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Abstract: The corn-to-sugar process is difficult to control automatically because of the complex
physical and chemical phenomena involved. Because the RNN-LSTN model has been shown to
handle long-term time dependencies well, this article focused on the design of a model predictive
control system based on this machine learning model. Based on the historical data, we first reduced the
input variable dimension through data preprocessing, data dimension reduction, sensitivity analysis,
etc., and then the RNN-LSTM model, with these identified key sites as inputs, and the dextrose
equivalent value as the output, was constructed. Then, through model predictive control using the
locally linearized RNN-LSTM as the predictive model, the objective value of the dextrose equivalent
was successfully controlled at the target value by our simulation study, in different situations of
setpoint changes and disturbances. This showed the potential of applying RNN-LSTM-Based model
predictive control in a corn-to-sugar process.

Keywords: corn-to-sugar process; RNN-LSTM; model predictive control; data-driven method

1. Introduction

Corn (Zea Mays) is one of the three major food crops in the world, and it is also
the main raw material for concentrated feed. Compared with sweet potatoes, corn is an
important food crop and raw material for industrial production in the world, due to its
rich starch, protein, and fat content [1]. The corn-sugar production process includes many
production sections, such as the starch section, fructose section, corn-feeding section, starch
detection, fructose detection, citric-acid section, etc. The process is complicated, and the
generated data have a complex structure, leading to the need for a lot of resources to control
the key nodes of the corn plant. Therefore, model predictive control (MPC) is widely
used in corn factories, because it is a very effective control strategy for multi-input and
multi-output systems.

An MPC process can usually be conceptually described with the following steps.
At each moment, an optimization problem is first solved online, based on the current
measurement information obtained, and the first element of the calculated control sequence
is applied to the controlled object. At the next sampling moment, the above process is
repeated: the new measured value is used as the initial condition to predict the future
dynamics of the system at this time, and the optimization problem is refreshed and solved
again. Since the MPC concept was first proposed, MPC has been used in many fields,
such as power systems [2], vehicles [3,4] and rail transportation [5]. Hrovat et al. [6]
found that MPC was widely used in the automotive industry and shows better closed-loop
performance compared to traditional control solutions. In chemical engineering, Mendis
and Wickramasinghe et al. [7] applied MPC to maximize the product purity of a batch
distillation tower and studied its performance in Matlab. Prasad et al. [8] controlled the
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filled height of a conical-shaped tank, identifying three separate linear models at different
heights to design one controller for each and combined the outputs as an ensemble to
obtain a general output for the manipulated variable. In all these processes in which model
predictive control is applied, mathematical models describing the relationship between
manipulated inputs and process outputs are essential for building model-based control
systems for industrial applications [9].

However, due to the complexity of the physical and chemical phenomena in a chemical
factory, first-principle models are often difficult to derive. Therefore, with the development
of computer hardware and artificial intelligence technology, model predictive control based
on neural network methods has gradually received more and more attention, due to its
excellent ability to represent complex physical models. Among the many machine learning
techniques, the recurrent neural network (RNN) is most suitable for dealing with the
ordered form of the time series datasets. The basic RNN model can handle certain short-
term time dependencies, while the long short-term memory (LSTM) model based on RNN
handles long-term time dependencies with improved performance and is widely used
in nonlinear model systems [10]. RNN-LSTM is a variant of RNN, with the concepts of
the cell state and the gate structure introduced. A sequence of cell states makes up the
path for information transmission in the time sequence [11,12] and the gate structure will
learn to save and forget the information during the training process. LSTM architecture
was first introduced by Hochreiter and Schmidhuber in 1997 [13], and effectively solved
the problems of gradient disappearance and gradient explosion that RNN is prone to.
Afterwards, Alex Graves and Jurgen Schmidhuber [14] proposed a bidirectional long
short-term memory (BLSTM) neural network based on the previous work, which was
frequently used in the 2000s. In recent years, LSTM has been applied in many fields
and more and more widely in engineering. Akhter and Mekhilef et al. [15] proposed an
RNN-LSTM based on a simulated annealing algorithm (SSA) model for predicting the
output power of photovoltaic systems, and proved that the model has better robustness.
Demidova [16] presented the LSTM and gate recurrent unit (GRU) models for aircraft
engine-maintenance problems and proved the superiority of LSTM in solving maintenance
performance problems based on multidimensional time series.

In recent years, model predictive control based on neural networks has developed
rapidly. Xu et al. [17] solved the four-tank benchmark problem based on an RNN model,
and the accuracy of the model and the effectiveness of the proposed method were verified
by experiments. Norouzi et al. [18] modeled the compression-ignition engine based on
machine learning and used it to realize the model prediction controller for the 4.5-L Cum-
mins diesel engine. By comparing it with the standard feedforward production controller,
they found that the online optimized MPC scheme could reduce emissions of polluting
gases, reduce fuel consumption, and reduce costs. Due to the inaccuracy of the prediction
of domestic hot water in a single household or small system, Maltais and Gosselin [19]
considered the MPC predicted by the machine learning model and compared it with
the rule-based controller in order to reduce heat loss and verify the applicability of the
MPC of the machine learning prediction model. The results showed that the MPC based
on the machine learning prediction model could save about 8% of energy consumption.
Wu et al. [20–22] successfully adjusted the product yield of high exothermic reactions in
industrial-scale fixed-bed reactors by using MPC based on machine learning and intro-
duced different integrated-learning methods in order to improve the model prediction
performance of neural network models in batch polymerization reactors. Their research
team followed up with more extensive and interesting research in the field of chemical
engineering [23,24]. Zarzycki and Lawrynczuk [25] considered two simulated industrial
processes: polymerization reactor and neutralization process and compared the efficiency
of LSTM and GRU models under multiple model configurations. Wang et al. [26] proposed
an LSTM and MPC control strategy weighted by particle swarm optimization to control
the temperature of superheated steam and proved the advantages of LSTM-MPC over
traditional proportion integration differentiation (PID) control and single MPC control
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through simulation experiments. Singh et al. [27] established a three-layer feed-forward
neural network (FNN) model for a binary continuous distillation column and used the MPC
algorithm to predict the product purity to search for the optimal control moves. Compared
with the traditional PID controller, the MPC scheme shows an improvement in the settling
time. Qing et al. [28] construct MPC formulations for the distributed parameter systems
(DPS) based on the learned, dimensional-reduced model. They used a path-integral opti-
mal control algorithm for MPC implementation to avoid any analytic derivatives of the
dynamics. The effectiveness of integration of a deep neural network-based model with
MPC was demonstrated in a tubular reactor with recycle cases.

Although machine learning-based MPCs have had many applications in chemical en-
gineering and is often used with specific equipment, such as a single reactor or a separation
unit, few works focus on a complex process in a factory-section level. However, the process
from corn-to-sugar is complex, with many factors that affect product quality. The traditional
corn-to-sugar mill is susceptible to the influence of different corn varieties, which leads to
fluctuations in product quality. It is difficult to realize the accurate adjustment of process
parameters and maintain stable operation through engineering experience. Therefore, it is
difficult to regulate this process by a mechanism or through experience alone. It is necessary
to use big data technology to find the key parameters of the process, establish the process
prediction model, and then carry out advanced control.

