp-tree sp-grid, and the
appropriate density threshold is selected based on prior knowledge. At the same time,
the SP-tree sp-tree-dense of the dense grid and the SP-tree sp-tree-sparse of the sparse
grid is created.

(8) Traversing each dense grid corresponding to the SP-tree sp-tree-dense of dense
grids, updating the data information in the adjacent sparse grids affected on the
i-dimensional, setting the newistrue of the data points in this grid to 1, and adding the
dense grid pointer to the pointer list of migrating dense grids.

(9) The migration factors of data points in all sparse grids are determined using SP-tree
sp-tree-sparse. When the migration factor exceeds the set threshold, the corresponding
migration operation is performed and the sp-tree-dense is updated.

(10) Traversing SP-tree sp-tree-sparse, the remaining data points in the sparse grid are
temporarily marked as noise points.

(11) SP-tree for selecting valid data points: sp-tree-cluster. For the original data set with
noise points, sp-tree-dense is used as the SP-tree of effective data points; for the
original data set without noise points, sp-tree-grid is used as the SP-tree of effective
data points.

(12) With the help of SP-tree sp-tree-cluster, the k nearest data point sets Np of each valid
data point P are searched and determined, and then the average distance value,
denoted by the abbreviation “DSTp” of valid data point P is computed.

DSTp = ∑
q∈Np

dist(p, q)
k

(10)

(13) Include in the non-clustered data point collection W all of the valid data points P.
(14) Choose the data point M from W that has the least DST value and do the following

actions:

a. Give data point M a fresh cluster identifier Ci, that is, point M becomes a member
of the new class Ci.

b. Remove data point M from W.
c. Setting the average distance inside the original cluster Ci ’s cluster

AVGDSTCi = DSTm (11)

d. Call class extension function collection (Ci, M)

(15) Implementation of Class Extension Function Collection (Ci, M). For any data point
Q in the k nearest dataset of data point M, if the data point Q is in the queue list and
(DSTq ≤ var∗AVGDSTCi ) at the same time, operate as follows:

a. Add data point Q to cluster Ci
b. Remove data point Q from W
c. Update the average distance within a cluster of cluster Ci

AVGDSTCi =
AVGDSTCi ∗ (Ni − 1) + DSTq

Ni
(12)



Processes 2023, 11, 1240 15 of 18

d. Call class extension function collection (Ci, Q)

According to the equation above (DSTq ≤ var∗AVGDSTCi ), the parameter var is a
distance threshold parameter whose value should be greater than 1 and set by the user
according to the actual situation. The closer to 1, the closer to the DST value of the data
point in the cluster is required, that is, the stricter the access condition of the cluster is.
Therefore, parameter var aggregates data into different categories from the perspective of
spatial density. In Equation (12), Ni is the number of members in cluster Ci after adding the
data point Q to cluster Ci.

(16) Repeat steps 14 and 15 until the non-clustered dataset W is cleared.
(17) Eliminate clusters with a small number of members and classify the data points into

noise points.
(18) To determine whether there is a new time window or not, turn to step 4.
(19) The whole clustering process ends.

4. Experimental Validation
4.1. Effectiveness Verification of MDDSDB-GC Algorithm

After completing the expansion and improvement of the MDDSDB-GC algorithm,
the effectiveness of the algorithm is verified. This verification adopts the experimental
method of clustering analysis of standard (data stream) data set 1 and makes a judgment
through the actual clustering results. To effectively reflect the dynamic change of clustering,
the time sequence of clustering in standard data set 1 is adjusted to make the clustering
dynamic change. Its change process includes the drift of the cluster, the emergence of new
clusters, and the disappearance of old clusters.

In this experiment, the MDDSDB-GC algorithm divides the x-axis and y-axis into
30 segments, namely, the whole space is divided into 900 grids. Divided into 6 fixed time
windows, each fixed time window contains 80,000 data points. Load 80,000 data points of
first-time window while initialization with attenuation rate as 0.7. Therefore, after six time
windows, data stream clustering analysis is completed.

Compare with the original data in Figure 8, Figure 9a–d display the experimental
results. it can be seen that the clustering results are correct, the change of the class is also
correctly expressed, and the clustering accuracy is also high, which proves the effectiveness
of the MDDSDB-GC data stream clustering algorithm.

Processes 2023, 11, x FOR PEER REVIEW 16 of 19 
 

 

Compare with the original data in Figure 8, Figure 9a–d display the experimental 

results. it can be seen that the clustering results are correct, the change of the class is also 

correctly expressed, and the clustering accuracy is also high, which proves the effective-

ness of the MDDSDB-GC data stream clustering algorithm. 

