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Abstract: Most bubble breakage models have been developed for multiphase simulations using
Euler-Euler (EE) approaches. Commonly, they are linked with population balance models (PBM)
and are validated by making use of Reynolds-averaged Navier-Stokes (RANS) turbulence models.
The latter, however, may be replaced by alternate approaches such as Large Eddy simulations (LES)
that play a pivotal role in current developments based on lattice Boltzmann (LBM) technologies.
Consequently, this study investigates the possibility of transferring promising bubble breakage
models from the EE framework into Euler-Lagrange (EL) settings aiming to perform LES. Using
our own model, it was possible to reproduce similar bubble size distributions (BSDs) for EL and
EE simulations. Therefore, the critical Weber (Wecrit) number served as a threshold value for the
occurrence of bubble breakage events. Wecrit depended on the bubble daughter size distribution
(DSD) and a set minimum time between two consecutive bubble breakage events. The commercial
frameworks Ansys Fluent and M-Star were applied for EE and EL simulations, respectively. The latter
enabled the implementation of LES, i.e., the use of a turbulence model with non-time averaged entities.
By properly choosing Wecrit, it was possible to successfully transfer two commonly applied bubble
breakage models from EE to EL. Based on the mechanism of bubble breakage, Wecrit values of 7 and 11
were determined, respectively. Optimum Wecrit were identified as fitting the shape of DSDs, as this
turned out to be a key criterion for reaching optimum prediction quality. Optimum Wecrit values
hold true for commonly applied operational conditions in aerated bioreactors, considering water as
the matrix.

Keywords: bubble breakup; bubble size distribution (BSD); computational fluid dynamics (CFD);
daughter size distribution (DSD); euler-lagrange approach (EL); large eddy simulation (LES); lattice
boltzmann simulation (LBM); multiphase reactors; Sauter diameter; turbulence/bubble interaction

1. Introduction

Multiphase reactors are intensively used in the chemical and biotech industries. In
such (gas–liquid) flow systems, bubble size distribution (BSD) mirrors bubble breakage and
coalescence effects. Bubble sizes directly influence hydrodynamic flow and determine the
phase exchange area. Consequently, accurate prediction of bubble breakage not only pro-
vides a sound basis for precise and comprehensive CFD simulations but also for qualifying
mass transfer capacities of a reactor setting. For the calculation of gas–liquid mass transfer
between the phases, the Sauter diameter d32 is of particular importance. To predict the
dissolved gas concentration gradients within the reactor, the local d32 should be determined
as accurately as possible. Often, Euler-Euler approaches are applied considering both
the gas and the aqueous phase as a continuum, thereby integrating bubble breakage in
population balance models (PBMs). In this context, Reynolds-averaged Navier-Stokes
(RANS) turbulence models are commonly applied to finite volume (FV) solvers. Many
existing breakage models have been calibrated under these conditions [1–3].

Luo et al. [4] probably published the most applied breakage kernel in PBMs. Despite a
multitude of alternate approaches, their model continues to be one of the most used frame-
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works [5–7]. In addition, the modified approach of Lehr et al. [1] also gained significance
for calculating bubble size distributions [8–10]. Interestingly enough, both approaches
require the same set of input parameters, namely fluid density, surface tension, turbulence
dissipation rate and bubble diameter. As such, they are generally applicable.

Since increasing computational capacities allow the application of sophisticated nu-
merical solvers, the lattice Boltzman (LBM) method has recently been applied to sim-
ulate industrial reactors [11–14]. The approach is well parallelizable, offering the use
of modern graphic cards that accelerate computation and that enable treating bubbles as
Lagrangian ‘particles’ in Euler-Lagrange (EL) and large eddy (LES) multiphase simulations.
The modeling of bubbly flows with the EL framework has received increasing attention in
recent years [15–18]. Typically, the fluid phase is treated as a continuum, while the gas phase
consists of a number of tracers that interact with the fluid. Considering all relevant forces,
particle movement is calculated by the so-called Verlet integration as described in [19,20]
for Lagrangian particles. As LES and EL simulations are computationally demanding,
EE comprising RANS turbulence models was the method of choice in the past. However,
according to [21], LES simulations of gas–liquid bubble columns achieve better agreement
with experimental data than RANS, which integrates the k-ε model. Consequently, our
study ultimately aims to make use of its own bubble breakage model as the promising basis
for performing LES simulations.

