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Abstract: Heat release rate (HRR) is the principal fire characteristic of materials. There are three
known methods for the measurement of HRR (based on oxygen consumption, mass loss rate, and
combustion products temperature rise). The method based on oxygen consumption is considered
to be the reference. However, this method is expensive and for a large part of laboratories and
universities unavailable. The simplest method is based on combustion products’ temperature rise.
However, this method has a fundamental problem with the temperature dependence of the heat
capacity of combustion products and the thermal inertia of the measurement system. This problem has
been solved by training neural networks to predict molar heat capacity and the amount of substance
(chemical amount) flow rate of combustion products in the cone calorimeter exhaust duct. Data were
obtained for six different wood species: birch (Betula verrucosa Ehrh.), oak (Quercus robur L.) spruce
(Picea abies (L.) H. Karst.), locust (Robinia pseudoacacia L.), poplar (Populus nigra × P. maximowiczii L.),
and willow (Salix alba L.) woods at heat fluxes from 25 to 50 kW m−2 have been used for neural
network training. Data from three other wood species iroko (Milicia excelsa (Welw.) C.C. Berg),
pine (Pinus sylvestris L.), and paulownia (Paulownia tomentosa (Thunb.) Steud.) woods have been
used for testing of trained neural network. The average percentage ratio of the predicted to the
true value of HRR (during the test) has been 103.8%. In addition to that, some key average fire
characteristics of wood have been determined: critical heat flux 20.7 kW m−2, effective heat of
combustion 14.01 MJ kg−1, and the average value of molar heat capacity of combustion products
0.045 kJ mol−1 K−1.

Keywords: combustion products; fire hazard; heat capacity; heat release rate; neural network;
prediction; wood

1. Introduction

According to [1], the heat release rate (HRR) is the most important fire characteristic
that quantifies the fire hazard of materials. HRR expresses the amount of heat (in kJ or MJ)
released from one square meter of material in one second. HRR is usually expressed in units
of kW m−2, which can be converted to a basic SI unit (kJ m−2 s−1). From HRR, it is possible
to directly determine or predict virtually all the fire characteristics of materials. Among the
basic fire characteristics precisely determined from HRR are mainly total heat release (THR),
effective heat of combustion (EHC), maximum average rate of heat emission (MARHE),
and fire growth rate index (FIGRA). In addition to the mentioned fire characteristics, almost
all other fire characteristics can be estimated from the HRR, especially reaction to fire class,
flashover category, flame spread rate, combustion product yields, and many others.

THR is calculated according to Equation (1) and EHC according to Equation (2),

THR =
∫ tend

ts
HRR(t)dt (1)
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EHC =
THR
TML

(2)

where THR is total heat release per unit surface area (kJ m−2 or MJ m−2), ts is the start
time of test (s)—the moment of ignition is usually considered as the test start time, tend
is test end time (s), HRR(t) is heat release rate at time t (kW m−2), EHC is effective heat
of combustion (kJ kg−1) and TML is total mass loss of the sample per unit surface area
(kg m−2). Equations (1) and (2) are generally known.

MARHE is considered to be the maximum value of the average rate of heat emission.
The average rate of heat emission and fire growth rate index is computed according to
Equations (3) and (4), respectively,

ARHEi =
∑tend

i=ts

HRR(ti)+HRR(ti−1)
2 ∆t

ti − ts
(3)

FIGRA = maxtend
i=ts

HRR
ti

(4)

where ARHEi is the average rate of heat emission (kW m−2) at time ti (i denote the summa-
tion index and it usually starts at the moment of ignition and ends at the end of the test), ∆t
is the time increment (s) and FIGRA is fire growth rate index (kW m−2 s−1). Equation (3) is
given, e.g., in [2,3]. FIGRA was defined in [4]. The analogy of Equation (4) can be found,
for example, in [5]. However, various scientific papers and technical standards present
different alternatives for calculating the FIGRA parameter. A detailed procedure for calcu-
lating FIGRA by one widely accepted method is given, e.g., EN 13823:2020 + A1:2022 [5]. A
more detailed overview of MARHE and FIGRA parameters and their practical applications
can be found, e.g., in [6–9].