In this work, an RNN-LSTM model was established and an MPC based on the RNN-
LSTM was applied to the corn-to-sugar process. In the second section, steps of the approach,
including data preprocessing, dimensionality reduction methods, and RNN-LSTM based
modeling, were described. In addition, an extended weights connection method was
proposed for the RNN-LSTM model to analyze the importance of variables. In the third
section, based on the established RNN-LSTM model, the key sites in the corn-to-sugar
factory were analyzed, and the MPC was carried out, which was used to control the key
sites in the corn-to-sugar factory to adjust the objective value. The modeling process and
predictive control were implemented on the Matlab platform, details of which can be seen
in the supporting information. Based on the successful simulation of this work, we will
further test this neural network-based control strategy in the real plant.

2. RNN-LSTM-Based Model Predictive Control Framework

The framework of RNN-LSTM-based model predictive control includes two parts.
Since the corn production factory has very complex physical and chemical processes, it is
very difficult to establish a first-principles model, so the first part of the framework is to
establish a black box model for the corn-to-sugar process. There are many commonly used
neural network models, such as the feedforward neural network (FNN), convolutional
neural network (CNN), RNN, LSTM, etc. Due to the strong temporal nature of factory data,
RNN is widely used for modeling factory equipment. However, because the RNN model is
affected by short-term memory and faces the problem of gradient disappearance, we used
a variant of RNN, the RNN-LSTM model, to solve the problem of gradient dis-appearance
to a certain extent. A comparison of CNN, ANN and LSTM is shown in Section 3.2.

The second part of the framework is to establish the MPC of the saccharification section
based on the RNN-LSTM model. The completed RNN-LSTM model can predict the real-
time output of future controlled variables based on the relevant state information provided
by the sensors in the saccharate section and the input of future manipulated variables.
By adopting the rolling finite time-domain optimization strategy, the MPC can solve the
optimal control sequence of the finite period of time at each sampling time according to the
optimization performance index of the time. The control of the saccharification section is
realized by executing the input of the current time of the optimal control sequence. At the
next sampling time, the MPC will follow the same steps to obtain the optimal control input
to control the saccharification section.
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2.1. Data Preprocessing

Data are the core of process modeling in the proposed approach. However, due
to some realistic issues, the data collected from the factory is usually incomplete, noise-
containing, inconsistent, and prone to other problems. Therefore, it is necessary to carry out
a series of processing works, such as cleaning, integration, conversion, discretization, and
specification of the original data to improve the efficiency of data analysis and the reliability
of the results. According to the data characteristics collected from the factory, the data
preprocessing steps in this paper are shown in Figure 1. Data preprocessing includes three
parts. First, the data are cleaned, and the missing values and outliers are processed. Then,
the initial dimension reduction of the data is carried out, and the 100 dimensions of the
data are saved. Finally, the sensitivity analysis of the data after dimensionality reduction is
carried out, and the 20-dimensional data are retained.
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2.1.1. Data Cleaning

The purpose of data cleaning is to supplement the missing part, correct or delete
the incorrect part, screen, and remove the redundant part, and, finally, organize it into
high-quality data that are easy to be analyzed and used. The data cleaning methods
considered in this paper mainly include missing value and outlier value processing, and
data noise reduction.

1. Missing value and outlier processing

There are various reasons for missing values in factories, and these can mainly be
divided into mechanical reasons and human reasons. A mechanical reason can be due to
a series of problems such as on-site detection failure, plant shutdown and maintenance,
while a human reason can be due to data loss caused by human subjective mistakes,
historical limitations, or intentional concealment. There are two main solutions to deal
with missing values: (a) take the average value in the case of a small number of missing
values in a continuous period, and supplement according to the data before and after the
period [29]; (b) when a large number of values are missing for a consecutive period of
time, all data in the corresponding period are deleted [30]. Although outliers are rare, they
will greatly affect the training efficiency and accuracy of the model. Therefore, we used
the Pauta criterion [31] or Chauvenet method [32] to deal with outliers according to data
characteristics.

2. Noise reduction processing

Due to the presence of interference data in the dataset provided by the factory, we
adopted the (2n + 1) simple moving average [33] method to smooth and filter the data noise.
In this method, the n data (yi − n, . . . , yi − 1, . . . , yi + n) before and after the centre of yi to
obtain the average y′i instead of yi are determined, which can be expressed by Equation (1).

y′i =
1

2n + 1

n

∑
k=−n

yi+1 (1)
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2.1.2. Data Dimension Reduction

The data provided in the factory are often multidimensional and there is a strong
correlation between different data. Therefore, it is necessary to decrease the dimension of
data to reduce the number of feature attributes, eliminate irrelevant or redundant features,
and improve the accuracy of the model. The dimensionality-reduction methods used in
this paper are hierarchical clustering analysis [34] and LASSO analysis [35].

1. Hierarchical clustering analysis

Cluster analysis is a commonly used data dimensionality reduction technology, which
can reduce a large number of observed values into several categories. The similarity
between data is determined by defining a distance or similarity coefficient. There are
many methods for cluster analysis, including the partitioning method, hierarchical method,
density-based method, etc. The method adopted in this paper was hierarchical cluster-
ing [36]. The hierarchical clustering method was adopted without supposing the number
of clusters, and Euclidean distance was used to calculate the similarity between different
data points.

2. LASSO analysis

Least absolute shrinkage and selection operator (LASSO) analysis is a method that can
establish a generalized linear model and screen variables. The purpose of introducing this
model is to effectively screen features with multicollinearity, reduce data dimensions, and
retain feature vectors that can accurately represent the features of input data. Its definition
is as follows:

χ′i =
χi−χmin

χmax − χmin
(2)

min
ξ

1
2

∥∥∥∥∥γi −
n

∑
i=1

χ′iξ

∥∥∥∥∥
2

2

+ λ‖ξ‖1 (3)

where χ′i, χi, χmax and χmin denote the normalized value, the original value, the maximum
and minimum value of the input variable, and γi denotes the output value. λ is a non-
negative regular parameter controlling the complexity of the model; the larger λ is, the
more severe the punishment will be for models with more features, resulting in a model
with fewer features.

2.1.3. Key Sites Identification

The dimensionality of the input data remains large after the data reduction, but some
inputs remain stable throughout the run cycle and do not contribute to the output value
in the process model. Therefore, the Olden method (connection-weight method) [37] was
used in this work to analyze the sensitivity of the input after the dimensionality reduction
of data. Sites with basically unchanged data or small fluctuations were not used as input
variables. The specific process is shown in Figure 2.
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After the original data were preprocessed and one-step prediction, 100 sites with great
influence on filter pressure difference were obtained by Olden method. The 100 sites were
used as inputs to rebuild the neural network, and the top 20 sites with large weights were
collected as key control sites.
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2.2. RNN-LSTM Model Construction

A recurrent neural network is a structure that repeats itself over time. It has been
widely used in many fields, such as natural language processing (NLP), and in speech and
images [29]. In the loop structure shown in Figure 3, module A of each neural network reads
some input xt and outputs a value ht, and then repeats the loop. Loops allow information
to be passed from the current step to the next.
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Although RNN is suitable for time-series data-processing, it may cause gradient
disappearance or gradient inflation when calculating the relationship between distant
nodes in a time series. LSTM structures can learn to keep only relevant information to
make predictions and forget irrelevant data. LSTM is an enhanced RNN structure. The
hidden-layer information of the RNN moment only comes from the current input and the
hidden layer information of the previous moment and has no memory function. The LSTM
structure is shown in Figure 4.
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In the picture above, xt denotes the input, ht−1 is the output of the previous layer, ft is

the output of forget gate, σ denotes sigmoid function, it is the output of input gate,
∼
Ct is

the output of candidate gate, tanh denotes the hyperbolic tangent function, Ct is the output
of memory gate.