EL simulations of multiphase (bio-)reactors do not require the implementation of PBMs.
Instead, breakage conditions are qualified individually for each bubble. Nevertheless, the
successful application of the two breakage models of [4] and [1] asks for equal breakage
predictions in EE and EL simulations. Considering the main input parameters, fluid density,
surface tension, turbulence dissipation rate and bubble diameter, this requirement is hard to
achieve, as local turbulence dissipation rates differ significantly in the LES and k-ε context.
As a workaround, this study introduces the critical Weber number Wecrit, i.e., a critical
ratio of fluid inertia versus surface tension, as a pivotal threshold value for starting bubble
breakage. This dimensional criterion for bubble breakup, as used in EL contexts, has been
documented in several recent investigations [15,17,21–23].

We are local numbers that may be easily derived from fluid mechanics, which allows
using the original breakage models instead of adapting them [15]. Although the approach
may succeed in correctly predicting model breakage events, the forecasting of daughter
size distributions (DSD) may still be demanding. In the EE framework, the solution of the
integro-differential PBM ensures ‘pseudo’ steady-state bubble size distributions. In the
EL framework, DSDs result from the individual analysis of each breakage event, which
introduces a stochastic element. Therefore, this study also presents suitable DSD shapes
together with their mathematical descriptions.

In essence, the two well-known bubble breakage models, [4] and [1], need to be
transferred and validated regarding their application in EL, LES turbulence models and
LBM simulations. The goal is to present a bubble breakage description that is applicable
for a wide range of datasets and mechanistic bubble breakage effects thanks to the modular
structure of critical We number and the consideration of individual DSDs.

2. Materials and Methods

All simulations were performed in a bubble column with a height of 1.3 m and a
diameter of 0.2 m, resulting in a total volume of 40.84 L. The identical geometry and
operating parameters were chosen for both simulations, EE and EL. The air volume flow
rate was kept constant at 4 L min−1 at the ring sparger. To provoke and enhance bubble
breakage, the liquid was steadily injected at the center of the bottom and simultaneously
removed from the top of the reactor, mimicking an external fluid loop. Both the inlet and
outlet tube had a diameter of 24 mm. The volume flow rate varied to expose bubbles
to different turbulence intensities. The bubble diameter at the inlet remained at 16 mm.
Fluid viscosity, density and surface tension were assumed to be similar to the properties
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of water. According to [24], the specific energy dissipation rate εpump caused by the pump
was calculated directly from the pump volume flow rate

.
v in Equation (1):

εpump =
1
2

.
vρw2

Vl
(1)

In addition to the volume of the bubble column Vl and the liquid density ρ, the liquid
velocity at the inlet w was considered. The latter was defined as the pump volume flow in
relation to the inlet area A in Equation (2):

w =

.
v
A

(2)

2.1. Bubble Column Simulation in the Euler-Euler Approach

The simulation in the FV approach was performed with Ansys Fluent 2021. The
multiphase fluid was realized as EE using a mesh of hexahedrons to enable numerical
stability (see Figure 1). Turbulence was modeled with the help of the renormalization group
(RNG) k-ε model yielding time-averaged turbulent kinetic energy k and turbulent kinetic
dissipation rate ε. Notably, the identical turbulence model employed by Lehr et al. [1] was
used in this study. After evaluating a mesh independence study with three different mesh
densities, the total grid number was set to 862,750. The velocity magnitude was accurately
predicted for all mesh densities. However, the peak turbulent dissipation rate was overesti-
mated for the lowest mesh density at a height of 0.2 m, as depicted in Figure 2a. The middle
mesh was considered to be sufficiently accurate, offering acceptable computation time. The
correlations for the drag coefficient obtained from Tomiyama et al. [25] were embedded in
the model. For stability reasons, no further bubble forces have been implemented, as it
was assumed that the bubble velocity was dominated by the surrounding fluid movement.
With a population balance model (PBM) consisting of 20 discrete size classes, the bubble
size distribution (BSD) was sufficiently well resolved. The size classes were distributed
applying a growth ratio exponent of 0.5 in the range between 1 and 16 mm. With a timestep
of 0.01 s, it was possible to reach the threshold of at least 10−4 for all residuals. Once the
threshold was achieved, steady-state conditions were assumed. The BSD was evaluated
only in the upper third of the column, as it was assumed that the bubble breakage process
was completed at this position. A summary of all settings is listed in Table 1.