The method of estimating other fire characteristics from the HRR is described in the fol-
lowing scientific works [10] (prediction of reaction to fire class), [11,12] (flashover category
prediction), [13,14] (flame spread rate prediction) and [15,16] (prediction of combustion
products, mainly carbon monoxide yield from released heat). One of the few significant fire
characteristics that cannot be estimated from the HRR is initiation characteristics (mainly
critical heat flux and ignition temperature) and fire resistance of construction. Nevertheless,
a certain relationship exists between the initiation characteristics and the HRR. For example,
verification method C/VM2:2014 [17] uses an HRR of 50 kW m−2 as a criterion for flame
combustion (the moment when the HRR reaches the value of 50 kW m−2 is considered
as flame ignition). Initiation characteristics are discussed in more detail in the following
scientific works [18–23].

Currently, there are three methods of measuring HRR. The first method is based on
knowledge published by Thornton in 1917 [24] and improved by Huggett in 1980 [25].
The cited scientific works show that during the perfect combustion of most organic sub-
stances (gaseous, liquid, and solid except metals) 13.1 ± 0.7 kJ of heat is released per
gram of oxygen consumed. This method is considered the most accurate (reference).
Its only disadvantage is the excessive cost (given mainly by the price of the analyzer
and the costs of pre-treatment of the combustion gases before the analyses). For this
reason, this method of measurement is unavailable for some universities and research
institutes. This problem mainly concerns wood science. Research in wood science is often
focused on applications for which it is essential to improve only some properties of wood
(e.g., mechanical properties, resistance to biological factors, preparation of transparent
wood, etc.), while the other properties (e.g., fire characteristics) remain preserved or at least
with no significant deterioration. In these areas of wood science, fire characteristics repre-
sent only a secondary issue, and it is often necessary to select those that did not significantly
worsen the fire characteristics of the modified material. Creating a less expensive method
for measuring HRR would greatly facilitate research in the mentioned areas. Selected areas
of wood science, where fire characteristics are only of secondary importance, are described,
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e.g., in [26,27]. The burning products must be desiccated (moisture free) before entering
the combustion product analyzer. Calcium sulfate (CaSO4) is the most common desiccator
used, with cobalt(II) chloride (CoCl2) used as a moisture indicator, which according to [28]
is carcinogenic. The replacement of this method should, at least in a certain percentage of
cases, lead to a reduction in the number of carcinogenic substances used.

In addition, the second and third methods of measuring HRR are common today. The
second method is based on the calculation of the HRR from the mass loss rate (MLR) of the
investigated material, according to Equation (5),

HRR = EHC MLR (5)

where MLR is the mass loss rate of an investigated sample (kg s−1) and HRR is the heat
release rate in (kW = kJ s−1).

The drawback of this method lies in the fact that the EHC of substances and mate-
rials that burn heterogeneously (e.g., wood) and mixtures of substances (e.g., oil and oil
distillates) change with time. More details about this issue can be found in a scientific
paper [29].

The third method is based on the calculation of the HRR from the temperature of the
combustion products, according to Equation (6),

HRR = ncp(tc − ta) (6)

where HRR is the heat release rate (kW m−2), n is the chemical amount flow rate of the
combustion products, herein after only chemical amount flow rate (mol s−1), cp is the molar
heat capacity of combustion products at constant pressure, hereinafter only molar heat
capacity (J mol−1 K−1), tc is the temperature of the combustion products (K) and ta is the
ambient temperature (K). Equation (6) is self-evident (the proof follows from the analysis
of the units). Various alternatives of this equation can be found in almost all university
textbooks of physics, physical chemistry, or thermochemistry.

This method is significantly less demanding on technical equipment than the reference
method. However, this method also has three disadvantages that complicate the mea-
surement of the HRR. The first disadvantage is that the exact chemical composition of the
combustion products (without the use of a combustion products analyzer) is usually not
known and therefore the determination of the heat capacity in Equation (6) is problematic.
The second and third disadvantages are the dependence of the molar heat capacity and the
chemical amount flow rate on the temperature.

The results of the scientific work [30] show that when wood and wood-based materials
are burned in the air, the products of combustion are mostly nitrogen (in fact, it is not a
product of combustion, but it is a component of the air, which from a larger part of it passes
into combustion products without changing the chemical composition), carbon dioxide and
water vapor (other components of wood combustion products are practically negligible
from the point of view of the molar heat capacity of the resulting mixture). The dependence
of the molar heat capacity of nitrogen, carbon dioxide and water vapor on temperature
(within the range of 300 to 1200 K) is shown in Figure 1.
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Figure 1. Dependence of molar heat capacity (HC) of nitrogen, carbon dioxide, and water vapor on
temperature (T) in the interval from 300 to 1200 K at constant pressure (the figure was derived from
data adapted with permission from. Ref. [31]. 2015, Taylor and Francis Group LLC (Books) US).