The first step in LSTM is to decide what information to forget from the cell state. This
decision is made through the forget gate. The forget gate reads the previous output ht−1
and the current input xt, makes a nonlinear mapping of sigmoid, and outputs a vector ft,
which is finally multiplied by the cell state Ct−1.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(4)

where W f is the weight matrix of the forget gate, b f is the bias of the forget gate.
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The input gate uses the sigmoid function to control which new information can be
added in the current moment of the network. The sigmoid layer called the input gate layer

determines what values update. The tanh layer creates a new candidate value vector
∼
Ct

that will be added to the cell state.

it = σ(Wi·[ht−1, xt] + bi) (5)

∼
Ct = tanh(Wc·[ht−1, xt] + bc) (6)

where Wi is the weight matrix of input gate, bi is the bias of input gate, Wc is the weight
matrix of forget gate, bc is the bias of forget gate.

The cell state can be updated to

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (7)

Finally, the value for the output is determined. This output will be based on cell state
shown in Equation (7). The cell state is processed through tanh (to get a value between −1
and 1) and multiplied by the output of the sigmoid gate to get the output.

ot = σ(W0[ht−1, xt] + b0) (8)

ht = ot ∗ tanh(Ct) (9)

where ot is the output of output gate, W0 is the weight matrix of output gate, b0 is the bias
of output gate.

2.3. MPC Using RNN-LSTM Model

The core contents of model predictive control are the process variable and state predic-
tions based on the model rolling optimization strategy and online error correction based on
feedback information. The simple flow of model predictive control is shown in Figure 5.

Processes 2023, 11, x FOR PEER REVIEW 7 of 20 
 

 

𝑓௧ = 𝜎(𝑊௙ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙) (4) 

where 𝑊௙ is the weight matrix of the forget gate, 𝑏௙ is the bias of the forget gate. 
The input gate uses the sigmoid function to control which new information can be 

added in the current moment of the network. The sigmoid layer called the input gate layer 
determines what values update. The tanh layer creates a new candidate value vector 𝐶௧෩  
that will be added to the cell state. 𝑖௧ = 𝜎(𝑊௜ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௜) (5) 𝐶௧෩ = tanh (𝑊௖ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௖) (6) 

where 𝑊௜ is the weight matrix of input gate, 𝑏௜ is the bias of input gate, 𝑊௖ is the weight 
matrix of forget gate, 𝑏௖ is the bias of forget gate. 

The cell state can be updated to 𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶௧෩  (7) 

Finally, the value for the output is determined. This output will be based on cell state 
shown in Equation (7). The cell state is processed through tanh (to get a value between −1 
and 1) and multiplied by the output of the sigmoid gate to get the output. 𝑜௧ =  𝜎(𝑊଴[ℎ௧ିଵ, 𝑥௧]  +  𝑏଴) (8) ℎ௧ = 𝑜௧ ∗ tanh(𝐶௧) (9) 

where 𝑜௧ is the output of output gate, 𝑊଴ is the weight matrix of output gate, 𝑏଴ is the 
bias of output gate. 

2.3. MPC Using RNN-LSTM Model 
The core contents of model predictive control are the process variable and state pre-

dictions based on the model rolling optimization strategy and online error correction 
based on feedback information. The simple flow of model predictive control is shown in 
Figure 5. 

 
Figure 5. Schematic diagram of MPC. 

2.3.1. Model Prediction 
Since the corn-to-sugar process is a multi-input and single-output (MISO) system, the 

input vector is expressed as 𝑋 = [𝑥ଵ 𝑥ଶ . . . 𝑥௡]். The following equations are all based on 
discrete time. At time k, if the control action (input vector) is constant, the predicted value 
of the output can be obtained by the neural network model. 𝑦ො଴,(௞ା௝) = 𝑓൫𝑋(௞ା௝), 𝑦଴,(௞ା௝ିଵ)൯ = 𝑓൫𝑥ଵ,(௞ା௝), 𝑥ଶ,(௞ା௝), 𝑥௡,(௞ା௝), 𝑦଴,(௞ା௝ିଵ)൯     𝑗 = 1,2, … , 𝑃 

(10) 

where f(.) is an input/output mapping relationship represented by the RNN model, P is 
the prediction step, also the optimization time domain, 𝑦଴ is the actual output values of 
the factory (in this case, dextrose equivalent value, which will be discussed in Section 3), 
and 𝑦ො଴ is the predictive output values of the plant model. 

Assuming from time k there are M continuous control increments ∆𝒖(௞ାଵ), ∆𝒖(௞ାଶ), … , ∆𝒖(௞ାெ), where each control increment can be expressed as: 

Figure 5. Schematic diagram of MPC.

2.3.1. Model Prediction

Since the corn-to-sugar process is a multi-input and single-output (MISO) system, the
input vector is expressed as X = [x1x2...xn]

T . The following equations are all based on
discrete time. At time k, if the control action (input vector) is constant, the predicted value
of the output can be obtained by the neural network model.

ŷ0,(k+j) = f
(

X(k+j), y0,(k+j−1)

)
= f

(
x1,(k+j), x2,(k+j), xn,(k+j), y

0,(k+j−1)

)
j = 1, 2, . . . , P

(10)

where f (.) is an input/output mapping relationship represented by the RNN model, P is
the prediction step, also the optimization time domain, y0 is the actual output values of the
factory (in this case, dextrose equivalent value, which will be discussed in Section 3), and
ŷ0 is the predictive output values of the plant model.
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Assuming from time k there are M continuous control increments ∆u(k+1), ∆u(k+2), . . .,
∆u(k+M), where each control increment can be expressed as:

∆u(k+M) = [∆u1∆u2 . . . ∆un]
T
(k+M) (11)

where, M is the control time domain. Generally, the first few steps of the control behavior
determine the majority of the control results, and the remaining control steps have smaller
influence. In order to save computational resources, the relationship between M value and
P value is usually set as 0.1P ≤M ≤ 0.2P [38,39]. P and M are set to be equal in this paper
to consider the influence of all control steps.

