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Abstract: The Habanero pepper (Capsicum chinense Jacq.) is recognized worldwide for its unique
organoleptic characteristics, as well as for its capsaicin content; however, other bioactive compounds,
such as phenolic compounds with bioactive properties (mainly antioxidant capacity), have been
extracted (ultrasound) and identified in this fruit. Moreover, the extracts obtained by ultrasound
present a high sensitivity to environmental conditions, making spray drying a viable option to avoid
the degradation of bioactive compounds while maintaining their properties after microencapsulation.
Response surface methodology (RSM) has been used to optimize spray-drying conditions such as the
inlet temperature (IT) and maltodextrin:extract (M:E) ratio. Thus, the objective of this work was to
establish the optimal spray-drying conditions (IT and M:E) of a Habanero pepper extract with a final
characterization of the spray-dried product. Results showed that the optimal spray-drying conditions
included an IT = 148 °C with an M:E = 0.8:1 w/w, where the antioxidant capacity (38.84 £ 0.22%
inhibition), total polyphenol content (6.64 + 0.08 mg Gallic acid equivalent/100 g powder), and
several individual polyphenols, such as Protocatechuic acid (26.97 mg/100 g powder), Coumaric
acid (2.68 mg/100 g powder), Rutin (18.01 mg/100 g powder), Diosmetin (1.74 mg/100 g powder),
and Naringenin (0.98 mg/100 g powder), were evaluated. The microcapsules showed a spherical
shape with concavities and moisture less than 5%, and the inclusion of bioactive compounds was
confirmed using UPLC and FTIR. The final dried product has the potential to be used as an ingredient
for functional food development.
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1. Introduction

The Habanero pepper (Capsicum chinense Jacq.) is an herbaceous plant within the
Solanaceae family; this fruit has a high commercial value in Mexico and internationally.
It presents unique organoleptic characteristics with high contents of important bioactive
compounds, highlighting capsaicin and polyphenols, as well as the antioxidant capacity as
important bioactive properties [1,2].

This fruit is representative of the Yucatan Peninsula region in Mexico since it exhibits
22.4% of the national production, representing a significant impact on this geographical
area [3]. Therefore, in 2010, the denomination of origin “Chile Habanero de la Peninsula de
Yucatan” was granted [4]. This denomination has aroused the interest of the pharmaceutical,
food, and cosmetic industries on other secondary metabolites, different from Capsaicinoids,
contained in the Habanero pepper, such as polyphenols and other bioactive compounds
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developed within the shikimic acid and metabolic pathways of phenylpropanoids, syn-
thesized by plants as a defense mechanism in response to biotic and abiotic stress [5,6].
Moreover, these metabolites present different properties such as anti-inflammatory, antidia-
betic, antilipogenic, and antioxidant capacities when included in diets, providing benefits
to human health [7,8]. Thus, the search for obtaining these bioactive molecules has led to
the application of different extraction methodologies. Ultrasound-assisted extraction (UAE)
is one of the most promising due to its low extraction time, little use of toxic solvents, and
high yield in comparison to other methodologies such as maceration or Soxhlet. In this
way, UAE is a green extraction option for the phenolic compounds from the Habanero
pepper [9]. For instance, Oney-Montalvo et al. [10] reported the extraction of phenolic
compounds from immature Habanero peppers (green) using 80% methanol as the solvent
with a sonic bath (130 W, 42 kHz, 30 min), obtaining concentrations within the range from
39.61 mg to 79.34 mg Gallic acid equivalent/100 g dry pepper. Capsicum chinense Jacq.
extracts at the mature state (orange color) have also been reported with concentrations
up to 208.42 £ 31.01 mg Gallic acid equivalent/100 g dry pepper when simultaneously
implementing UAE (42 kHz) and methanol as the solvent [11].

Although the Habanero pepper extracts have high concentrations of polyphenols, these
are susceptible to rapid degradation due to environmental conditions, such as Ultra Violet
light, moisture, high temperature, pH, oxygen, among others [12,13]. Using spray drying
is a viable option for increasing the shelf life of bioactive compounds found in Habanero
peppers, as well as preserving their bioactive properties through the use of natural coating
or encapsulating agents such as polysaccharides, proteins, and/or gums. By using a
suitable proportion of these natural products (encapsulating agents) with Habanero pepper
extract and establishing optimal injection conditions at the drying chamber, microcapsules
containing the desired metabolite can be obtained. This prevents interaction with harsh
environmental conditions and limits degradation [14,15].

Even though spray drying is a widely used microencapsulation technique for encap-
sulating phenolic compounds extracted from various food matrices, such as blueberry [16],
grape [17], chokeberry [18], pomegranate [19], and acerola [20], it has not been yet used for
encapsulating phenolic compounds from plants of the capsicum genus [21-25]. Therefore, in
order to minimize the loss of metabolites and antioxidant capacity in the microencapsulates
obtained from the Habanero pepper extract, it is imperative to employ statistical tools to
optimize the operating conditions of the spray dryer. This includes considering the condi-
tions of the microencapsulation process, such as the inlet temperature (IT) and the amount
(ratio) of encapsulation agent used [26,27]. Response surface methodology (RSM) plays a
critical role in achieving the optimal conditions for spray drying [28]. The application of
RSM in spray drying has proven to be effective in minimizing variability and improving
the quality of the final product, making it an essential tool for the food industry [29]. To
achieve the optimization of spray-drying conditions, RSM involves a series of mathematical
and statistical techniques where empirical models are adjusted to the data obtained from
the experimental design. This is achieved through the use of linear or quadratic polynomial
functions, followed by modeling and optimization techniques to analyze and improve the
experimental conditions through the use of statistical software [30]. Once the preliminary
experimental phase is completed, the linearity of the data must be analyzed; generally,
the data obtained do fit a linear model, which indicates that there is no curvature in the
data and it is in an area far from optimal; therefore, new experiments must be carried out
(stepped method) to improve the desired response variables, which translates into a fit
of the data to a quadratic model. If the data do not fit a linear model, it would only be
necessary to add the star points and analyze the results together with those of the first
experimental design to establish the fit to a quadratic model [29]. An advantage of using
RSM, in addition to the cost savings from reducing the number of experiments, is its ability
to generate a mathematical model that can predict the behavior of response variables,
such as the concentration of microencapsulated bioactive compounds, based on various
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spray-drying conditions, including inlet temperature, encapsulating agent ratio, injection
flow, outlet temperature, among others [29,31].

To date, no information has been found regarding the optimization of microencap-
sulation conditions of phenolic compounds found in the Habanero pepper fruit nor their
antioxidant capacity in microencapsulates. Therefore, the objective of this study was to
optimize the spray-drying conditions, evaluate the antioxidant capacity and phenolic com-
pounds present in the microencapsulates, and provide a comprehensive characterization of
the resulting product.

2. Materials and Methods
2.1. Raw Materials

Habanero pepper (Capsicum chinense Jacq.) was grown under greenhouse conditions
in the community of Chicxulub pueblo, Yucatan, Mexico with geographic coordinates
21°08/50.5” N, 89°2942.8" W used.

The Habanero pepper was cultivated in a lithic leptosol soil according to the classifica-
tion of the “World Reference Base for soil resources (WRB)”, known as Tzek’el lu'um by
the Mayan classification. Fruits were harvested on 11 December 2019 in an immature state
(green color) three months after planting.

2.2. Habanero Pepper Drying Process

The freshly harvested Habanero pepper in an immature state (green color) was trans-
ferred to the CIATE] facilities (southeast campus), where a classification of the product was
carried out, setting apart the fruits in an immature state (green color) from the fruits that
presented changes in color (green-orange and orange color) as well as from other residues
such as leaves, stems, and peduncles.

The collected and classified Habanero pepper fruits were placed in aluminum trays
and dried with a FELISA oven (model FE-292) at a temperature of 65 °C for 72 h [32]. The
dried Habanero pepper fruits were ground with an Oster® blender (México city, México)
and sieved with a #35 sieve (500 um particle size); finally, the Habanero pepper powder was
placed in plastic bags lined with aluminum foil and stored at room temperature until use.