The combustion products during a cone calorimeter test can be very well approximated
by an ideal gas model (relatively low pressure, typically 98 to 101 kPa, and relatively high
temperature, typically 300 to 400 K). The chemical amount flow rate is then calculated from
the Equation of state of an ideal gas (7),

pV = nRtc (7)

where p is the combustion products pressure (Pa), V is the combustion products vol-
ume flow rate (m3 s−1), and R is the gas constant (J mol−1 K−1). Therefore, chemical
amount flow rate of combustion products can be calculated from their volume flow rate,
pressure, and temperature, according to Equation (7). The differences between values
calculated according to the state of an ideal gas (in the above-mentioned range of pres-
sure and temperature) and according to the Van der Waals equation for real gas are deep
below 1%. Details regarding the chemical amount of gas calculation from volume, pres-
sure, and temperature and coefficients for the Van der Waals equation of real gas can be
found, e.g., in [32].

This study aims to design and train the neural network for high-accuracy prediction of
the chemical amount flow rate and molar heat capacity of wood combustion products in the
cone calorimeter exhaust duct from combustion products temperature rise and time after
ignition. Data obtained by the prediction allow HRR calculation according to Equation (6).
The second aim is to compute the average values of the chemical amount flow rate and
molar heat capacity of the combustion product and subsequently compare the accuracy of
HRR computed by Equation (6) from data predicted by the trained neural network and
from these average values.

The advantage of applying neural networks is obvious from the scope of the research.
The exact chemical composition of combustion products in the cone calorimeter exhaust
duct is unknown for all cases (there is no analyzer that determines all components of
combustion products). The molar heat capacity of the gas mixture (combustion products) is
dependent on the temperature. However, this dependence is different for each component.
Therefore, the neural network is an ideal mathematical model for the prediction of this
dependence on the gas mixture.
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2. Materials and Methods

The heat release rate (HRR) and the temperature of the combustion products were
measured together for nine wood species. Data from six tree species were used in the
training phase (this phase includes training, validation, and testing of the neural network)
and data from three tree species were used in the post-test phase of the trained neural
network. In the training phase, samples from three wood species with a thickness of 50 mm
were used:

− Black Locust (Robinia pseudoacacia L.), hereinafter locust wood;
− Hybrid Poplar J-105 (Populus nigra × P. maximowiczii L.), hereinafter poplar wood;
− White Willow (Salix alba L.), hereinafter willow wood.

In addition, three wood species with a thickness of 20 mm were used in the training
phase:

− Common Oak (Quercus robur L.), hereinafter oakwood;
− Norway Spruce (Picea abies (L.) H. Karst.), hereinafter spruce wood;
− White Birch (Betula verrucosa Ehrh.), hereafter birchwood.

For additional test (post-test phase) three species of wood were used:

− Iroko wood (Milicia excelsa (Welw.) C.C. Berg), hereinafter iroko wood (20 mm);
− Scots pine (Pinus sylvestris L.), hereinafter pinewood (20 mm);
− Paulownia tomentosa (Paulownia tomentosa (Thunb.) Steud.), hereinafter paulownia
wood (50 mm).

The basic characteristics of the examined wood samples are in Table 1. Before the test,
the wood samples were dried at a temperature of 103 ± 2 ◦C to a constant mass (0% water
content) and then conditioned in a desiccator at a temperature of 22 ± 1 ◦C for 72 h.

Table 1. Basic parameters of investigated woods.

Sample Density
(kg m−3) Thickness (mm) Water Content (% by Mass)

Locust wood 653 ± 24 50 ± 0.5 0
Poplar wood 306 ± 5 50 ± 0.5 0
Willow wood 367 ± 44 50 ± 0.5 0

Birchwood 580 ± 2 20 ± 0.5 0
Oakwood 637 ± 12 20 ± 0.5 0

Spruce wood 450 ± 9 20 ± 0.5 0
Iroko wood 622 ± 38 20 ± 0.5 0
Pinewood 457 ± 32 20 ± 0.5 0

Paulownia wood 293 ± 4 50 ± 0.5 0

Sign ± denotes standard deviation.

Combustion process of wood, like other organic polymers, depends on the sample
thickness. Consequently, the two most common sample thickness 20 and 50 mm was used
for investigation. This thickness is commonly used in the cone calorimeter test and lies in
the interval recommended by ISO 5660-1:2015 [33].