 

Figure 8. Original distribution of experimental data set 1. 

  
(a) (b) 

  

(c) (d) 

Figure 9. MDDSDB-GC algorithm experimental results. (a) T = 1, initial clustering result; (b) T = 2, 

second time window, cluster drift; (c) T = 5, the fifth time window, the emergence of new cluster; 

(d) T = 6, the sixth time window, the disappearance of old cluster. 

Figure 8. Original distribution of experimental data set 1.



Processes 2023, 11, 1240 16 of 18

Processes 2023, 11, x FOR PEER REVIEW 16 of 19 
 

 

Compare with the original data in Figure 8, Figure 9a–d display the experimental 

results. it can be seen that the clustering results are correct, the change of the class is also 

correctly expressed, and the clustering accuracy is also high, which proves the effective-

ness of the MDDSDB-GC data stream clustering algorithm. 

 

Figure 8. Original distribution of experimental data set 1. 

  
(a) (b) 

  

(c) (d) 

Figure 9. MDDSDB-GC algorithm experimental results. (a) T = 1, initial clustering result; (b) T = 2, 

second time window, cluster drift; (c) T = 5, the fifth time window, the emergence of new cluster; 

(d) T = 6, the sixth time window, the disappearance of old cluster. 

Figure 9. MDDSDB-GC algorithm experimental results. (a) T = 1, initial clustering result; (b) T = 2,
second time window, cluster drift; (c) T = 5, the fifth time window, the emergence of new cluster;
(d) T = 6, the sixth time window, the disappearance of old cluster.

4.2. Time Complexity Analysis of MDDB-GC Algorithm

The time complexity analysis of the MDDB-GC algorithm is carried out. The pre-
foundation of the MDDB-GC algorithm is d-dimensional (data stream) data set S, which
contains N data points and is divided into k time windows. The grid is divided into L
segments on each dimension, and then there are G = Ld grids.

In each time window of the MDDB-GC algorithm, the time complexity is O (N) in
the grid division and data binning stage. In building an SP tree, calculating cumulative
contribution, dividing a dense grid, calculating migration factor and migration action, the
time complexity is O (G); in the clustering action stage, the time complexity is O (g2), where
g is the number of data points in the SP-tree index grid of effective data points. In summary,
in all time windows, the total time complexity of the algorithm is O (kg2), which is further
simplified, and the total time complexity is about O (g2).

The original multi-density DBSCAN algorithm, in contrast, has a temporal complexity
of around O (N2), where N is the number of core data points. Since g is considerably
smaller than N, the time of the MDB-GC algorithm is much shorter than that of the original
multi-density DBSCAN algorithm, and the performance is better.

4.3. Experimental Results of the MDDSDB-GC Algorithm

In this experiment, taking into account the characteristics of the MDDSDB-GC algo-
rithm, that is, the time complexity of the algorithm is associated with the amount of data



Processes 2023, 11, 1240 17 of 18

points g in the SP-tree index grid of the effective data point, that is, two different datasets
with the same amount of data, because of the different spatial distribution, it will lead to the
different number of SP-tree index grids of the effective data point, and then the clustering
time of the MDDB-GC algorithm is also different.

The above figure (Figure 10) is the comparison of the runtime required for the three
algorithms to complete the experimental data set. It is evident that that only the MDDB-GC
algorithm can deal with data stream and large datasets, so MDDB-GC and MD-DBSCAN
cannot deal with the data in the later five time windows. In the runtime, the MDSDB-GC
algorithm is significantly superior. It can be found that the MDSDB-GC algorithm has more
advantages in processing high-dimensional data sets than MDDB-GC and MD-DBSCAN.

Processes 2023, 11, x FOR PEER REVIEW 17 of 19 
 

 

4.2. Time Complexity Analysis of MDDB-GC Algorithm 

The time complexity analysis of the MDDB-GC algorithm is carried out. The pre-

foundation of the MDDB-GC algorithm is d-dimensional (data stream) data set S, which 

contains N data points and is divided into k time windows. The grid is divided into L 

segments on each dimension, and then there are 𝐺 = 𝐿𝑑 grids. 

In each time window of the MDDB-GC algorithm, the time complexity is O (N) in the 

grid division and data binning stage. In building an SP tree, calculating cumulative con-

tribution, dividing a dense grid, calculating migration factor and migration action, the 

time complexity is O (G); in the clustering action stage, the time complexity is O (g2), where 

g is the number of data points in the SP-tree index grid of effective data points. In sum-

mary, in all time windows, the total time complexity of the algorithm is O (kg2), which is 

further simplified, and the total time complexity is about O (g2). 