2.3. Habanero Pepper Polyphenols Extraction

The extraction process was carried out according to Oney-Montalvo et al. [32] with
some modifications. A total of 25 g of Habanero pepper powder was added to 125 mL of a
methanol:water solution (80:20) and then sonicated (water bath) for 30 min at a frequency
of 42 kHz (BRANSON® model 351).

The extract obtained was centrifuged for 30 min at 4 °C and 4700 rpm; the resulting
supernatant was filtered with a nylon filter (0.2 um) and weighted with the help of an
OHAUS® (model PA224C) balance. Finally, it was cooled in a fridge (10 °C) for less than
one hour until its microencapsulation. Aliquots of the filtered extract were taken and
analyzed for antioxidant capacity (Ax), total polyphenol content (TPC), polyphenol profile
(PP), and total Capsaicinoids (TCA) determination.

2.4. Microencapsulation of the Habanero Pepper Extract
Experimental Design

Response surface methodology (RSM) was used to optimize the microencapsulation
conditions studying its effects on the Habanero pepper extract microcapsules. A Central
Composite Design (CCD) 22 was employed [33]. The CCD consisted of two main factors
with two levels each (+1); the factors were maltodextrin:extract ratio (1:1-1:2 w/w) and
inlet temperature (100-140 °C).

The central points, which make the model obtained more accurate, were the average
distance between the highest and lowest value of the factor to be evaluated, and were
established at an inlet temperature of 120 °C and a 1.5:1 w/w ratio of maltodextrin:extract.
The star points (second experimental design) were established at an IT =92 °C (—1.414)
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and 148 °C (1.414) and a maltodextrin:extract (w/w) ratio M:E = 0.8:1 w/w (—1.414) and
2.2:1 w/w (1.414). Values are shown in Table 1.

Table 1. Central Composite Design 22 for the optimization of spray-drying parameters in the
microencapsulation process of Habanero pepper extract with high antioxidant capacity.

Coded Values Real Values Response Variables
Exp Xy X, IT M:E Ax TPC
Q) (w/w) (% Inhibition) (GAE mg/100 g PW)
1 -1 -1 100 1 Y; Z
2 1 -1 140 1 Y, Z,
3 -1 1 100 2 Y3 Z3
4 1 1 140 2 Yy Zy
5 0 0 120 1.5 Ys Zs
6 0 0 120 15 Ye Zg
7 0 0 120 15 Yy Zy
8 0 0 120 1.5 Yg Zg
9 —1.414 0 92 15:1 Yo Zy
10 1.414 0 148 1.5:1 Y10 Zy
11 0 —1414 120 0.8:1 Y11 Z1
12 0 1.414 120 2.2:1 Yo Z

Note: Exp = Experiment; IT = inlet temperature; M:E = ratio of maltodextrin gram per 1 g of Habanero pepper
extract; w/w = weight/weight; Ax = antioxidant capacity; TPC = total phenolic content; GAE = Gallic acid
equivalent; PW = powder.

2.5. Spray-Drying Process

The spray-drying process was conducted according to Chong et al. [27] with some
modifications. The microencapsulation process began by weighing Habanero pepper
(Capsicum chinense Jacq.) extract. Based on the obtained weight, the amount of maltodextrin
(DE20, Maltrin® M200, Mexico City, Mexico) was added, according to experimental design.

The maltodextrin was then diluted under continuous stirring (heating plate and magnetic
stirrer) with distilled water at room temperature until a homogeneous solution was achieved.
Then, the Habanero pepper extract (previously weighed) was added to the maltodextrin
solution with continuous stirring until a homogeneous solution was accomplished.

The homogeneous solution of maltodextrin and Habanero pepper extract was finally
injected into the spray dryer (MOBILE MINOR™ GEA® Model MM standard, Diisseldorf,
Germany) with a 10 mL/min flow achieved by a peristaltic pump (WATSON MARLOW®,
model 520S, Diisseldorf, Germany). The injection was maintained with an air pressure of
3.5 Bar (22,000 rpm) to keep atomizer rotating. A constant flow of hot air (temperature
according to experimental design) of 80 kg/h was established inside the drying chamber.
The microencapsulates were collected with 1 1 specialized bottles (GEA®, Diisseldorf,
Germany). The powder was stored at room temperature, labeled, and lined with aluminum
foil until use.

2.6. Determination of the Total Polyphenol Content in Habanero Pepper Extracts and Microencapsulates

The determination of the total polyphenol content (TPC) in the Habanero pepper extracts
was carried out using the Folin—Ciocalteu methodology according to Oney-Montalvo et al. [32].

An aliquot (25 uL) of Habanero pepper extract was taken. The extract was diluted
with distilled water (1:1 ratio). Finally, 3 mL of water and 250 pL of Folin-Ciocalteu reagent
(St. Louis, MO, USA) were added before incubation for 5 min. After incubation, 750 uL
of sodium carbonate (Nay,COj3, 20%, St. Louis, MO, USA) and 950 uL of distilled water
were added; then, the final solution was incubated for 30 min. Finally, the readings were
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conducted at a wavelength of 765 nm using a quartz cell and a JENWAY® (model 6715
Ultraviolet-visible light, IL, USA) spectrophotometer. The results were presented as Gallic
acid equivalents in mg of Gallic acid equivalent per 100 g of dry Habanero pepper (GAE
mg/100 g dry Habanero pepper), according to the calibration curve (Figure S1).

To carry out the microencapsulated Habanero TPC assess, microcapsules were washed
and reconstituted. First, 500 mg of powder was washed with 2.5 mL of methanol and
stirred (vortex mixer Maxi Mix® II, MA, USA) until a homogeneous mix was observed
(<5 min). Then, the mix was centrifuged during 20 min at 4700 rpm and 4 °C, and the
obtained supernatant was discarded to remove non-microencapsulated polyphenols [27].
A volume of 2.5 mL of distilled water was added to washed and stirred (vortex mixer Maxi
Mix® II) microcapsules until diluted. This solution was filtered (0.2 um nylon filter) and
used to determine the microencapsulated total polyphenol content. Results were reported
as mg GAE/100 g of powder, as described before.

2.7. Polyphenol Profile Determination in Habanero Pepper Extracts and Microencapsulates

The quantification of the individual polyphenols was carried out with a UPLC Acquity
H Class ultra-pressure chromatograph (Waters, Milford, MA, USA) with a detector of diode
array (DAD) and an Acquity HSS C18 reverse phase column (Waters, Milford, MA, USA).

The methodology described by Oney-Montalvo et al. [10] was applied, using a flow
rate of 0.5 mL/min, 0.2% acetic acid as the mobile phase A, and acetonitrile with acetic
acid at 0.1% as mobile phase B. The calibration curve was prepared with 16 polyphenol
standards (Gallic acid, Protocatechuic acid, Chlorogenic acid, Coumaric acid, Cinnamic acid,
Vanillic acid, Ferulic acid, Ellagic acid, Rutin, Quercetin, Luteolin, Kaempferol, Vanillin,
Naringenin, and Diosmetin) purchased from Sigma-Aldrich® (St. Louis, MO, USA). A
stock solution was made with a concentration of 1 mg/mL to prepare a curve in the range
from 1 to 75 pg/mL.

The polyphenols were identified in the samples by comparing them with the retention
time of the standards. The standards chromatograms are shown in Figure S2. Results were
reported as mg/100 g dried pepper (extract) and mg/100 g powder (microencapsule).

2.8. Total Capsaicinoids Determination in Habanero Pepper Extract and Microencapsules

The quantification of the individual Capsaicinoids was carried out with a UPLC
Acquity H Class ultra-pressure chromatograph (Waters, Milford, MA, USA), as described
in Section 2.8.