The HRR and the temperature of the combustion products were measured on a
cone calorimeter. Both the cone calorimeter and the test procedure and conditions were
according to ISO 5660-1:2015 [33]. The combustion products’ temperature and pressure
were measured by the NiCr-Ni thermocouple (K type), resp. capacitive pressure sensor
in the cone calorimeter exhaust duct during the test. The scheme of the cone calorimeter
(with the marking of the place of measurement of the combustion products’ temperature
with a thermocouple) is shown in Figure 2. The volume flow of combustion products in the
exhaust duct of the cone calorimeter was set to 24 ± 0.5 L s−1. Although the value of the
critical heat flux was not used for the training of the neural network, it was determined for
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a better characterization of the sample. The critical heat flux was determined from time to
initiation by the method according to [34].
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Figure 2. Scheme of the cone calorimeter with marked thermocouple position. 1: Load cell; 2: sample
holder; 3: sample; 4: spark igniter; 5: radiation shield; 6: cone heater; 7: hood; 8: combustion products
collection point; 9: thermocouple; 10: adjustable fan; 11: combustion products analyzer.

Locust, poplar, and willow wood samples (50 mm thickness) were measured at heat
fluxes of 25, 35, and 50 kW m−2, and birch, oak, and spruce wood samples (20 mm
thickness) were measured at heat fluxes of 30 and 50 kW m−2. Wood samples used in
the additional test phase were measured at the following heat fluxes: iroko (40 kW m−2),
pine (35 kW m−2), and paulownia (25 kW m−2). The tree species and heat fluxes for the
additional test were selected to critically verify the accuracy of the trained neural network.
Two exotic trees and one coniferous tree were chosen for the additional test, while in the
training phase, not a single exotic tree and only one coniferous tree were used. In the
additional test phase, a single, previously unapplied heat flux (40 kW m−2) was used.

Chemical amount flow rate of combustion products in the cone calorimeter exhaust
duct was calculated according to Equation (7) from combustion products’ temperature
and pressure. Molar heat capacity of combustion products was calculated according to
Equation (6) from HRR measured by the cone calorimeter and from temperature and
chemical amount flow rate of combustion products in the cone calorimeter exhaust duct.

A neural network for prediction of the chemical amount flow rate and molar heat
capacity (at constant pressure) has been designed in the MATLAB 2020b software (in
the Neural Network Toolbox environment). The structure of the used neural network
is shown in Figure 3. The two-layer (hidden layer with twenty sigmoid neurons and
an output layer with two linear neurons) feed-forward neural network was used. The
Levenberg–Marquardt training algorithm was used. A total of 5415 input data were applied
in the training phase, of which 4331 (80%) were used for training and 542 (10%) for both
validation and test. The structure of input data for neural network training and data
prediction in the trained neural network is shown in Table 2 and Figure 4. A total of
1083 data were used for the additional test.
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Figure 3. Structure of used neural network.

Table 2. Structure of input data for training and prediction by a trained neural network.

Input Data Output Data

Time after Ignition (s) Combustion Products
Temperature Rise (K)

Combustion Products Molar
Heat Capacity (kJ mol−1 K−1)

Combustion Products Chemical
Amount Flow Rate (mol s−1)

Value Value Value Value
. . . .
. . . .
. . . .
Value Value Value Value

Data input as 4-tuples without table header (table header is only for illustration). For training, 4-tuples are used
as input. For predicting the first 2-tuples (Input data) are used for trained neural network input and predicted
data are given as the second 2-tuples (Output data). Structure of data is obviously illustrated in Figure 4.
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Figure 4. Structure of used neural network together with data input and output structure (iN1 and
iN2 represents neurons in the input layer, hN1 to hN20 represents neurons in the hidden layer, oN1
and oN2 represent neurons in the output layer, iW1,1 to iW2,20 represents link weight between input
and hidden layer and oW1,1 to oW20,2 represents link weight between hidden and output layer).

Figure 4 illustrates structure of input and output data of the used neural network.
Figure 4 also illustrates structure and theory governing the neural network. The input data
together with desired output data are introduced to the neural network during the training
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phase. The link weights between input and hidden and between hidden and output layers
are set up during the training phase. Training algorithm and neuron activation function
were described above. In addition to that, trained neural network is available in the (S1 net)
file Supplementary Material. All information concerning the structure, algorithm, and
individual layers and all data used as input for the network training can be directly given
from the available network. More details concerning the data structure and neural network
theory can be found, e.g., in [35,36].