When control incremental are applied to the system, the output prediction sequence
value is ŷ1,(k+1), ŷ1,(k+2), . . . , ŷ1,(k+P). Note that ŷ0,(k+j) denotes the predicted output value
of the RNN model without control action, while ŷ1,(k+j) denotes the predicted output value
of the control system. The predicted value ŷ1,(k+j) is correlated with ∆u(k+M);

In order to make the calculation more convenient, we assume that the system can
be regarded as a linear system at the working point, then the system will satisfy both
superposition property and uniformity. The superposition property means that when
several input signals act on the system together, the total output is equal to the sum of
the output generated by each input acting separately. Uniformity means that when the
input signal increases by several times, the output correspondingly increases by the same
multiple. The linearization method is to expand the nonlinear function into Taylor series at
the equilibrium point, then take the linear terms (0 order terms and 1 order terms), ignore
the higher order terms, and then get a linear mathematical model. Therefore, assuming
that the control input output caused by changes can be linear superposition, Equation (10)
can be represented to

ŷ1,(k+j) = ŷ0,(k+j) + aj∆u(k+j) (12)

where, aj is the step response coefficient vector, aj =
[
aj,1aj,2 . . . aj,n

]
.

The vector aj is obtained by the following local linearization method. At time k,
keep all other input variables and model parameters unchanged, and only input variables
ur(r = 1,2..., n) add a unit incremental value, then the neural network model is used to predict
and calculate P output values ŷr,(k+1), ŷr,(k+2), . . . , ŷr,(k+P). At time k, the step response sequence

of control variable ur be
{

ŷr,(k+1) − ŷ0,(k+1), ŷr,(k+2) − ŷ0,(k+2), . . . , ŷr,(k+P) − ŷ0,(k+P)

}
. Ele-

ment ai,r =( ŷr,(k+i) − ŷ0,(k+i)

)
is the ith response coefficient of the control variable ur. It

forms the step response matrix at time k

A(k) =


a1 0 · · · 0
a2 a1 · · · 0
...

...
. . .

...
aP aP−1 · · · aP−M+1

 (13)

=


a11a12 . . . a1n 0 · · · 0
a21a22 . . . a2n a11a12 . . . a1n · · · 0

...
...

. . .
...

aP1aP2 . . . aPn a(P−1),1a(P−2),2a(P−1),n · · · a(P−M+1),1a(P−M+1),2 . . . a(P−M+n),n

 (14)

The predicted output vector of the uncontrolled increment is

Ŷ0,(k) =
[
ŷ0,(k+1) ŷ0,(k+2) · · · ŷ0,(k+P)

]T
(15)
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The control increment vector is

∆UM,(k) =
[
∆u(k+1) ∆u(k+2) · · · ∆u(k+M)

]T
(16)

The output prediction vector with control increment is

Ŷ1,(k) =
[
ŷ1,(k+1) ŷ1,(k+2) · · · ŷ1,(k+P)

]T
(17)

Therefore, the output prediction vector is

Ŷ1,(k) = Ŷ0,(k) + A(k)·∆UM,(k) (18)

2.3.2. Rolling Optimization

Assuming the desired output value of P future times be w(k+1), w(k+2), . . . , w(k+P).
The purpose of optimization is to make the predicted output of the future P moments
ŷ1,(k+i) as close to the expected value W(k+i) as possible. Define the performance indicator
as Equation (19).

minJ(K) =
P

∑
i=1
‖qi·(w(k + i)− ŷM(k + i))‖2 +

M

∑
j=1

∥∥rj·∆u(k + j)
∥∥2 (19)

where, qi is the tracking error weight coefficient, and rj is the control quantity suppression
weight coefficient.

In order to avoid the drastic change of the output of the controlled system, the expected
reference trajectory of the output value of the system is adopted in the form of exponential
change.

w(k + i) = αiy(k) +
(

1− αi
)

yr (20)

where, α is the parameter of the reference trajectory; y(k) is the actual sampling value at
the current time; yr is the target value set. The smaller the value of α, the shorter the time it
takes for the reference trajectory to reach the target value.

From
∂J(k)

∂∆UM,(k)
= 0, substituting Equation (18) into Equation (19), we can figure out

∆UM,(k) =
(

ATQA + R
)−1

ATQ
[
WP,(k) − Ŷ0,(k)

]
(21)

where Q is the tracking error weight coefficient matrix, Q = diag(q1, q2 . . . , qP). R is the
inhibition weight coefficient matrix of control quantity, R = diag(r1, r2, . . . , rM).

If boundary constraints are not considered and the first control increment ∆u(k+1) is
taken as the actual imposed control, then Xk+1 = Xk + ∆u(k+1) can be obtained. Continue
solving to get ∆UM,(k+1), and apply control Xk+2 = Xk+1 + ∆u(k+2). Finally, Equation (22)
can be obtained

∆u(k+1) = CT ·∆UM,(k) (22)

where C = [100 . . . 0]T .

2.3.3. Error Correction

The predicted output sequence of the facility with incremental control is ŷ1,(k+1), ŷ1,(k+2),
· · · , ŷ1,(k+N). At the next time of k + 1, one obtains the sampling output y1,(k+1). Define the
prediction error at time k

e(k) = y(k+1)–ŷ(k+1) (23)

The N prediction errors before time k are denoted in vector form

eN,(k) =
[
e(k−N)e(k−N+1) · · · ek

]T
(24)
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The feedback error can be used to correct the prediction error as well as the prediction
model. Taking the corrected prediction error as an example, the uncorrected prediction
vector is defined as

Ŷ1,N,(k) =
[
ŷ1,(k+1) ŷ1,(k+2) · · · ŷ1,(k+N)

]T
(25)

The corrected prediction vector is

Ŷcor,(k) = Ŷ1,N(k) + H·eN,(k) (26)

where H = [h1 h2...hN ], which is called error correction weight coefficient vector.
After the horizon is rolled forward by one time period, the error of the sampled output

is first calculated by Equation (23). Based on the calculation of error, the prediction of the
correction vector is updated according to Equation (26). In the next step of optimization
calculation according to Equation (21), Ŷ0,(K) for calculating the optimal control input
adopts the corrected prediction vector Ŷcor,(K) [40,41].

3. Corn-to-Sugar Process Application

In this paper, model predictive control method based on a recurrent neural network
and LSTM model was applied to corn-to-sugar factory. The flow chart of this plant is shown
in Figure 6. The whole process includes a starch section, fructose section, citric acid section
and starch-saccharification section. Modeling and predictive control were carried out for
the starch-saccharification section, which is the core of the corn-to-sugar plant. Corn is
grounded to produce a series of high-value products such as starch and protein powder.
Corn starch can then be hydrolyzed by further amylase to glucose, which is converted
to fructose by isomerase. Based on the existing process flow of corn-to-sugar factory, we
collected the raw materials and product analysis and testing data accumulated in the
factory for a long time were recorded by a DCS system, then established the production
process simulation and prediction system, and carried out real-time optimization control of
the production process.

The dextrose equivalent (DE) value refers to the percentage of reducing sugar in syrup
in its dry matter, and it is the most important parameter to evaluate the saccharification
effect. As it is an important indicator of the final product quality, the DE value was used as
the control system output. Due to the different degrees of hydrolysis of starch syrup, the
composition and properties of various products have different DE values. The DE value
can be calculated through Equation (27). DE is a defining equation calculated directly from
the factory data.