In order to determine the Capsaicinoid content, a calibration curve was made by
weighting 1 mg capsaicin (Lot#SLCF5039) and 0.5 mg dihydrocapsaicin (Lot#BCCB2256)
of standards (Sigma—Aldrich®, St. Louis, MO, USA), grading up to 1 mL with acetonitrile
(stock 1). From stock 1, 200 puL was taken, grading with acetonitrile:water up to 2 mL (stock 2).

The curve was established in a range from 5 to 80 ug/mL for capsaicin and from 2.5 to
40 pg/mL for dihydrocapsaicin.

Determination of total Capsaicinoids, in both extract and microencapsulates, was
made according to Chel-Guerrero et al. [34] with two mobile phases; acetonitrile was
established as phase A and a 0.1% formic acid solution as phase B, at 0.5 mL/min flow rate
in a constant ratio (60:40) during the injection (5 min). Results were reported as mg/g dried
pepper (extract) and mg/g powder (microencapsulate).

2.9. Antioxidant Capacity in Habanero Pepper Extract and Microencapsules

The DPPH radical scavenging methodology was used according to Chel-Guerrero
et al. [34] to determine the antioxidant capacity. The 2,2-diphenyl-1- picrylhydrazyl (DPPH)
reagent of the Sigma Aldrich® brand (D9132 -1G, St. Louis, MO, USA) was weighted
(3.3 mg); then, reagent grade methanol was added (100 mL). The obtained DPPH-solution
was adjusted (absorbance 0.700 + 0.002) with a spectrophotometer JENWAY® (model 6715
Ultraviolet—visible light, IL, USA) reading at 515 nm.
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To establish the antioxidant capacity, a 100 pL volume of sample (Extract or recon-
stituted microcapsule) were taken, then a 3.9 mL volume of DPPH-adjusted solution was
added. The mixed solution was stirred and incubated for 30 min. Finally, the samples were
read at 515 nm.

The results of the extract and microencapsulates were presented as percentage of
inhibition (%), according to Equation (1):

DPPH,g — DPPHyap

% Inhibition = ( DPPH
adj

) )

DPPH,4; = Absorbance of adjusted DPPH solution.
DPPHjg;, = Absorbance of sample (extract or microcapsule reconstituted).

2.10. Physicochemical Characterization of Habanero Pepper (Capsicum chinense Jacq.) Extract
Microencapsulated Obtained by Spray Drying

2.10.1. Morphology Using Scanning Electron Microscope (SEM)

The SEM analysis provided images of morphology and approximate size of the Ha-
banero pepper extract microcapsules. The microcapsule physical properties were de-
termined with a JEOL 6360 LV scanning electron microscope (Tokyo, Japan). Samples
(maltodextrin DE20, spray-dried maltodextrin DE20, and Habanero pepper extract mi-
croencapsulates) were gold-plated and then observed at 25 kV accelerating voltage, aperture
1, and spot size 31. Particle dimensions were determined using ISIS JEOL SEM software
(version 6.10), according to Barbieri et al. [35].

2.10.2. Fourier Transform Infrared Spectroscopy (FTIR)

A Nicolet 8700 FI-IR spectrometer (Thermo Scientific, Madison, WI, USA) equipped
with an attenuated total reflectance (ATR) accessory using germanium glass was used to
obtain FTIR spectra of the samples (Habanero pepper extract, maltodextrin DE20, and
Habanero pepper extract microencapsulated). Scans were made in the spectral range
between 4000 and 650 cm ™! and were recorded after averaging 100 scans with a 2 cm™!
resolution [35].

2.10.3. Colorimetry

Color of samples was evaluated with a colorimeter ColorMeter Pro™ (Software version
2.1.18, Guangdong, China) according to Siacor et al. [36] with some modifications. Five
grams of sample of each microencapsulate was used to cover the entire base (reading
area) of the quartz sample cup (HunterLab® model 04-7209-00, VA, USA) while a white
background was placed at a height of 25 mm. Prior to the readings, the equipment was
calibrated according to the manufacturer instructions to later place the sample and read the
color by triplicate.

Results were reported according to the CIELAB scale (L*, a*, b*); Chroma and Hue®
values were obtained using Equations (2) and (3):

O

Chroma = (a*? x b*2)1/2

@

*

Hue® = arctan( a—*) ©)]

2.10.4. Moisture

Moisture contents of Habanero pepper and microencapsulates were analyzed accord-
ing to the methodology reported by Li et al. and Tolun et al. [37,38] with some modifications.
With an OHAUS® thermobalance (model MB90, NJ, USA), the moisture content was deter-
mined by placing 0.5 g sample in an aluminum plate; the samples were kept at a constant
temperature of 105 °C until a constant weight was reached (weight loss < 1 mg in 60 s).
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The moisture content was reported in percentage (%) according to the lost weight of
the sample by triplicate.

2.11. Statistical Analysis

Experiments were performed randomly. Data presented were reported as means
=+ standard deviations. Data analysis, first- and second-order model fit analysis, canon-
ical analysis, and regression coefficients were performed using the statistical software
Statgraphics Centurion XVILII-X64 (Statgraphics Technologies Inc., Virgin, UT, USA).

3. Results
3.1. Physicochemical Characteristics of the Habanero Pepper Fruit
Habanero Pepper Fruit Moisture

The moisture percentage of the Habanero pepper grown under greenhouse conditions
in the Tzek’el soil type reported a value of 83.19 £ 0.40%, lower than that reported by
Vasquez-Velazquez et al. [39] for immature Habanero peppers (Capsicum chinense Jacq.)
(91 £ 0.00%). This could be the effect of the type of soil since a stony soil (Tzek’el lu"um,
Mayan classification) classified as leptosol was used for this work. This soil presented a
high percolation rate (rapid water filtration) as well as difficulty for root development, thus
decreasing the water supply [40—42].

3.2. Optimization of the Spray-Drying Conditions
3.2.1. TPC and Ax of the Habanero Pepper Extract

Prior to carrying out the treatments by the optimization design, antioxidant capacity
(Ax) and total polyphenol content (TPC) of the extract of the Habanero pepper (Capsicum
chinense Jacq.) were analyzed. The Habanero pepper extract presented an antioxidant
capacity of 95.03 £ 0.08% inhibition and 32.97 &+ 0.08 mg GAE/100 g dried pepper.

3.2.2. TPC and Ax from Experimental Design

According to the Central Composite Design 2> with four central points, eight experi-
ments were carried out randomly at different conditions of inlet temperature (100 °C, 120 °C,
and 140 °C) and ratios of maltodextrin gram per gram of extract (1:1, 1.5:1, and 2:1 w/w,
maltodextrin:extract). Microencapsulates obtained in each treatment were analyzed by
triplicate to determine the antioxidant capacity and the total polyphenol content.

The first-order analysis (Table S1) for these eight experiments showed that the antioxi-
dant capacity did not fit a linear model with a p-value = 0.0671 and R? = 29.5; in contrast,
TPC did fit a linear model (p-value < 0.05). The lack of adjustment evidenced the presence
of a curvature of the data, an approximation to the optimal values, allowing the addition of
star points and obtaining a second experimental design.

According to RSM, the star points were added (experiments from nine to twelve,
second experimental design) with the coded values 0 and ++/2 (£1.414). Results are shown
in Table 2.

Aninlet temperature condition of 140 °C and a ratio of maltodextrin gram per gram
of extract of 1:1 w/w showed the highest TPC (7.75 £+ 0.25 mg GAE/100 g PW) in the
microencapsulated Habanero pepper extract; whereas, the lowest TPC (2.89 4 0.22 mg
GAE/100 g PW) was obtained under 100 °C (inlet temperature) and 2:1 w/w (M:E) con-
ditions.