The HRR of wood samples used in the additional test phase was modeled in two
ways. In the first method, the time to initiation of the samples (within the interval of 1 to
1800 s) and corresponding rise in the temperature of the combustion products in the form
of 2-tuples following Table 2 and Figure 4 were used as the input data. Subsequently, the
2-tuples of combustion products’ molar heat capacity (in kJ mol−1 K−1) and combustion
products’ chemical amount flow rate (mol s−1) were predicted by the trained neural
network. Predicted data were used together with combustion products’ temperature rise to
HRR estimation by Equation (6). Value calculated by the Equation (6) was subsequently
multiplied by 113.122 constant. This constant considers the sample surface area (0.00884 m2)
and recalculates HRR per 1 m2. The results obtained by this model are further denoted as
NN_Model.

In the second method, the HRR was calculated from average values of combustion
products’ chemical amount flow rate and molar heat capacity and combustion products’
temperature rise according to Equation (6). The results obtained by the second method
are further denoted as nct_Model. The difference between NN_Model and nct_Model is
therefore that with NN_Model, the molar heat capacity of combustion products and their
chemical amount flow rate is predicted for each temperature of combustion products and
test time, while nct_Model calculates HRR from the average values of both molar heat
capacity and chemical amount flow rate of combustion products.

3. Results and Discussion

Even though the other fire characteristics (besides HRR and combustion products
temperature rise) were not used for prediction, or neural network training, for a better
characterization of woody plants, their main fire characteristics will also be listed. The
average values of the basic fire characteristics of woody plants used in the training phase of
the neural network are shown in Table 3. For comparison, the average value of effective heat
of combustion of wood and wood-based materials determined from the values published
in the scientific work [37] is 17.72 ± 0.87 MJ kg−1. The reason for the difference between
this value and the values in Table 3 is the fact that the effective heat of combustion in this
study and the cited scientific work were determined by different methods. In this scientific
study, the effective heat of combustion was determined from the consumption of oxygen on
a cone calorimeter, while in the cited scientific work [37], the effective heat of combustion
was determined from the increase in the temperature of water in the calorimetric vessel
in an adiabatic bomb calorimeter. It is generally known that the values of effective heat
of combustion determined by the adiabatic bomb calorimeter are generally higher than
the values determined by the cone calorimeter (the exception is liquids that burn almost
perfectly and show almost identical values with both methods). Similar values of effective
heat of combustion of wood as in Table 3 are presented in a scientific paper [38] (average
value 14.07 ± 0.70 MJ kg−1). Values in Table 3 and the values in the scientific work [38]
are very similar since in both cases a similar method of measuring the effective heat of
combustion was used. In the cited scientific work, the effective heat of combustion was
measured on the OSU Apparatus based on oxygen consumption. The increment of the
maximum average rate of heat emission and maximum value of HRR with heat flux is
generally known and it is in accordance with scientific works (e.g., Ref. [39]).

The dependence of the inverse value of ignition time on the heat flux is shown in
Figure 5. From this dependence, the value of the critical heat flux of the wood species used
in the training phase of the neural network was calculated using the method according
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to [34]. It follows from Figure 5 that wood (used in the training phase of the neural network)
shows a critical heat flux of 20.7 kW m−2. It should be noted that the critical heat flux
resulting from Figure 5 is only 15.7 kW m−2, but the method according to [34] recommends
dividing this value by the 0.76 constant (representing the heat loss).

Table 3. Average values of basic fire characteristics of locust, poplar, willow, birch, oak, and
spruce wood.

Heat Flux (kW m−2) TTI (s) MARHE (kW m−2) HRRmax (kW m−2) EHC (MJ kg−1)

25 53 ± 29 82.4 ± 5.8 167 ± 12 13.67 ± 1.35
30 48 ± 5 93.9 ± 15.4 181 ± 11 14.49 ± 0.71
35 26 ± 15 118.9 ± 4.4 211 ± 5 13.78 ± 1.15
50 16 ± 7 142.4 ± 13.2 240 ± 27 14.01 ± 1.81

TTI: Time to ignition; MARHE: maximum average rate of heat emission; HRRmax: maximum value of heat release
rate (kW m−2); EHC: effective heat of combustion (MJ m−2); sign ± denote standard deviation.
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Figure 5. Dependence of average inverse values of time to ignition (TTI) of locust, poplar, willow,
birch, oak, and spruce wood on the heat flux (HF).