DE =
RSC

DMC·SRD
(27)

where RSC denotes the reducing sugar content, DMC denotes the dry matter content, SRD
denotes the relative density of the sugar solution. These can be collected from corn-to-sugar
factory.



Processes 2023, 11, 1080 11 of 19

Processes 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Flow chart of corn-to-sugar process. Figure 6. Flow chart of corn-to-sugar process.



Processes 2023, 11, 1080 12 of 19

3.1. Model Training

The model established in this paper was the RNN-LSTM model, which is more prac-
tical for discrete time systems that need to adapt to different operating conditions. This
section consists of two parts: first, the original data were collected and preprocessed, then
the model was trained, and the accuracy of the model prediction was evaluated.

3.1.1. Data Collection and Preprocessing

We collected raw materials, product analysis and test data and equipment, running
state test data recorded by the DCS system, which were accumulated at 655 sites, including
maize feeding, soaking, liquefaction, saccharification, and other processes used in a corn-
to-sugar factory in China. A total of 13,608 sampling points were collected, and therefore
the data dimension of the database was 655*13,608.

First, noise reduction and outlier processing were carried out on the collected data, and
then LASSO dimension reduction analysis was carried out. The data dimension became
114*5735. On the basis of LASSO analysis, a sensitivity analysis based on a neural network
was carried out to further reduce the dimension of data to 20*5735 [42]. However, some
of these sites cannot be easily manipulated in the factory. In order to better conduct the
training of the RNN-LSTM model and continue the predictive control of the model, we
took the 18 sites with the greatest influence on the DE value as the input variable, and the
DE value as the output variable. Information about the 18 sites is shown in Table 1.

Table 1. The name and meaning of the top 18 selected sites.

Name Meaning

CURRENT1\CIA_15207 Current of 7# fine grinding facility (A)
FIC2104_1 Outlet flow rates of clean saccharification fluid (kg/h)

PID1\LIC1401_2_5-PV Liquid level of 5# soaking tank (mm)
15.05 (Be) Degerming feed concentration in the first grand

Flow rates of glucoamylase (g/min) Flow rates of glucoamylase(g/min)
Acidity of old acid (%) Acidity of old acid (%)

PRESSURE1\PIA_2110_4 Pressure of 4# starch induced draft fan (kPa)
The dry matter The dry matter content of liquefied liquid (%)

CURRENT1\CIA_1569_5 Current of 5# fiber dehydration rotating sieve
PRESSURE1\PIA_2112_3 Pressure of 3# starch scraper conveying wind (kPa)

PID1\LIC_302A-PV Liquid level of three-effect evaporator condensate water in set 1 (mm)
PRESSURE1\PIA_2001_1 Pressure of 1# fiber dryer (kPa)

V1102 (5.5-6.2) pH value of starch emulsion
Fragment of grain (%) Fragment of grain (%)
TEMPR1\TE_2001_6 Temperature of exhaust gas in drying section (K)

FIC2104_2 Outlet flow rates of turbid saccharification fluid (kg/h)
PID1\FIC_2001_3-PV The flowrates of 3# fiber dryer (g/s)

FLOW2\FIA_1639 The flowrates of Level 12 washing step (g/s)

3.1.2. Training Process

The data were divided into a training set and a test set, with a ratio of 9:1. The RNN
model structure consists of an input layer, an LSTM layer, a dropout layer, and a fully
connected layer. The activation function of LSTM layer and fully connected layer adopts
tanh. The LSTM layer has 200 hidden units and selects information to be remembered in
the long term or forgotten by three logic gates. The dropout probability of the dropout
layer is 0.1, which can greatly avoid the occurrence of overfitting. In the training process,
the mini-batch size was set to 128, the Adam optimizer was used, and the initial learning
rate was 0.005; the training was stopped after 130 epochs.

Since the prediction of DE value is a regression task, we chose mean square error
(MSE) as the loss function, and the calculation method is shown in Equation (28).
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MSE =
1
n

n

∑
i=1

(Pi −Yi)
2 (28)

where Pi and Yi are the predicted value and the experimental value of the ith data and n is
the total number of samples. In the trained model, MSE value was 0.02.

The training process of the model is shown in Figure 7. The curve in the figure is the
loss decline curve. It can be seen from the figure that the loss function becomes stable at
the 130th epochs.
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Figure 8a shows the DE values actually collected by the factory and the predicted
values and Figure 8b is the locally enlarged view of the first 1000 sample points in Figure 8a.
The first 90% of the sample points are the training set, and the last 10% are the test set. The
solid line is the actual value, and the dashed line is the predicted value. It can be seen that
the RNN-LSTM model has a good training effect and satisfactory prediction of the process.

Processes 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 8. Comparison of actual and predicted values of DE values. 

3.2. MPC with RNN-LSTM Model 
After the factory’s RNN-LSTM model was built, and the output of the forecast model 

was corrected by feedback, a complete predictive control system was built based on the 
model predictive control theory [41]. The range of the manipulated variables of the pre-
dictive control system is from 0.9*minimum value to 1.1*maximum value. We conducted 
regulations at various time points to verify the effectiveness of the control model. We used 
two cases to illustrate the controller performance. For case (a), the initial regulation time 𝑡଴ is at sampling point of 4000, and it is at sampling point of 4250 for case (b). In all cases, 
DE value is the controlled variable. In case 1 and case 2, all 18 variables in Table 1 are 
manipulated variables. No disturbance variables explicitly considered in these cases. Sim-
ilarly, the manipulated variables in case 3 and case 4 are also the 18 variables in Table 1, 
but random noise is added to the output of the RNN-LSTM model in case 3 and case 4. 
When the RNN-LSTM model was used as a controller model to predict and calculate the 
optimal control input, we added noise disturbance to the output of the model prediction 
to simulate the disturbance of the environment to the system. The disturbance variable in 
case 5 is the dry-matter content of liquefied liquid, and the manipulated variables are the 
17 variables in Table 1, except the disturbance variable. The disturbance variables in case 
6 are the dry-matter content of liquefied liquid and fragments of grain. The manipulated 
variables are the 16 variables in Table 1 except the interference variables. The details about 
the variables can be seen in Table 2. 

Table 2. List of the manipulated variables, controlled variables and disturbance variables. 

 Manipulated 
Variables 

Controlled 
Variables Disturbance Variables 

Case 1 all 18 variables DE value None 
Case 2 all 18 variables DE value None 
Csae 3 all 18 variables DE value Random Disturbance 

Figure 8. Comparison of actual and predicted values of DE values.