The higher antioxidant capacity (31.43 £ 0.22% inhibition) was obtained when an inlet
temperature of 120 °C and an encapsulating agent ratio of 0.8:1 w/w (maltodextrin:extract)
were implemented; the lowest Ax (2.05 & 0.36% inhibition) was observed under the central
point condition (120 °C, 1:1.5 w/w). No linear correlation was detected between Ax and
TPC (R? < 0.1).
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Table 2. Values of antioxidant capacity and total polyphenol content obtained from the 22 Central

Composite Design for the spray-drying condition optimization of a Habanero pepper extract.

Factors Response Variables
Coded Values Real Values
Exp IT ME 0 Ax i
X1 X, €O (whw) (% Inhibition) (mg GAE/100 g Powder)
1 -1 -1 100 1:1 25.71 4 0.14] 5.67 + 0.14 de
2 1 -1 140 11 14.29 +0.25 8 7.75+ 0251
3 —1 1 100 21 14.52 +0.22 8 2.89 +£0.222
4 1 1 140 21 12.29 +0.14 f 3.05+0.142
5 0 0 120 151 6.21 4 0.08 2.98 +0.832
6 0 0 120 151 2.05 + 0.36 @ 4.61+036°
7 0 0 120 151 492 40.08° 6.11 £ 0.08 f
8 0 0 120 151 11.32 £ 0.43 4 6.09 + 0.43 f
9 —1.414 0 92 151 11.78 £ 0.22°¢ 5.40 + 0.00 <
10 1.414 0 148 151 23.99 4 0.08 1 5.23 +0.48°¢
11 0 ~1414 120 081 31.43 + 0.22 K 6.56 = 0.15 8
12 0 1.414 120 221 17.36 + 0.16 1 5.91 4 0.12 ¢

Note: Exp = Experiment; IT = inlet temperature; M:E = ratio of maltodextrin per gram of Habanero pepper
extract; w/w = weight/weight ratio; Ax = antioxidant capacity; TPC = total polyphenol content; GAE = Gallic
acid equivalent; values are means & SD (n = 3). Different letters in the same column indicate a significant
statistical difference.

3.2.3. Modeling of the Spray-Drying Conditions for Microencapsulated Antioxidant Capacity

The second-order analysis of the completed experimental design (twelve experiments:
first eight experiments plus star points) of the antioxidant capacity showed a p-value = 0.001
and an R? = 74.6, indicating an adjustment of the antioxidant capacity values to a second-
order model. The analysis involved obtaining multiple regression coefficients (Table S2),
which were then used to design a prediction Equation (4) for the antioxidant capacity of the
microencapsulated Habanero pepper (Capsicum chinense Jacq.) extract, as follows:

Y =301.59 — 3.17846 X; — 133.013 X, + 0.0118935 X32 + 0.23025 X1 X + 32.3595 X2 (4)

Y = Antioxidant capacity (% inhibition).

Xj = Inlet temperature (°C).

Xz = Maltodextrin gram ratio per gram of extract (maltodextrin:extract, w/w).

According to the mathematical model, to obtain an optimal antioxidant capacity in
the microencapsulation of up to 41.1% inhibition, an inlet temperature of 92 °C and a
0.8 g maltodextrin ratio per 1 g of extract should be implemented. Figure 1 shows the
response surface (a) and the contour plot (b) obtained from the modeling of the antioxidant
capacity of the microencapsulated Habanero pepper (Capsicum chinense Jacq.) extract. The
surface plot shows the behavior of the Ax of the microencapsulates, where a plateau of
minima (blue color) represents the lowest antioxidant capacity and the surroundings (red
color) represent the highest antioxidant capacity. In Figure 1b, the intersection of the spray-
drying conditions (IT = 92 °C, M:E = 0.8:1 w/w) to achieve the optimal response (optimal
antioxidant capacity) is shown with the symbol “+”.
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Figure 1. Antioxidant capacity response surface (a) and contour (b) plots with factors of input inlet
temperature and maltodextrin ratio. Ax = Antioxidant capacity; M:E = maltodextrin ratio per gram
of Habanero pepper extract; w/w = weight/weight.

The maltodextrin ratio (p = 0.00) showed an effect on the antioxidant capacity of the
microencapsulated extract; meanwhile, the temperature (p = 0.61) and interaction (p = 0.05)
of both main factors did not show an effect on this response variable.

3.2.4. Modeling of Spray-Drying Conditions

According to the Central Composite Design with star points, TPC fitted to a second-
order model (p-value = 0.00, R? = 50.54); whereas, for the polyphenol profile, only Proto-
catechuic acid, Coumaric acid, Rutin, Diosmetin, and Naringenin fitted to a second-order
model (Table 3).

Table 3. Results of multiple regression analysis of individual polyphenols of a Habanero pepper
extract microencapsulated by spray drying.

Metabolite p-Value R?
Protocatechuic acid 0.0000 77.20
Coumaric acid 0.0000 83.94
Rutin 0.0000 85.91
Diosmetin 0.0000 83.39
Naringenin 0.0000 72.22

The regression coefficients were used to design the prediction equations of the TPC
and the concentration of each microencapsulated individual polyphenol; the equations are
shown in Table 4.

Table 4. Prediction equation for TPC and for concentration of microencapsulated individual polyphenols.

Metabolite Equation
TPC Y = —0.464268 + 0.120413 X; — 1.29686 X, — 0.00014918 X;2 — 0.048 X; X, + 1.64567 X2
Pr":l‘.;gte“h““ Y = 16.5604 + 0.996392X; — 72.6487Xs — 0.00479653X;2 + 0.0630083X; X5 + 17.4266 X»2
C";‘g‘:m Y = 14.4128 — 0.141818 X; — 5.68653 X, + 0.000530469 X;2 + 0.00554167X; X, + 1.46141 X,2
Rutin Y = 123.536 — 1.26763 X4 — 50.1663 X5 + 0.00394197 X;2 + 0.163892 X; X3 + 8.6508 X»2
Diosmetin Y = 11.268 — 0.15616 X; — 1.78018 X, + 0.00076042 X;2 — 0.0211333 X; X5 + 1.33133 X2

Naringenin Y = 3.07087 — 0.0534309 X; — 0.270552 X, + 0.000324066 X;2 — 0.0119667 X1 X, + 0.548494 X,

Note: TPC = Total polyphenol content; Y = TPC (mg GAE/100 g powder) or metabolite (mg/100 g powder);
X = inlet temperature (°C); X, = maltodextrin ratio per gram of extract.

Table 5 shows the values of the optimal spray-drying predicted conditions as well as
the optimal predicted value for TPC and each individual polyphenol microencapsulate
according to the canonical analysis.
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Table 5. Spray-drying predicted conditions to obtain an optimal predicted concentration of microen-
capsulated metabolites of a Habanero pepper extract.

Spray-Drying Conditions

Optimal Response

Metabolite M:E IT (mg/100 g Powder)
(wlw) (@]
TPC 0.8:1 148 8.42 *
Protocatechuic 0.8:1 109 26.97
acid
Coumaric acid 0.8:1 92 2.68
Rutin 0.8:1 92 18.01
Diosmetin 0.8:1 148 1.74
Naringenin 0.8:1 148 0.98

Note: IT = Inlet temperature; M:E = maltodextrin gram ratio per 1 g of extract; w/w = weight/weight; * mg Gallic
acid equivalent/100 g powder.

The effect of the temperature (p > 0.05) and maltodextrin ratio (p < 0.05) interaction
on TPC can be seen in Figure 2a, where the maxima response is obtained for two different
ranges. The first used a maltodextrin (DE20):Habanero pepper extract ratio above 2.5:1
with a temperature lower than 120 °C, and the second was achieved with a maltodextrin
ratio lower than 1.5:1 w/w (M:E) and a temperature higher than 40 °C. In this way, the
modeling had maxima and minima behaviors.

Protocatechuic acid (Figure 2c) as a variable dependent of the inlet temperature
and ratio of maltodextrin for microencapsulation presented a similar behavior to TPC
(Figure 2a), where the surface response plot had maximum(red color zone) and minimum
(blue color zone) behaviors. Only the maltodextrin ratio presented an effect (p < 0.05) on
the Protocatechuic acid and TPC microencapsulates.