The HRR and temperature rise of combustion products (above the ambient tempera-
ture) of locust, poplar and willow wood is shown in Figure 6. The HRR and temperature
rise of the combustion products of birch, oak, and spruce wood is shown in Figure 7. Data
in Figures 6 and 7 are normalized (the ratio of the current value of the heat release rate and
the increase in the temperature of the combustion products to the maximum recorded value
for each sample is given). It follows that the values on the graph of normalized values are
in the interval 0 to 1. Such data normalization shows interrelation between temperature
rise and heat release rate during the test time.

Samples with a thickness of 50 mm show, at the moment of initiation (corresponds
roughly to the first local maximum) approximately the same normalized values of the HRR
and the increase in the temperature of combustion products (Figure 6). After initiation
(until the end of the test), samples with a thickness of 50 mm show higher normalized
values of the temperature increase in combustion products than the HRR (Figure 6). This
phenomenon is caused by the thermal inertia of the test device (cone calorimeter). Samples
with a thickness of 20 mm show a different behavior (Figure 7). These samples show, at the
moment of initiation (corresponding approximately to the first local maximum in Figure 7),
significantly lower normalized values of the temperature rise of the combustion products
compared to the normalized values of the HRR. This fact is probably caused by the short
duration of intense flame burning right after initiation. Subsequently (after initiation),
the samples of spruce wood and oak wood at 50 kW m−2 (Figure 7) behave similarly
to the samples with a thickness of 50 mm (Figure 6), i.e., they show higher normalized
values of combustion products temperature increase than normalized values of HRR. A
different trend (Figure 7) is shown by samples of birch wood and oak wood at 30 kW m−2.
These samples show almost identical normalized values of HRR and temperature rise
of combustion products after initiation. These differences between the samples clearly
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demonstrate that determining the HRR by the temperature increase in the combustion
products and their average value of molar heat capacity would probably not achieve high
accuracy. Therefore, it would be more correct to use the molar heat capacity of combustion
products predicted for actual temperature by a trained neural network. To verify this
hypothesis, the HRR values calculated by NN_Model and nct_Model will be compared.
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Figure 6. Normalized values (actual value divided by maximum recorded value for each wood and
heat flux) of heat release rate (HRR) and combustion products temperature rise (dT) of: (a) locust
wood at 25 kW m−2; (b) locust wood at 35 kW m−2; (c) locust wood at 50 kW m−2; (d) poplar wood
at 25 kW m−2; (e) poplar wood at 35 kW m−2; (f) poplar wood at 50 kW m−2; (g) willow wood at
25 kW m−2; (h) willow wood at 35 kW m−2; (i) willow wood at 50 kW m−2.

The average molar heat capacities of the combustion products and their chemical
amount flow rate in the cone calorimeter exhaust duct are in Table 4.

Table 4. Average values of molar heat capacity at constant pressure and chemical amount of combus-
tion products flow rate from birch, oak, spruce, locust, poplar, and willow wood in the interval of
heat fluxes from 25 to 50 kW m−2.

Heat Flux
(kW m−2) Molar Heat Capacity at Constant Pressure (kJ mol−1 K−1) Amount of Substance Flow Rate (mol s−1)

25 0.044 ± 0.005 0.852 ± 0.007
30 0.049 ± 0.015 0.844 ± 0.023
35 0.044 ± 0.006 0.846 ± 0.007
50 0.044 ± 0.013 0.817 ± 0.019

The molar heat capacity of combustion products (Table 4) is approximately equal to
the values in Figure 1. In the nct_Model, the HRR will be calculated from the average
values of the molar heat capacity of 0.045 kJ mol−1 K−1 and the chemical amount flow rate
of 0.839 mol s−1 of the combustion products.

The regression of target (true value) vs. output (value predicted by the trained neural
network) during the training phase (training phase includes training, validation, and
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testing) is shown in Figure 8. Figure 8 indicates that the trained neural network can predict
with remarkably high accuracy the molar heat capacity and the chemical amount flow rate
of wood combustion products in the exhaust duct of the cone calorimeter.
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Figure 7. Normalized values (actual value divided by maximum recorded value for each wood and
heat flux) of heat release rate (HRR) and combustion products temperature rise (dT) of: (a) birchwood
at 30 kW m−2; (b) birchwood at 50 kW m−2; (c) oakwood at 30 kW m−2; (d) oakwood at 50 kW m−2;
(e) spruce wood at 30 kW m−2; (f) spruce wood at 50 kW m−2.