The original multi-density DBSCAN algorithm, in contrast, has a temporal complex-

ity of around O (N2), where N is the number of core data points. Since g is considerably 

smaller than N, the time of the MDB-GC algorithm is much shorter than that of the original 

multi-density DBSCAN algorithm, and the performance is better. 

4.3. Experimental Results of the MDDSDB-GC Algorithm 

In this experiment, taking into account the characteristics of the MDDSDB-GC algo-

rithm, that is, the time complexity of the algorithm is associated with the amount of data 

points g in the SP-tree index grid of the effective data point, that is, two different datasets 

with the same amount of data, because of the different spatial distribution, it will lead to 

the different number of SP-tree index grids of the effective data point, and then the clus-

tering time of the MDDB-GC algorithm is also different. 

The above figure (Figure 10) is the comparison of the runtime required for the three 

algorithms to complete the experimental data set. It is evident that that only the MDDB-

GC algorithm can deal with data stream and large datasets, so MDDB-GC and MD-

DBSCAN cannot deal with the data in the later five time windows. In the runtime, the 

MDSDB-GC algorithm is significantly superior. It can be found that the MDSDB-GC algo-

rithm has more advantages in processing high-dimensional data sets than MDDB-GC and 

MD-DBSCAN. 

 

Figure 10. Comparison of computational efficiency between MDDSDB-GC algorithm and original 

multi-density DBSCAN algorithm. 

5. Conclusions 

MDDSDB-GC algorithm retains the advantage of MDDB-GC and obtains the ability 

to cluster analyses for a data stream. It can achieve dynamic, without prior knowledge 

Figure 10. Comparison of computational efficiency between MDDSDB-GC algorithm and original
multi-density DBSCAN algorithm.

5. Conclusions

MDDSDB-GC algorithm retains the advantage of MDDB-GC and obtains the ability
to cluster analyses for a data stream. It can achieve dynamic, without prior knowledge
and can find arbitrary shape clustering. At the same time, it has a better comprehensive
performance that needs less runtime. There are noise points in database 1 and the spatial
distribution is complicated rather than convex. Results demonstrate that MDDB-GC is just
as accurate at separating noise points and completing clustering as multi-density DBSCAN.
The clustering in Database 2 consists of three adjacent differing densities, which DBSCAN
cannot accurately cluster. Figure 9 demonstrates that multi-density DBSCAN and MDDB-
GC are both equally acceptable. Results show that the MDDB-GC algorithm performs more
comprehensively overall.

Author Contributions: Conceptualization, Y.Y. and S.H.; methodology, Y.Y. and L.Z.; software, S.H.;
validation, L.Z., H.Z. and Y.H.; formal analysis, S.H., H.Z. and B.Z.; investigation, S.H. and L.Z.;
resources, L.Z., C.H., Y.Y. and Y.P.; data curation, Y.H.; writing—original draft preparation, S.H., Y.Y.
and L.Z.; writing—review and editing, Y.Y. and Y.P.; visualization, S.H., Y.P and B.Z.; supervision, Y.Y.
and Q.W.; project administration, Y.Y. and Q.W.; funding acquisition, Y.Y. and Q.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China [grant number 2020YFB1600703, 2020YFD1100200] and the National Natural Science Founda-
tion of China [grant numbers 42074039].

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.



Processes 2023, 11, 1240 18 of 18

Acknowledgments: This work was supported by the National Key Research and Development
Program of China [grant number 2020YFB1600703, 2020YFD1100200] and the National Natural
Science Foundation of China [grant numbers 42074039].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, X.; Zhou, L.; Liu, Y. Review on Clustering Algorithms. J. Integr. Technol. 2017, 6, 41–49.
2. Jia, D.; Shen, F.; Cui, X. Data Stream Clustering Algorithm Based on Artificial Bee Colony Optimization. Comput. Syst. Appl.

2020, 29, 145–150.
3. Wan, X.; Li, L.; Ma, K. Distributed Data Stream Clustering Algorithm and Its Implementation with Storm. Comput. Technol. Dev.

2017, 27, 150–155.
4. Mei, Y.; Liang, Y. Research on intrusion detection system based on data stream clustering mining algorithm. J. Xinyang Agric. For.

Univ. 2020, 30, 113–118+123.
5. Xiao, M.; Zhang, L.; Zhang, X.; Hu, Y. An Improved Fuzzy Clustering Method for Interval Uncertain Data. J. Electron. Inf. Technol.