Coumaric acid (Figure 2e), Rutin (Figure 2g), Diosmetin (Figure 2i), and Naringenin
(Figure 2f) presented a plot of minima where the central zone (blue color) represented the
lowest concentration values of microencapsulated metabolites and a zone of maximum re-
sponse (red color) where the highest concentration values of microencapsulated metabolites
were obtained.

For the concentration of Coumaric acid, the maltodextrin ratio (p < 0.05) and tem-
perature (p < 0.05) showed effects on the microencapsulated Habanero pepper extract;
in contrast, their interaction (p-value > 0.05) did not present effects. Meanwhile, for the
concentration of Rutin, Diosmetin, and Naringenin, the interaction of both factors did show
an effect (p < 0.05).

3.2.5. Capsaicinoids Content in the Microencapsulated

During the optimization of the spray-drying conditions of the Habanero pepper extract,
microcapsules were analyzed to determine the Capsaicinoid content.

The concentrations of capsaicin, Dihydrocapsaicin, and total Capsaicinoids, as well as
the pungency reported in Scoville Heat Units (SHU) of the Habanero pepper extract prior
to the microencapsulation, are shown in Table 6.
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Figure 2. Response surface of (a) TPC = total polyphenol content; (c¢) Protocatechuic acid; (e) Coumaric
acid; (g) Rutin; (i) Diosmetin; (k) Naringenin; and contour plots of (b) total phenolic content;
(d) Protocatechuic acid; (f) Coumaric acid; (h) Rutin; (j) Diosmetin; and (1) Naringenin with
factors of input inlet temperature and maltodextrin ratio; + indicates the response variable
optimal value.
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Table 6. Capsaicinoids content and Scoville Heat Units of Habanero pepper extract (Capsicum
chinense Jacq.).

Sample CP* DC* TC* SHU

Habanero pepper extract 7.77 £ 0.02 1.18 £ 0.02 8.95 £ 0.04 134,280 4= 38.00

Note: CP = Capsaicin; DC = Dihydrocapsaicin; TC = total Capsaicinoids; SHU = Scoville Heat Units; values are
means £ SD (n = 3); * mg/g dry matter.

According to the complete experimental design data (Table S3), concentrations of cap-
saicin and total Capsaicinoids were adjusted (p < 0.05) to a second-order model where only
the latter presented an R? > 70 (Table 7). The prediction equations for each response vari-
able were also obtained according to the regression coefficients of the multiple regression
analysis obtained with ANOVA (Table 54).

Table 7. Results of multiple regression analysis of Habanero pepper extract Capsaicinoids microen-
capsulated by spray drying.

Metabolite p-Value R? Equation

Y = —1.43601 + 0.0292452 X; + 0.219263 X, —
0.000132814 X;2 + 0.000833333 X; Xp — 0.142499 X,2

Y = —1.15088 + 0.0265272 X; + 0.119397 X, —
0.000122189 X12 — 0.117499 X1 X, + 0.000916667 X5?
Note: CP = Capsaicin; TC = total Capsaicinoids; Y = metabolite mg/g powder; X; = inlet temperature (°C);
X, = maltodextrin ratio per gram of extract.

cp 0.0000 67.79

TC 0.0000 76.63

Optimal conditions were established at 113.6 °C (IT) with a 1:1 w/w ratio (M:E),
according to canonical analysis, and predicted optimum values of PW of 0.35 mg/g and
of 0.39 mg/g for capsaicin and total Capsaicinoids, respectively, at 112.1 °C (IT) with a
0.9:1 w/w ratio (M:E).

The response surface and the contour plot (Figure 3) for the data obtained from mi-
croencapsulated capsaicin concentrations showed a behavior of maxima where the central zone
in red color represented the maxima concentration of capsaicin; whereas, the blue zone showed
the conditions by spray drying where the concentration would be minimal.

CP (mg/g Polvo) r
- 0.0 - r i
CP (mg/g Polvo
02 o1 g2 {007 T
02 s I 0.1
04 — 03 3 02
4 - 0.3
w
=

Capsaicin (CP)

S

1 MERatio (wiw)

60 70 80 90 100 110 120 130 140 150 160 170
Temperature (°C)

100
Temperature (°C)

Figure 3. Capsaicinoids content response surface (a) and contour plot (b) with factors of input inlet
temperature and maltodextrin ratio.

The behavior of the total Capsaicinoids content was similar to capsaicin (Figure S3).

The maltodextrin gram ratio per 1 g of Habanero pepper extract presented a significant
effect (p < 0.05) on the concentration of microencapsulated capsaicin and total Capsaicinoids
of the extract; meanwhile, the temperature showed an effect (p < 0.05) only on the first.
Relatedly, the interaction of the main factors did not show an effect on both response
variables (Table S4).
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3.2.6. Model Validation for Antioxidant Capacity and Total Polyphenol Content

For the validation of the antioxidant capacity and the total content of polyphenols,
mathematical models obtained by the response surface model, an inlet temperature of
148 °C, and a maltodextrin gram ratio per 1 g of Habanero pepper extract of 0.8:1 (w/w)
were implemented (Table 8).

Table 8. Results of the validation experiment for antioxidant capacity and total polyphenol content;
comparison with predicted values.

Response Variable Experimental * Predicted * Err(()z/l){ate
.. . 38.84 £+ 0.22% . o
Antioxidant capacity Inhibition 33.27% Inhibition 16.6
6.64 = 0.08 mg
1re GAE/100 g PW 8.41 mg GAE/100 g PW 21.04

Note: TPC = Total polyphenol content; GAE = Gallic acid equivalent; PW = powder; values are means & SD
(n = 3); * microencapsulation condition 148 °C inlet temperature and 0.8:1 w/w ratio (maltodextrin:Habanero
pepper extract).

The validation experiment showed a value of antioxidant capacity of 38.84 £ 0.22%
inhibition, where the predicted value was 33.27% inhibition; thus, the equation can be
considered valid to predict this behavior of the microencapsulation process as a function of
inlet temperature and the maltodextrin ratio for each gram of Habanero pepper extract.

Regarding the validation of the total polyphenol content, a value of 6.64 & 0.08 mg
GAE/100 g powder was obtained; whereas, the mathematical model predicted an 8.41 mg
GAE/100 g powder value with an inlet temperature of 148 °C and a maltodextrin ratio of
0.8:1 (w/w) for each gram of Habanero pepper extract. An error rate of 21.04% was calculated.

Table S5 shows the polyphenol profile error rate from the validation experiment. Only
Coumaric acid showed an error rate less than 25%; whereas, Protocatechuic acid, Rutin,
Diosmetin, and Naringenin showed error rates above 40%. Therefore, only the model ob-
tained for Coumaric acid was considered adequate for the prediction of the microencapsulated
concentration by spray drying using maltodextrin as the encapsulating agent.

The mathematical model validation results obtained for the prediction of capsaicin
and total Capsaicinoids concentration are shown in Table S6. In both cases, the error
percentage was above 25%; thus, the prediction equations were not considered adequate
for the prediction of the microencapsulation of these metabolites (Capsaicin and total
Capsaicinoids) of a Habanero pepper extract by spray drying.

3.3. Physicochemical Characteristics of the Microencapsulated Habanero Pepper Extract
3.3.1. Microcapsules” Micrographs

Figure 4 shows micrographs of the shape of non-processed and spray-dried maltodex-
trin (DE20). Figure 4a represents particles with spherical shapes, with a smooth surface,
and without cracks of maltodextrin (DE20) without the spray-drying process.

On the other hand, Figure 4b shows spray-dried maltodextrin (DE20) without the
Habanero pepper extract. The morphology of the particles was spherical with a rough
appearance, no cracks, and was smaller compared to the non-processed maltodextrin due
to the presence of concavities on the surface.