Processes 2023, 11, 1080 14 of 19

3.2. MPC with RNN-LSTM Model

After the factory’s RNN-LSTM model was built, and the output of the forecast model
was corrected by feedback, a complete predictive control system was built based on the
model predictive control theory [41]. The range of the manipulated variables of the pre-
dictive control system is from 0.9*minimum value to 1.1*maximum value. We conducted
regulations at various time points to verify the effectiveness of the control model. We
used two cases to illustrate the controller performance. For case (a), the initial regulation
time t0 is at sampling point of 4000, and it is at sampling point of 4250 for case (b). In all
cases, DE value is the controlled variable. In case 1 and case 2, all 18 variables in Table 1
are manipulated variables. No disturbance variables explicitly considered in these cases.
Similarly, the manipulated variables in case 3 and case 4 are also the 18 variables in Table 1,
but random noise is added to the output of the RNN-LSTM model in case 3 and case 4.
When the RNN-LSTM model was used as a controller model to predict and calculate the
optimal control input, we added noise disturbance to the output of the model prediction
to simulate the disturbance of the environment to the system. The disturbance variable in
case 5 is the dry-matter content of liquefied liquid, and the manipulated variables are the
17 variables in Table 1, except the disturbance variable. The disturbance variables in case
6 are the dry-matter content of liquefied liquid and fragments of grain. The manipulated
variables are the 16 variables in Table 1 except the interference variables. The details about
the variables can be seen in Table 2.

Table 2. List of the manipulated variables, controlled variables and disturbance variables.

Manipulated
Variables

Controlled
Variables Disturbance Variables

Case 1 all 18 variables DE value None
Case 2 all 18 variables DE value None
Csae 3 all 18 variables DE value Random Disturbance
Case 4 all 18 variables DE value Random Disturbance
Case 5 17 variables DE value Dry matter content of liquefied liquid

Case 6 16 variables DE value Dry matter content of liquefied liquid
and fragment of grain

If the system is not controlled and the input variables of the system remain unchanged,
the LSTM neural network model is used to predict that the output of the system will
increase and then become stable from time 4000, as shown in in the dashed line of Figure 9
which is a is a fragment of Figure 8. From time 4250, the system output will go down a
little, bounce back, and then become stable. For case (b) it could be viewed as a setpoint
change from 100 to 101 as the target value.
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After controlling the system, the system output will reach the target value (DE = 101)
after 290 timesteps in case 1 and 170 timesteps in case 2, as shown in Figure 9.

In case 1, the predictive control system parameters are set as: Q/R = 100 (Q = 0.6,
R = 0.06). In case 1, the trend of the output value which remained steady at 100.8 af-
ter 100 timesteps was changed, and the output value reached the target value within
200 timesteps by predictive control. In case 2, the predictive control system parameters
were set as: Q/R = 63 (Q = 7, R = 0.11), the downward trend of system output was changed,
and the system output value reached the target value within 170 timesteps. When the
system is stable, the maximum deviation between the system output value and the target
value in the two cases is 0.100 and 0.006, the control precision and the deviation are satis-
factory. Generally speaking, the higher of Q/R ratio, the faster a control response becomes,
and the higher risk it is for the system to be unstable.

In order to verify the applicability and practicability of the LSTM, we compared
the control effect of the LSTM with CNN and ANN as the control model for case1. The
comparison of simulation results is shown in Figure 10. For ANN as the control model,
within the control of 400 timesteps, the system cannot rapidly generate response under the
control of MPC and cannot reach the target value, indicating that the response speed of
ANN model is sluggish, and the response time is unacceptable. For CNN as the control
model, the response time is 289, and it is almost the same with the response time of LSTM
model which is 285. However, the system overshoot σ% is 0.47%, which is 4.7 times as much
as the σ% of LSTM model. Excessive overshoot may cause the system to oscillate, making
the system lose stability. In the corn-to-sugar plant, excessive overshoot may cause damage
to machinery. Therefore, compared with ANN and CNN, LSTM has a faster response speed
and better stability.
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In reality, the prediction model of the MPC could not fully predict the actual situation
in the simulation process. However, we used the same model for control and simulation in
both case 1 and case 2. In order to simulate this discrepancy, we used different RNN-LSTM
models for the control model and simulation model. For the simulation model, we changed
the hyperparameters of the RNN-LSTM model by including fewer units in the hidden
layer and retrained a new RNN-LSTM model. For the control model, we used the data
in the previous 2500 periods just before the initial regulation time t0, instead of the entire
dataset. To simulate the accidental error in the real situation, we added a normal error
representing the noise with a mean value of 0 and standard error of 0.01. We still simulated
the regulation at time 4000 and 4250, respectively. The relevant situation is shown in
Figure 11. After controlling of the system, the system output will reach the target value
after a smaller number of steps, compared to Figure 9. This is because we used 100 hidden
units in the hidden layer of RNN-LSTM for the simulation model, which are fewer than the
control model, leading to a process that responds more quickly.
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For some practical problems with disturbances variables, we further simulated some
experiments on the basis of case 3. We made the 8th variable (dry-matter content of
liquefied liquid) as disturbance variable, and the rest of the 17 variables in Table 1 as the
manipulated variables. When the system output value reached stability, we gave a step
change of the disturbance variable 10% and kept it at this level. The simulation results are
shown in Figure 12a. It can be seen that the controlled variable of the system will recover
after a brief decline and continue to stabilize around the target value. From the simulated
experiment, we can find the MPC strategy can resistance disturbance to a certain extent.
Then, we revisited case 3 for a more complex situation. We still used the 8th variable to
simulate the disturbance, and kept the 14th manipulated variable (fragment of grain) value
fluctuating by 5% near the initial value to simulate the situation that the input control could
not act on the system well enough and simulated it 4000 times. After the output value was
stable, the target value 101 was changed to 100.6 to simulate the change of the setpoint. The
simulation results are shown in Figure 12b. Due to the uncontrollable input, the system
output always has small fluctuations, but the trend was that the system output reached
near the target value and remains relatively stable.
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We must also comment on the tuning of the control parameters in the objective
function shown in Equation (19). In the process of the simulation, adjusting the values
of tracking error weight coefficient matrix(Q) and inhibition weight coefficient matrix of
control quantity(R) can change the rapidity and stability of the control system. Reducing
the value of Q can make the output curve of the system become smoother to a certain
extent. Increasing the value of R will make the calculated ∆UM,(k) smaller and it will take
longer to adjust the output to reach the target value. In some cases, the optimal input may
be too small for the MPC to control the output value near the target value, resulting in
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control failure. Therefore, the value of R should not be too large in order for the output
value to reach the target value more quickly. However, due to the small sample size of the
training model, if the value of R is too small and the calculated ∆UM,(k) is too large, there
will be many manipulated variables that exceed the constraint range of the variable and are
forced to give the maximum or minimum value corresponding to the variable, and then
the stability of the system will decrease.

The parameters of the MPC will not only affect the performance of MPC control, but
also affect the computational complexity of the MPC. The parameters of the MPC used
in this work mainly included the optimization time domain P, control time domain M,
tracking error weight coefficient Q, and control quantity suppression weight coefficient R.
If P is too large, the system will react slowly, and the controller will be difficult to control
the system in time. However, if P is too small, the system will carry out a large number
of optimization calculations, resulting in a large consumption of computing resources.
Through trial-and-error method, the P of MPC in this work is 50. The selection of control
time domain M has been described in Section 2.3.1. The M of MPC in this work is set as
50. Q and R is often set by following rules: If Q > R, it means that the MPC optimization
strategy is more likely to reduce the difference between the target value and the controlled
output value. If R > Q, it means that the optimization strategy of MPC would prefer that
the manipulated variables vary smaller and smoother. In addition, the effects of these two
parameters on the controlled output have been described above, the set value of parameter
can be adjusted in detail according to the rules mentioned above and the trial-and-error
method based on the demand for controlled output. We have included the Matlab code for
MPC controller in our supporting information.