2020, 42, 1968–1974.
6. Niu, L.; Zhang, G. Distributed real-time data stream density clustering algorithm based on Storm. J. Tianjin Norm. Univ. Nat. Sci.

Ed. 2018, 38, 72–76.
7. Tang, Y.; Chen, S. Distributed Data Stream Clustering Algorithm with Grid Blocks. J. Chin. Comput. Syst. 2016, 37, 488–493.
8. Wu, D.; Liu, X.; Qu, Z. Research on Hadoop based distributed clustering algorithm. J. Shandong Univ. Technol. Nat. Sci. Ed.

2018, 32, 25–29.
9. Sun, L.; Cheng, X.; Han, C.; Guo, J. A New Fuzzy Clustering Algorithm for Data Stream. J. Electron. Inform. 2015, 37, 1620–1625.
10. Heidari, S.; Alborzi, M.; Radfar, R.; Afsharkazemi, M.A.; Ghatari, A.R. Big data clustering with varied density based on

MapReduce. J. Big Data 2019, 6, 77. [CrossRef]
11. Li, M.; Bi, X.; Wang, L.; Han, X. A method of two-stage clustering learning based on improved DBSCAN and density peak

algorithm. Comput. Commun. 2021, 167, 75–84. [CrossRef]
12. Hanafi, N.; Saadatfar, H. A fast DBSCAN algorithm for big data based on efficient density calculation. Expert Syst. Appl. 2022,

203, 117501. [CrossRef]
13. Zhang, L.; Xu, Z.; Si, F. GCMDDBSCAN: Multi-density DBSCAN Based on Grid and Contribution. In Proceedings of the 2013

IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, Chengdu, China, 21–22 December 2013;
pp. 502–507. [CrossRef]

14. Kellner, D.; Klappstein, J.; Dietmayer, K. Grid-based DBSCAN for clustering extended objects in radar data. In Proceedings of the
2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 365–370. [CrossRef]

15. Fahim, A. A varied density-based clustering algorithm. J. Comput. Sci. 2023, 66, 101925. [CrossRef]
16. Hou, S.; Han, S.; Han, L.; Qian, X. Improved DBSCAN algorithm for multi density. Sens. Microsyst. 2018, 37, 137–139+146.
17. Chen, J.; Chen, J.; Yang, D. A novel clustering algorithm based on the deviation factor model. Int. J. Comput. Sci. Eng. 2020, 21, 173.

[CrossRef]
18. Esfandani, G.; Abolhassani, H. MSDBSCAN: Multi-density Scale-Independent Clustering Algorithm Based on DBSCAN. In Ad-

vanced Data Mining and Applications; Cao, L., Feng, Y., Zhong, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6440,
pp. 202–213.

19. Ashour, W.; Sunoallah, S. Multi Density DBSCAN. In Intelligent Data Engineering and Automated Learning—IDEAL 2011; Yin, H.,
Wang, W., Rayward-Smith, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6936, pp. 446–453.

20. Sharma, N.; Masih, S.; Makhija, P. A Survey on Clustering Algorithms for Data Streams. Int. J. Comput. Appl. 2018, 182, 18–24.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s40537-019-0236-x
https://doi.org/10.1016/j.comcom.2020.12.019
https://doi.org/10.1016/j.eswa.2022.117501
https://doi.org/10.1109/dasc.2013.115
https://doi.org/10.1109/ivs.2012.6232167
https://doi.org/10.1016/j.jocs.2022.101925
https://doi.org/10.1504/ijcse.2020.105725
https://doi.org/10.5120/ijca2018918014

	Introduction 
	Concept and Characteristics of Data Streams 
	Requirements for Data Stream Clustering 
	The Introduction of the Existing Data Stream Clustering Algorithms 
	Summary of Existing Data Stream Clustering Algorithms 

	Original Algorithm MDDB-GC 
	Introduction to Conventional DBSCAN Algorithm 
	Multi-Density DBSCAN Algorithm 
	Introduction of MDDB-GC Algorithm 

	Proposed Algorithm: MDDB-GC Algorithm 
	Main Idea 
	Grid Division 
	Tree Index Structure: SP-Tree 
	Contribution and Its Improvement 
	Grid Density and Its Improvement 
	Migration Factor and Its Improvement 
	The Process of MDDSDB-GC 

	Experimental Validation 
	Effectiveness Verification of MDDSDB-GC Algorithm 
	Time Complexity Analysis of MDDB-GC Algorithm 
	Experimental Results of the MDDSDB-GC Algorithm 

	Conclusions 
	References