The microcapsules obtained with a 1:1 ratio (maltodextrin: Habanero pepper extract,
w/w) at a temperature of 100 °C (Figure 4c) had a less spherical and rough morphology;
meanwhile, the microcapsules obtained with a 2:1 ratio (p/p) at a temperature of 140 °C
(Figure 4d) showed spherical morphology and a greater number of concavities, presenting
a rougher surface.
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Figure 4. Microscopic images magnified at 2500 ; (a) maltodextrin (DE20) without thermal process;
(b) maltodextrin with thermal process at 140 °C; (c) microencapsulated Habanero pepper extract with
ratio 1:1 w/w (M:E) at 100 °C; (d) 2:1 w/w ratio (M:E) at 140 °C.

3.3.2. FTIR Analysis of the Microencapsulated Habanero Pepper Extract

Extract and microencapsulate FTIR analysis showed characteristic peaks related to
maltodextrin and phenolic compounds.

The infrared spectra of the extracts (Figure 5a) showed a broad band between 3368
and 3265 cm™! related to the hydroxyl groups from residuals of water molecules and
polyphenols, in addition to absorptions at 2953 cm 1, 2931 cm ™!, and 2855 cm ! related
to the stretching of C—H bonds. Extracts also exhibited absorptions at 1635 cm~! (C=C
ethylenic stretching) and 1517 cm ! assigned to phenyl ring bending. At 1451 cm~! and
1405 cm~!, CH bending deformation in aromatic and aliphatic compounds was observed;
meanwhile, C-O-C/C-O-H was observed as an intense peak at 1015 cm 1. At 1280 cm !,
phenyl C-H rocking vibrations were also observed. Many of these absorptions have been
reported in cinnamon infusion where aromatic compounds with phenyl bonds, as those
shown with polyphenols, were found [43].
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Figure 5. Infrared spectra of the Habanero pepper extract (a); sprayed maltodextrin at 140 °C without
Habanero pepper extract, MO (b); Habanero pepper extract microencapsulated at 140 °C with a
1:1 (w/w) ratio of maltodextrin:extract, M2 (c); and Habanero pepper extract microencapsulated at
140 °C with a 2:1 (w/w) ratio of maltodextrin:extract, M4 (d).

Pulverized maltodextrin (Figure 5b) showed similar absorptions with OH stretch
peaks at 3286 cm ! whereas, at 2923 cm ! and 2885 cm ™!, absorptions related to CH; and
CH stretching appeared. Pristine maltodextrin also exhibited a peak at 1642 cm ™!, which
has been related to hydroxyl bending (in plane) and, by some authors, to free carboxylic
groups [44]. In Figure 5b, at 1411 and 1360 cm ™!, bending CH, was observed. Finally, at
1147 cm 1, 1077 cm 1, and 1015 cm !, C-O-C stretching modes were observed.

Microencapsulates with high (M2) and low (M4) extract concentrations are shown in
Figure 5¢,d, respectively. In the M2 sample, infrared absorptions at 3274 cm ™! correspond-
ing to hydroxyl functional groups were observed; whereas, additional C-H absorptions
were observed at 2932 cm™! (from extract), 2907, 2887 cm~! (from maltodextrin), and
2841 cm~ L. At 1645 cm ™!, a broad band was observed which can be related to both extracts
and maltodextrin. Aromatic C-C vibrations were observed at 1450 cm ! as a small shoulder,
and peaks at 1410 cm ! and 1355 cm ™! from maltodextrin were also seen. Possible phenyl
CH rocking from extracts was observed at 1265 cm~!. Maltodextrin was notorious at
1147 cm~1, 1078 cm™1, and 1018 cm™!, where the last peak also included those from
the extracts.
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Finally, at 930 cm~! and 847 cm ™!, absorptions corresponding to the maltodextrin
were also observed. In M4 samples, similar peaks were observed except for a more intense
absorption at 1645 cm ™!, indicating the higher maltodextrin:extract ratio used. Overall,
these results confirmed that the spray-drying technique used in this study does not affect
the structure of the maltodextrin and provided evidence of the presence of the extracts in
agreement with previous studies [45].

3.3.3. Color of Microencapsulates of Habanero Pepper Extract

The color parameters L*, a*, b*, Hue®, and Chroma were analyzed for each microen-
capsulate resulting from the experimental design as well as in the microencapsulation
obtained with the conditions of the mathematical model validation for antioxidant capacity
and total polyphenol content. The results are shown in Table 9.

Microencapsulates corresponding to experiments four and twelve presented the high-
est luminosity. According to Li et al. [32], at a higher concentration of the encapsulating
agent, an increase in the luminosity of the microencapsulates is observed. This agrees with
the data obtained in the present work where the ratio of maltodextrin:extract was 2:1 and
2.2:1 w/w (M:E), respectively, in comparison to the microencapsulates from experiment one
that presented the lower luminosity with a 1:1 w/w (maltodextrin:extract) ratio.

The color parameters a* and b* in the microencapsulates presented positive val-
ues, denoting a reddish (+a*) and yellowish (+b*) trend, respectively. According to De-
veoglu et al. [46], this phenomenon was explained due to the presence of metabolites of
interest, such as phenolic compounds, mainly flavonoids (e.g., kaempferol, luteolin, etc.),
flavones (e.g., hesperidin), and flavonols (e.g., quercetin), that were also identified (Table S7)
in both the extract and microencapsulates of the Habanero pepper (Capsicum chinense Jacq.).
On the other hand, the parameter a* presented a small tendency towards positive values;
thus, the absence of a reddish color in the microencapsulates was also an indicator of a low
concentration of anthocyanins, phenolic compounds that provide a red color to the plants,
fruits, and leaves. The low concentrations of anthocyanins in the microencapsulates could
be due to their sensitivity to thermal processes and practically the absence in immature
Habanero peppers [47,48].

Table 9. Values of antioxidant capacity and total polyphenol content obtained from the 22 CCD for
the spray-drying condition optimization of Habanero pepper extract.

Factors

Response Variables

Color Parameters

Coded Values Real Values (CIELAB) Graphic
Exp Representation **
IT EM " % * °
X1 Xz €0) (wlw) L a b Hue Chroma
1 -1 -1 100 1:1 82.83+0.19° 1.67 +£0.58 19.23 +0.05] 1.48 £0.002 19.31 +0.057
2 1 -1 140 1:1 86.53 4+ 0.21 ¢ 0.67 + 0.5 9e 1327 £ 0.05P 1.52 £0.00¢ 13.28 + 0.05°
3 -1 1 100 2:1 87.67 +0.12f 0.63 4 0.5 <4 15.33 £ 0.12 8 1.534+0.00 ¢ 15.35 +0.13 8
4 1 1 140 2:1 88.40 +£0.00 P 0.50 +0.00° 12.13 +0.052 1.53 40.00¢ 12.14 +0.052
5 0 0 120 151 88.17 £ 0.12 8 0.57 % 0.05 b¢ 13.77 £ 0.05 ¢ 1.53 +0.004 13.78 £ 0.05¢
6 0 0 120 151 87.07 £0.21°¢ 0.73 £ 0.05 ¢ 14.80 + 0.00 f 1.52 £0.00¢ 14.82 +0.00 f
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Table 9. Cont.