4. Conclusions

In this work, the application of an MPC based on an RNN-LSTM model in the process
of corn-to-sugar was studied. First, the corn-to-sugar process was modeled, and the control
effects of different models were compared. The results showed that the LSTM model was
more suitable for modeling the corn saccharification plant, and the MSE was 0.02, which
means that the model has a good prediction effect. Based on the RNN-LSTM model, the
predictive model of the control system was established, the reasonable objective function
was selected, and the control system was constructed by controlling the key points of the
corn-to-sugar factory and combining them with feedback correction. The control system
was simulated by Matlab. With proper tuning of the MPC objective parameters, the output
value of the dextrose equivalent was achieved at the target, and the system was controlled
well after setpoint changes or disturbances were introduced.

This work presents an overall design of MPC system based on the data-driven RNN-
LSTM model, and the theoretical control effect of model predictive control in this corn-sugar
production process is verified in the simulations. This work builds a solid support for a
neural network-based model predictive controller at the factory-process level, and we will
further verify its real-life application in future work.

Author Contributions: Introduction: J.T., Y.L. and Y.T.; Framework: Y.W., L.Z. and Y.D.; Application:
J.D., J.M. and C.L.; Software: J.M. and C.L.; Data curation: J.T., Y.L., Y.T. and Y.W.; Writing—original
draft preparation: J.M. and C.L.; Writing—review and editing: Y.D., J.D. and L.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Special Foundation for State Major Basic Research Program
of China (Grant No. 2021YFD2101005).

Data Availability Statement: Partial data supporting the results of this study may be obtained from
the corresponding author upon reasonable request.

Acknowledgments: The authors are grateful for the financial supports of Special Foundation for
State Major Basic Research Program of China (Grant No. 2021YFD2101005).

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2023, 11, 1080 18 of 19

References
1. Rose, D.J.; Inglett, G.E.; Liu, S.X. Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. J. Sci.

Food Agric. 2010, 90, 915–924. [CrossRef] [PubMed]
2. Venkat, A.N.; Hiskens, I.A.; Rawlings, J.B.; Wright, S.J. Distributed MPC Strategies with Application to Power System Automatic

Generation Control. IEEE Trans. Control. Syst. Technol 2008, 16, 1192–1206. [CrossRef]
3. Tang, X.L.; Jia, T.; Hu, X.S.; Huang, Y.J.; Deng, Z.W.; Pu, H.Y. Naturalistic Data-Driven Predictive Energy Management for Plug-In

Hybrid Electric Vehicles. IEEE Trans. Transp. Electrif. 2021, 7, 497–508. [CrossRef]
4. Beal, C.E.; Gerdes, J.C. Model Predictive Control for Vehicle Stabilization at the Limits of Handling. IEEE Trans. Control. Syst.

Technol. 2013, 21, 1258–1269. [CrossRef]
5. Hrovat, D.; Di Cairano, S.; Tseng, H.; Kolmanovsky, I. The development of model predictive control in automotive industry: A

survey. In Proceedings of the 2012 IEEE InternationaL Conference on Control Applications (CCA), Dubrovnik, Croatia, 3 May
2012. [CrossRef]

6. Mendis, P.; Wickramasinghe, C.; Narayana, M.; Bayer, C. Adaptive model predictive control with successive linearization for
distillate composition control in batch distillation. In Proceedings of the 2019 Moratuwa Engineering Research Conference
(MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 366–369. [CrossRef]

7. Prasad, G.M.; Kedia, V.; Rao, A.S. Multi-model predictive control (MMPC) for non-linear systems with time delay: An experimen-
tal investigation. In Proceedings of the International Conference on Measurement, Instrumentation, Control and Automation
(ICMICA), Kurukshetra, India, 4–26 June 2020; pp. 1–5. [CrossRef]

8. Wang, X.; Li, S.K.; Tang, T.; Yang, L.X. Event-Triggered Predictive Control for Automatic Train Regulation and Passenger Flow in
Metro Rail Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1782–1795. [CrossRef]

9. Ellis, M.; Durand, H.; Christofides, P.D. A tutorial review of economic model predictive control methods. Process Control. 2014, 24,
1156–1178. [CrossRef]

10. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
11. Li, X.; Zhang, L.; Wang, Z.; Dong, P. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining

the long short-term memory and elman neural networks. Energy Storage 2019, 21, 510–518. [CrossRef]
12. Liang, X.; Lin, L.; Shen, X.; Feng, J.; Yan, S.; Xing, E.P. Interpretable structure-evolving LSTM. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2171–2184.
13. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
14. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

Neural Netw. 2005, 18, 602–610. [CrossRef] [PubMed]
15. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Ali, R.; Usama, M.; Muhammad, M.A.; Khairuddin, A.S.M. A hybrid deep learning

method for an hour ahead power output forecasting of three different photovoltaic systems. Applied Energy 2022, 307. [CrossRef]
16. Demidova, L.A. Recurrent Neural Networks’ Configurations in the Predictive Maintenance Problems. Workshop Mater. Eng.

Aeronaut. 2020, 714, 012005. [CrossRef]
17. Xu, J.; Li, C.D.; He, X.; Huang, T.W. Recurrent neural network for solving model predictive control problem in application of

four-tank benchmark. Neurocomputing 2016, 190, 172–178. [CrossRef]
18. Norouzi, A.; Shahpouri, S.; Gordon, D.; Winkler, A.; Nuss, E.; Abel, D.; Andert, J.; Shahbakhti, M.; Koch, C.R. Machine Learning

Integrated with Model Predictive Control for Imitative Optimal Control of Compression Ignition Engines. IFAC-PapersOnLine
2022, 55, 19–26. [CrossRef]

19. Maltais, L.G.; Gosselin, L. Energy management of domestic hot water systems with model predictive control and demand forecast
based on machine learning. Energy Convers. Manag. X 2022, 15, 100254. [CrossRef]

20. Wu, Z.; Tran, A.; Ren, Y.M.; Barnes, C.S.; Chen, S.; Christofides, P.D. Model predictive control of phthalic anhydride synthesis in a
fixed-bed catalytic reactor via machine learning modeling. Chem. Eng. Res. Des. 2019, 145, 173–183. [CrossRef]

21. Wu, Z.; Christofides, P.D. Control Lyapunov-Barrier function-based predictive control of nonlinear processes using machine
learning modeling. Comput. Chem. Eng. 2020, 143, 106706. [CrossRef]

22. Wu, Z.; Rincon, D.; Christofides, P.D. Real-time machine learning for operational safety of nonlinear processes via barrier-function
based predictive control. Chem. Eng. Res. Des. 2020, 155, 88–97. [CrossRef]

23. Alhajeri, M.S.; Luo, J.W.; Wu, Z.; Albalawi, F.; Christofides, P.D. Process structure-based recurrent neural network modeling for
predictive control: A comparative study. Chem. Eng. Res. Des. 2022, 179, 77–89. [CrossRef]