A total of 542 data (4-tuples in the structure according to Table 2) were used for testing
the trained neural network (Figure 8). Although these data were not used for training
or validation, they were measured for the same woods that were used for training and
validation of the neural network (locust, poplar, willow, birch, oak, and spruce wood).
For a reliable verification of the trained neural network, a prediction of the molar heat
capacity and chemical amount flow rate in the cone calorimeter exhaust duct of combustion
products was made from paulownia wood at 25 kW m−2, pinewood at 35 kW m−2 and
iroko wood at 40 kW m−2 (additional test). The data measured for these woods were not
used in the training phase. The average percentage ratio of predicted to actual value was
used as the criterion for assessing the accuracy of the trained neural network in the phase
of the additional test. A value of the percentage ratio of the predicted to the actual value of
100% means that the actual values and the values predicted by the model are identical (a
higher value means that the model predicts higher, and a lower value means that the model
predicts lower values than the actual). Average percentage ratios of predicted and actual
values of HRR, chemical amount flow rate, and molar heat capacity are in Tables 5 and 6.

The average percentage values of the ratios of the predicted to the actual values are
103.9 ± 5.9% and 100.2 ± 22.8% for chemical amount flow rate and molar heat capacity,
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respectively. These values approximately correspond to the average percentage ratio of the
predicted to the actual value of the HRR (103.8 ± 23.08%). These data (together with the
data in Tables 5 and 6) were calculated from raw data in Tables S2 and S3.
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Figure 8. Regression of target (true value) vs. output (value predicted by the trained neural network)
during the training phase.

Table 5. The average percentage ratio of predicted to the true value of heat release rate (HRR) from
pinewood (at 35 kW m−2), iroko wood (at 40 kW m−2), and paulownia wood (at 25 kW m−2).

Sample The Average Percentage Ratio of Predicted to the True Value of HRR
NN_Model (%) nct_Model (%)

Pinewood 92.5 ± 14.9 86.6 ± 18.8
Iroko wood 95.7 ± 10.9 95.3 ± 15.3

Paulownia wood 124.8 ± 25.8 107.7 ± 22.2
NN_Model: neural network model; nct_Model: a model based on the average value of combustion products
chemical amount flow rate and heat capacity at constant pressure; sign ± denotes standard deviation.

Table 6. The average percentage ratio of predicted to the true value of the chemical amount of
combustion products’ flow rate (n) and molar heat capacity of combustion products (c) from pinewood
(at 35 kW m−2), iroko wood (at 40 kW m−2) and paulownia wood (at 25 kW m−2).

Sample The Average Percentage Ratio of Predicted to the True Value
n (%) c (%)

Pinewood 100.9 ± 1.7 92.2 ± 15.5
Iroko wood 102.2 ± 1.2 93.5 ± 10.2

Paulownia wood 109.1 ± 8.4 116.1 ± 30.2

HRR from woods used in the additional test; measured by the reference (cone calorime-
ter) method and predicted by the NN_Model and nct_Model are compared in Figure 9.
Visual analysis of Figure 9 indicates that for paulownia wood, NN_Model shows very
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similar values of the HRR as the reference method (although from approximately 1500 s,
the model shows visibly higher values than the reference method). On the other hand,
NN_Model shows lower values of the HRR in the phase of the first and second local maxima
for both pine and iroko wood. Thus, it seems that the NN_Model slightly underestimates
the values of the local maxima of the HRR. A similar problem (slight underestimation of the
local maximum) is also shown by the model for calculating the HRR from sample mass loss
presented in the scientific work of Parker [40]. Visual analysis of Figure 9 further indicates
that the NN_Model predicts the HRR more accurately than the nct_Model. However,
a definitive conclusion can only be drawn based on the average percentage ratio of the
predicted to the actual value of the HRR (Table 5). The cited Table 5 shows that for pine and
iroko wood, the NN_Model shows higher accuracy compared to the nct_Model. On the
contrary, for paulownia wood, the accuracy of the nct_Model is apparently higher (Table 5).
Comparison of Figure 9c and Table 5, however, proves that the high value of the average
percentage ratio predicted to the actual value of the HRR in paulownia wood was caused
by only a slight overestimation of the NN_Model in the final phase of the test (time interval
between 1500 to 1800 s). Such a slight overestimation in the final phase of the test does not
have a significant impact on the test result, or it is necessary to consider it in the prediction.
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Figure 9. Heat release rate measured by the cone calorimeter as reference method (CC Ref.), computed
from heat capacity, substance amount flow rate of combustion products predicted by trained neural
network and combustion products temperature rise (NN_Model) and computed by average heat
capacity, substance amount flow rate of combustion products and combustion products temperature
rise (nct_Model) from: (a) pinewood; (b) iroko wood; and (c) paulownia wood.
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The average percentage ratio (average for all woods in the additional test) of the
predicted to the actual value of the HRR for the NN_Model was 103.8 ± 23.08% and
for the nct_Model 96.24 ± 20.76% (the high value of the standard deviation is mainly
caused by a slight underestimation of local maxima). These values of average percentage
ratios enable the application of both models to predict the HRR. The stated percentage
values are comparable to the accuracies of neural networks in other applications in fire
engineering (especially temperature prediction or identification of the type of burning
substance) published in scientific papers [41–43].