Factors Response Variables
Color Parameters
Coded Values Real Values (CIELAB) Graphic
Exp Representation **
IT EM .
X1 Xz €0) (whw) L* a* b* Hue Chroma
7 0 0 120 151 87.40 4 0.08 f 0.70 4 0.00 9 14.40 +0.08 ¢ 1.5240.00°¢ 14.42 4 0.08 4
8 0 0 120 151 87.73 £ 0.058 0.57 = 0.05 bc 14.30 + 0.00 4 1.53 + 0.00 de 14.31 + 0.00 4
9 —1.414 0 92 1.5:1 87.03 + 0.66 0.53 +0.05" 14.90 + 0.08 1.54 4 0.00 14.91 +0.08
10 1414 0 148  1.5:1 86.93 + 0.12 de 0.50 + 0.00 ® 14.63 £ 0.09 © 154 +0.00f 14.64 4 0.09 ©
11 0 —1414 120 081 85.03 +0.19 0.97 £0.05f 17.70 £ 0.08 1 1.52 4+ 0.00° 17.73 £ 0.08 1
12 0 1.414 120 22:1 8817 4 0.058" 0.33 +0.052 13.20 + 0.00® 1.55 4 0.00 8 13.20 + 0.00®
13+ - - 148  08:1 83.93 +£0.17P 1.00 £ 0.00 f 17.53 + 0.05h 1.51 4+ 0.00° 17.56 + 0.05 1

Note: Exp = Experiment; IT = inlet temperature; M:E = ratio of maltodextrin per gram of Habanero pepper
extract; w/w = weight/weight; * validation experiment; values are means & SD (n = 3). Different letters in the
same column indicate a significant statistical difference; ** the CIELAB scale color parameters conversion to
images was performed with the e-paint converter: https:/ /www.e-paint.co.uk/convert-lab.asp (accessed on 20
November 2022).

3.3.4. Moisture of Microencapsulated Habanero Pepper Extract

The microencapsulation obtained at an inlet temperature of 140 °C with a maltodextrin
ratio of 1:1 (w/w) presented the lowest moisture (2.07 £ 0.01%). In general, all the microen-
capsulates obtained (Table 10), with a temperature equal or greater than 140 °C, presented
a low moisture content (<4%); whereas, the microencapsulation process under 100 °C and
a 1:1 (w/w) maltodextrin ratio presented the highest moisture percentage (6.90 £ 0.40%).
This behavior was described by Tolun et al. [38], where phenolic compounds extracted from
a grape pomace were microencapsulated at different inlet temperatures and encapsulating
agents (maltodextrin, arabic gum, etc.) ratios, finding that in microencapsulates (powders), the
higher the temperature, the lower the moisture due to a greater water loss during spray drying.

Microencapsulates with 4% moisture or less have a positive prognosis in terms of shelf
life due to a better stability of the structure of the microcapsule that efficiently protects the
metabolites inside [49]. In this way, the conditions used for the microencapsulates with the
aforementioned moisture percentage are viable to protect the polyphenols and antioxidant
capacity of the Habanero pepper extract during storage.
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Table 10. Microencapsulate moisture of the experimental design for the optimization of the spray-
drying conditions of a Habanero pepper extract.

Spray-Drying Conditions

Exp IT E:M M()(I;t;l e
O (wlw)

1 100 1:1 6.90 £ 0.40 f
2 140 1:1 2.07 £0.012
3 100 2:1 591 +0.01°
4 140 2:1 2.53 4 0.00 2P
5 120 1.5:1 352 +0.02¢
6 120 1.5:1 551 +0.12¢
7 120 1.5:1 46240314
8 120 1.5:1 3.71+£0.00°¢
9 92 1.5:1 4.36 4 0.06 4
10 148 1.5:1 2.77 £0.14°
11 120 0.8:1 3.61+£0.09°¢
12 148 2.2:1 3.7440.16°¢

13+ 148 0.8:1 3.75 4 0.06 €

Note: Exp = Experiment; IT = inlet temperature; M:E = maltodextrin ratio per gram of Habanero pepper extract;
w/w = weight/weight; + validation experiment; values are means & SD (n = 3). Different letters in the same
column indicate a significant statistical difference.

4. Discussion

The microencapsulation of volatiles present in the aroma [23] and oleoresins, rich in
capsaicin [21,50] and carotenoids [25], of Capsicum using spray-drying technology has been
reported in the literature. The implementation of different encapsulating agents, such as
sodium caseinate, acetylated wheat starch, whey protein, gum arabic, and maltodextrin,
has been also conducted with the sole objective to assess the microencapsulation conditions
for preservation and to increase shelf life of these compounds of interest. However, no
information has been found on the optimization of the microencapsulation of metabolites
such as polyphenols and their antioxidant capacity in Capsicum methanolic extracts.

In the present study, observations revealed that the antioxidant capacity, total polyphe-
nol content, and concentration of microencapsulated individual polyphenols were lower
when compared to those of the Habanero pepper extract. This could be due to the
temperature-dependent nature of the spray-drying process wherein the presence of oxy-
gen and light can promote the degradation of metabolites in a solution (comprising the
encapsulating agent and extract), even if the mixture is exposed to these conditions for a
short duration [25]. Despite this, any significant effect of temperature on the individual
and total polyphenol content was not found as well as the antioxidant capacity of the
microencapsulated extract obtained from the Habanero pepper (Capsicum chinense Jacq.).
However, it has been reported that the drying temperature can affect the concentration
of microencapsulated polyphenols derived from extracts of different fruits. For instance,
when a grape pomace extract was microencapsulated using maltodextrin (DE20) as the
encapsulating agent (a 1:1 w/v ratio) at inlet temperatures ranging from 120 °C to 160 °C,
a decrease in the concentration of microencapsulated phenolic compounds was observed
compared to the total phenolic compounds of the extract due to the increase in the drying
temperature [38]. This trend was also observed in the work of Lingua et al. [49] wherein
polyphenols from a blueberry extract were microencapsulated using maltodextrin (DE14.7)
with an inlet temperature of 160 °C, resulting in a 20% loss. Therefore, spray drying can
lead to the degradation of phenolic compounds due to drying temperatures, which can
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decrease the antioxidant capacity of the encapsulation as these bioactive compounds are
mainly responsible for this property in plant extracts [51].

The ratio of the encapsulating agent had a significant effect on the total polyphenol
content, Coumaric acid, and antioxidant capacity of the microencapsulates of the Habanero
pepper extract. This effect on the concentration of microencapsulated bioactive compounds
has already been reported in other studies [33,38]. For example, a maltodextrin concentra-
tion twice greater in relation to the mass of the fruit extract (Vitis vinifera L. and Manilkara
zapota) resulted in a 10 to 50% reduction in the total polyphenol concentration. Corréa-Filho
et al. [26] also reported that an increase in the encapsulating agent (gum arabic or inulin) led
to a decrease of up to 70% in the antioxidant capacity of the microencapsulates compared
to the antioxidant capacity of the extract when spray drying an ethanolic extract of Solanum
lycopersicum L. The observed pattern can be attributed to the fact that encapsulating agents
do not contribute to the antioxidant capacity, and the escalation in the ratio of encapsulating
agent results in the dispersion of metabolites of the extract, owing to the increase in total
solids concentration. [27].

Among the different optimized individual polyphenols analyzed in the microencapsu-
lates obtained under optimal spray-drying conditions (IT = 148 °C, M:E = 0.8:1 w/w), Rutin
presented an optimized concentration of 4.1 4= 0.02 mg/100 g PW. This metabolite belongs
to the subfamily of glycosylated flavonols, which are widely distributed among plants and
synthesized through the phenylpropanoid pathway [52]. Like many phenolic compounds,
Rutin has a wide variety of biological properties. For example, it can promote apoptosis
of human cancer cells, such as breast cancer (MDA-MB-231), leukemia (K562), and lung
carcinoma, among others. It has also been found to eradicate colon tumor cells in animal
models (SW480) [53,54]. Additionally, Rutin has been used as a treatment in rats with
streptozotocin-induced diabetes, where the Rutin-treated group had lower blood glucose
when compared to the untreated group [54] due to the antioxidant and anti-inflammatory
capacities of this metabolite [55,56].

Recently, Rutin has been proven to be effective against SARS-CoV-2 by inhibiting its
replication thanks to its affinity with the virus [57]. However, despite its wide variety of
biological properties, this polyphenol has low bioavailability when consumed orally due to
its low solubility. Therefore, encapsulation using polysaccharides, such as maltodextrin
and -cyclodextrin, is proposed due to the ability to develop hydrogen bonds with this
phenolic compound, which improves its solubility and therefore its bioavailability in the
small intestine. The shelf life is also increased due to the stabilization of the metabolite. This
metabolite represents an option as an ingredient for the formulation of drugs or functional
foods [53,56,58,59].