24. Ren, Y.M.; Alhajeri, M.S.; Luo, J.W.; Chen, S.R.; Abdullah, F.; Wu, Z.; Christofides, P.D. A tutorial review of neural network
modeling approaches for model predictive control. Comput. Chem. Eng. 2022, 165, 107956. [CrossRef]

25. Zarzycki, K.; Lawrynczuk, M. LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A
Comparison of Models Developed for Two Chemical Reactors. Sensors 2021, 21, 5625. [CrossRef] [PubMed]

26. Wang, Q.C.; Pan, L.; Lee, K.Y. Improving Superheated Steam Temperature Control Using United Long Short-Term Memory and
MPC. IFAC-PapersOnLine 2020, 53, 13345–13350. [CrossRef]

27. Singh, A.K.; Tyagi, B.; Kumar, V. Classical and Neural Network–Based Approach of Model Predictive Control for Binary
Continuous Distillation Column. Chem. Prod. Process Model. 2014, 9, 71–87. [CrossRef]

28. Qing, X.Y.; Song, J.; Jin, J.; Zhao, S.L. Nonlinear model predictive control for distributed parameter systems by time-space-coupled
model reduction. AICHE J. 2021, 67, e17246. [CrossRef]

http://doi.org/10.1002/jsfa.3915
http://www.ncbi.nlm.nih.gov/pubmed/20355130
http://doi.org/10.1109/TCST.2008.919414
http://doi.org/10.1109/TTE.2020.3025352
http://doi.org/10.1109/TCST.2012.2200826
http://doi.org/10.1109/CCA.2012.6402735
http://doi.org/10.1109/MERCon.2019.8818777
http://doi.org/10.1109/ICMICA48462.2020.9242772
http://doi.org/10.1109/TITS.2020.3026755
http://doi.org/10.1016/j.jprocont.2014.03.010
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.est.2018.12.011
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
http://doi.org/10.1016/j.apenergy.2021.118185
http://doi.org/10.1088/1757-899X/714/1/012005
http://doi.org/10.1016/j.neucom.2016.01.020
http://doi.org/10.1016/j.ifacol.2022.10.256
http://doi.org/10.1016/j.ecmx.2022.100254
http://doi.org/10.1016/j.cherd.2019.02.016
http://doi.org/10.1016/j.compchemeng.2019.106706
http://doi.org/10.1016/j.cherd.2020.01.007
http://doi.org/10.1016/j.cherd.2021.12.046
http://doi.org/10.1016/j.compchemeng.2022.107956
http://doi.org/10.3390/s21165625
http://www.ncbi.nlm.nih.gov/pubmed/34451065
http://doi.org/10.1016/j.ifacol.2020.12.169
http://doi.org/10.1515/cppm-2013-0013
http://doi.org/10.1002/aic.17246


Processes 2023, 11, 1080 19 of 19

29. Lin, W.C.; Tsai, C.F. Missing Value Imputation: A Review and Analysis of the Literature (2006–2017). Artif. Intell. Rev. 2020, 53,
1487–1509. [CrossRef]

30. Strike, K.; El Emam, K.; Madhavji, N. Software cost estimation with incomplete data. IEEE Trans. Softw. Eng. 2001, 27, 890–908.
[CrossRef]

31. Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and
wavelet transform. Energy 2019, 187, 115804. [CrossRef]

32. Maples, M.P.; Reichart, D.E.; Konz, N.C.; Berger, T.A.; Trotter, A.S.; Marti, J.R.; Dutton, D.A.; Paggen, M.L.; Joyner, R.E.; Salemi,
C.P. Robust Chauvenet Outlier Rejection. Astrophys. J. Suppl. Ser. 2018, 238, 2. [CrossRef]

33. Elko, G.W.; Sondhi, M.M.; West, J.E. Noise reduction processing arrangement for microphone arrays. Acoust. Soc. Am. 1989, 88,
2919. [CrossRef]

34. Lopez-Medina, C.; Ladehesa-Pineda, L.; Puche-Larrubia, M.A.; Escudero-Contreras, A.; Font-Ugalde, P.; Collantes-Estev, E.
Which factors explain the patient global assessment in patients with ankylosing spondylitis A hierarchical cluster analysis on
REGISPONSER-AS. Semin. Arthritis Rheum. 2021, 51, 875–879. [CrossRef]

35. Lin, J.; Li, S. Sparse recovery with coherent tight frames via analysis Dantzig selector and analysis LASSO. Appl. Comput. Harmon.
Anal. 2014, 37, 126. [CrossRef]

36. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 1 January 1967; p. 281.

37. Zhang, X.; Liu, L.; Long, G.; Jiang, J.; Liu, S. Episodic memory govern schoices: An RNN-based reinforcement learning model for
decision-making task. Neural Netw. 2021, 134, 1–10. [CrossRef] [PubMed]

38. Ramasamy, V.; Kannan, R.; Muralidharan, G.; Sidharthan, R.K.; Veerasamy, G.; Venkatesh, S.; Amirtharajan, R. A comprehensive
review on Advanced Process Control of cement kiln process with the focus on MPC tuning strategies. J. Process. Control. 2023,
121, 85–102. [CrossRef]

39. Sun, C.; Hu, X.; Moura, S.J.; Sun, F. Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles. IEEE Trans.
Control. Syst. Technol. 2014, 23, 1197–1204. [CrossRef]

40. Maciejowski, J.M. Predictive Control with Constraints; Prentice-Hall, Pearson Education Limited: Harlow, UK, 2002.
41. Rawlings, J.B.; Mayne, D.Q. Model Predictive Control: Theory and Design; Nob Hill Publishing: Madison, WI, USA, 2009.
42. Tong, Y.; Shu, M.; Li, M.X.; Liu, Y.W.; Tao, R.; Zhou, C.C.; Zhao, Y.; Zhao, G.X.; Li, Y.; Dong, Y.C.; et al. A neural network-based

production process modeling and variable importance analysis approach in corn to sugar factory. Front. Chem. Sci. Eng. 2022, 1–4.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10462-019-09709-4
http://doi.org/10.1109/32.962560
http://doi.org/10.1016/j.energy.2019.07.134
http://doi.org/10.3847/1538-4365/aad23d
http://doi.org/10.1121/1.399620
http://doi.org/10.1016/j.semarthrit.2021.06.007
http://doi.org/10.1016/j.acha.2013.10.003
http://doi.org/10.1016/j.neunet.2020.11.003
http://www.ncbi.nlm.nih.gov/pubmed/33276194
http://doi.org/10.1016/j.jprocont.2022.12.002
http://doi.org/10.1109/TCST.2014.2359176
http://doi.org/10.1007/s11705-022-2190-y

	Introduction 
	RNN-LSTM-Based Model Predictive Control Framework 
	Data Preprocessing 
	Data Cleaning 
	Data Dimension Reduction 
	Key Sites Identification 

	RNN-LSTM Model Construction 
	MPC Using RNN-LSTM Model 
	Model Prediction 
	Rolling Optimization 
	Error Correction 


	Corn-to-Sugar Process Application 
	Model Training 
	Data Collection and Preprocessing 
	Training Process 

	MPC with RNN-LSTM Model 

	Conclusions 
	References