In addition to visual comparison (Figure 9) and average percentage ratio of the pre-
dicted to the true value, the raw data of true and predicted value of HRR, chemical amount
flow rate, and molar heat capacity are available in the Supplementary Materials denoted as
Table S2 to Table S3.

The described method allows measuring heat release rate in the cone calorimeter
(without the needed use of a combustion products analyzer). Due to differences between
constructions of various cone calorimeters, calibration is recommended before using the de-
scribed method. The calibration lies in the action of the methane burner (under equal condi-
tions as described in ISO 5660-1 [33] for C factor determination). Burner output: 5 ± 0.1 kW,
time: 5 min, number of repetitions: 3 times. The average temperature during this calibration
is measured. This average value is used for tc correction before it is used as input for trained
neural network in accordance with Equation (8),

Tccor = Tcc
138.7
Tcal

(8)

where Tccor is combustion products temperature rise (K) after correction used as an input
to the trained neural network, Tcc is combustion products temperature rise (K) before
correction, 138.7 is an average temperature rise (K) of combustion products measured
by the cone calorimeter used in this study during 5 min acting of methane burner and
Tcal is average temperature rise (K) measured by the cone calorimeter (which need to be
calibrated) during the 5 min acting of methane burner (K). The calibration purpose is to
recalculate temperature rise measured by another device so that it could be used as an
input for a neural network in the Supplementary File S1.

4. Conclusions

In this scientific study, a neural network was designed and trained to predict the molar
heat capacity (at constant pressure) and the chemical amount flow rate of wood combustion
products in the exhaust duct of a cone calorimeter. The neural network was created and
trained so that the data on the time after initiation (with a resolution of 1 s) and the increase
in the temperature of the combustion products are sufficient for prediction. After training
the neural network, it is sufficient to measure the temperature of the combustion products
in the exhaust duct of the cone calorimeter (e.g., with a NiCr-Ni thermocouple) and the time
after initiation (e.g., with a stopwatch with a resolution of at least 1 s). From the measured
and predicted values, it is possible to subsequently calculate the HRR (as a product of the
temperature increase in the combustion products, the predicted molar heat capacity of
the combustion products, and the predicted chemical amount flow rate of the combustion
products).

The accuracy of the thus created and trained neural network was evaluated in the
prediction of the molar heat capacity of combustion products and the chemical amount flow
rate of combustion products from three types of wood that were not used for training the
neural network. The average percentage ratio of predicted to the actual value of molar heat
capacity and chemical amount flow rate was 100.2% and 103.9%, respectively. The average
percentage ratio of predicted and actual HRR was 103.8%. These values of percentage ratios
are valid for additional test data (obtained for three wood species that were not included in
the training of the neural network). These data are presented in Tables S2 and S3. These
values demonstrate the high accuracy of the trained neural network and the possibility of
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using it to accurately predict the data needed to calculate the HRR from the increase in
temperature of wood combustion products.

The created method has a fundamental benefit, especially for selected areas of wood
science in which selected properties of wood (e.g., resistance to biological factors) are
improved as a matter of priority, while it is sufficient to avoid significant deterioration of
the fire characteristics of the modified material. For these areas of wood science, the created
method will mean a significant benefit and will enable a fundamental reduction of costs for
research into the fire hazard of wood and wood-based materials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pr11041206/s1; Table S1: Trained neural network; Ta-
ble S2: Predicted and true values of HRR for iroko, pine and paulownia wood; Table S3: Predicted
and true values of n and c for iroko, pine, and paulownia wood.
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