To use these microencapsulates as functional ingredients, the inclusion of the bioactive
compound in the encapsulating agent must be confirmed as well as the presentation of
certain physicochemical characteristics that allow the preservation of the metabolite of
interest to benefit the final consumer from its bioactive properties [60,61]. In this work, the
use of FTIR confirmed the presence of phenolic compounds in the extract as well as their
inclusion in the microcapsules with observed peaks at 1600 and 1700 cm~! (C-C or C=C
polyphenol bonds) and 3600 and 3200 cm ™! (polyphenol-maltodextrin bonds, phenolic
hydroxy groups). Ferreira et al. [50] studied these characteristic bands where phenolic
compounds from Astrocaryum vulgare Mart. were microencapsulated with maltodextrin
(DE10) under spray-drying conditions of 100 °C (IT), an injection flow of 7.5 mL/min, and
a pressure of 6 bar. The FTIR spectra of the microcapsules showed a band at 3381 cm™!,
corresponding to the stretching vibrations of hydroxyl groups of phenolic compounds,
and peaks at 1624 cm~! that confirmed the presence of carbonyls (C=0). These peaks
(microcapsules) are similar to those of the encapsulating agent which overlapped the peaks
found in the spectrum of the extract. Sarabandi et al. [62] also reported a band in the region
defined between 2800 and 3700 cm ! due to the presence of hydrogen bonds formed by
the phenolic compounds of the eggplant extract with maltodextrin (DE18-20) used as an
encapsulating agent during spray drying (IT = 140 °C, feed flow 15 mL/min, 4.5 bar).
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Peaks between 900 and 1600 cm ™! related to phenolic compounds were also observed
with bands at 1618 cm ™!, corresponding to chlorogenic acid (1600-1685 cm™1), according
to Monje et al. [63]. The same peak was found in both the Habanero pepper extract and
the microencapsulates, which contained a high concentration of chlorogenic acid. In this
way, the FTIR analysis is a useful tool to confirm the presence of phenolic compounds in
Habanero pepper extracts and its binding (encapsulation) to maltodextrin.

Another relevant parameter is the microcapsules final moisture at the end of the
spray-drying process as an important characteristic that could predict the stability and
shelf life of the product (powder). Moisture is also an indicator of the drying process; in
this way, an adequate moisture indicates that the inlet temperature selected for the spray-
drying process was correct. Therefore, it is expected that final moisture will be less than
6% [61] to achieve a longer shelf life and fewer degradations of the encapsulated bioactive
compounds. In this regard, the microcapsules obtained with the optimized conditions
(IT = 148 °C; M:E = 0.8 w/w) presented a final moisture of 3.75 + 0.06%, an adequate
value. The moisture values of the microencapsulates are consistent with that reported by
Lingua et al. [49], where the effect of maltodextrin (DE 14.7) as an encapsulating agent
(20% and 30%) in an ethanolic extract of blueberry rich in polyphenols was assessed at
different inlet temperatures (140 °C and 160 °C). It was found that as the temperature and
concentration of the encapsulating agent increase, the moisture decreases thanks to a heat
transfer increased during the atomization of the solution besides the increasing solids in
the injected solution. In this study, a microcapsule final moisture below 4% was reported
with an inlet temperature of 160 °C using 30% maltodextrin; whereas, the microcapsules
obtained a final moisture close to 5% at 140 °C with the same percentage of encapsulating
agent. Tolun et al. [38] also observed that the final moisture decreased with an increasing
extract to maltodextrin ratio from 1:1 to 1:2 v/v if the temperatures were higher than
140 °C (160 °C and 180 °C) in microencapsulates where maltodextrin was used as the only
encapsulating agent, compared to the final moisture in microcapsules with a 1:2 v/v ratio
(Extract:maltodextrin) at temperatures of 120 °C and 140 °C, regardless of the dextrose
equivalent value (DE4-7, DE17-20). Finally, the morphology of the microcapsules was not
affected by temperature, although the sudden increase in temperature above the boiling
point of water generated a rapid loss of moisture, causing a shrinkage and formation of
a hollow structure with concavities in the surface. Due to the toothed morphology and
concavities observed, an undesirable and greater difficulty for reconstitution could develop.
This could be prevented by increasing the concentration of maltodextrin to avoid a rapid
loss of water during spray drying, obtaining more spherical and smooth structures, making
the microencapsulate suitable for the food industry, according to Zhang et al. [64].

5. Conclusions

The microencapsulation conditions, inlet temperature, and encapsulating agent ratio
of the Habanero pepper extract showed an effect on the antioxidant capacity, concentra-
tions of the individual and total polyphenols, as well as the concentrations of capsaicin
and total Capsaicinoids of the microencapsulated Habanero pepper (Capsicum chinense
Jacq.). The microencapsulates with the best microencapsulation conditions (IT = 148 °C;
M:E = 0.8 w/w) presented the highest antioxidant capacity (38.84 £ 0.22% inhibition), a high
concentration of polyphenols (6.64 &= 0.08 mg GAE/100 g PW), and the highest contraction
of secondary metabolites, such as Chlorogenic acid (42.67 £ 9.63 mg/100 g PW), Coumaric
acid (2.27 £+ 0.10 mg/100 g PW), Cinnamic acid (2.61 £ 0.01 mg/100 g PW), Quercetin
and Luteolin (1.56 £ 0.010 mg/100 g PW), and Ellagic acid (2.49 £ 0.02 mg/100 g PW);
considering the hydroxyl groups in their structure that develop hydrogen bonds with
maltodextrin, this all resulted in a high affinity. The microencapsulated Habanero pepper
extract obtained in this work was optimized to obtain the best antioxidant capacity and
the best content of bioactive compounds (optimized individual polyphenols), as well as
its adequate physicochemical characteristics (moisture, shape, and color), providing this
product the potential to be used as an ingredient for functional food development. It is
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recommended to carry out more experiments using different combinations of encapsulating
agents during the spray-drying process in order to compare and achieve a higher shelf
life, antioxidant capacity, and/or microencapsulated polyphenol concentration and to
assess the rate release of metabolites from microcapsules, as well as their bioactivity and
bioavailability during this process.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11041238/s1, Figure S1: Calibration curve for the determination
of the total polyphenol content by the Folin—Ciocalteu methodology; Figure S2: Chromatograms of
the polyphenol profile obtained by ultra-high pressure liquid chromatography (UPLC); A) 1. Gallic
acid, 2. Protocatechuic acid, 3. Catechin, 4. Chlorogenic acid, 5. Cinnamic acid, 6. Rutin, 7. Quercetin
and luteolin, 8. Kaempferol; B) 9. Vanillin, 10. Coumaric acid, 11. Ferulic acid, 12. Ellagic acid,
13. Naringenin, 14. Apigenin, 15. Diosmetin; C) 16. Vanillic Acid, 17. Diosmin and hesperidin, 18.
Neohesperidin; Figure S3: Total Capsaicinoids content response surface (a) and contour plot (b) by
factors of input inlet temperature and maltodextrin ratio. Table S1: ANOVA result of the antioxidant
capacity first-order model; Table S2: ANOVA result of the antioxidant capacity second-order model;
Table S3: Results of the microencapsulated Capsaicinoids of the complete experimental design for
the optimization of the spray-drying conditions of a Habanero pepper extract; Table S4: Model
for capsaicin and total Capsaicinoids as function input variables and analysis of variance; Table
S5: Results of the validation experiment for the microencapsulated polyphenol profile and their
comparison with the predicted values of the mathematical model; Table S6: Results of the validation
experiment for capsaicin and total Capsaicinoids content and their comparison with the predicted
values of the mathematical model; Table S7: Polyphenol profile of the Habanero pepper (Capsicum
chinense Jacq.) extract and microencapsulates by spray drying.
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