Figure 1. Mesh for bubble column simulation in Ansys Fluent. (a): View from the top (b): Section
view from the side.
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Figure 2. Mesh independence study with 3 different mesh densities. The turbulent dissipation rate on a
vertical line in the center of the column is compared. (a): Ansys Fluent simulation (b): M-Star simulation.

Table 1. Geometry, simulation set-up, boundary conditions and solver setting of bubble column
simulation in Ansys Fluent.

Properties Boundary Conditions Units

Fluid inlet Volume flow: 0.6, 0.9, 1.2, 1.5 L s−1

Air inlet Volume flow: 4 L min−1

Outlet Degassing
Wall No-slip

Initial bubble size 16 mm
Column diameter 0.2 m

Column height 1.3 m
Multiphase Euler-Euler

Ring sparger diameter Ring diameter × tube diameter (8.8 × 0.9) cm
Fluid inlet diameter 24 mm

Population balance model Discrete with 20 bins in range [1–16 mm]
Breakage model Luo et al. and Lehr et al.

Turbulence RNG k-ε model
Phase interactions

Drag [25]
Solution methods

Pressure-velocity coupling Phase coupled SIMPLE
Gradient Least Squares Cell Based
Pressure Body Force Weighted

Momentum QUICK
Volume fraction QUICK

Turbulent kinetic energy Second Order Upwind
Turbulent dissipation rate Second Order Upwind

Phase-2 Bin Second Order Upwind
Transient Formulation Bounded Second Order Implicit

Time step size 0.01 s
Total mesh size 862,750

2.2. Bubble Column Simulation in the Euler-Lagrange Approach

For the LES simulations using the lattice Boltzmann method, the commercial software
M-Star CFD 3.2.6 (https://mstarcfd.com (accessed on 10 November 2022)) was applied. Ac-
cording to the D3Q19 velocity vector set, the 3D space is discretized into equally distributed
grid points with predefined distance. Every grid point is surrounded by 19 direct neigh-
bors, incorporated by the ith orientation of vector ci. Each point is individually defined
by the probability density function fi(x, t), representing fictitious parcels as a proxy for

https://mstarcfd.com
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fluid movement. The LB algorithm consists of two steps: collision and streaming. During
the streaming step, the parcels move with a constant velocity from node to node, each
providing updating information after the respective time step ∆t. The model presumes that
the fluid relaxes locally to the equilibrium distribution function f eq

i (x, t) over a character-
istic timescale τ, which depends on the molecular viscosity of the fluid. In the standard
LBM equation, the collision step is described on the right-hand side in Equation (3) [26,27].

fi(x + ci∆t, t + ∆t)− fi(x, t)
∆t

= − 1
τ

[
fi(x, t)− f eq

i (x, t)
]

(3)

whereas the microscopic scale is simplified, the macroscopic scale can be described with
second-order accuracy. The operations of the right and left sides of Equation (3) may
be easily parallelized, which allows computation on a graphic processor. All walls were
considered as no-slip surfaces. To remove the bubbles, the fluid column was defined as
a free surface boundary condition at the top. Analogous to the EE approach, the drag
force was derived using the correlation of [25] to calculate the drag force coefficient. It was
assumed that the effect of other forces on bubble motion was negligible. However, it was
evident that lift force stabilizes the bubbles horizontally, so the implementation of the lift co-
efficient of [28] turned out to be beneficial. The LES model was used to take turbulence into
account. Numerous studies have demonstrated the superior precision of LES simulations
over RANS turbulence models [21,29–31]. The use of LES methods as the standard for LBM
simulations is justified by the potential to apply greatly parallelized algorithms [12,13,18].
Eddies below the sub-grid scale were incorporated with the Smagorinsky model [32] by
calculating the sub-grid eddy viscosity νt with Equation (4):

νt = (CS∆x)
2∣∣S∣∣ (4)

The Smagorinsky coefficient Cs was kept to 0.1, which is the default value in M-Star.
Additionally, νt depends on the grid size ∆x and the filtered strain rate tensor S. The
accuracy and quality of a LES are strongly linked to the mesh density. With finer grid
resolution, a broader spectrum of eddy sizes can be resolved. This effect can be seen in
the mesh independence study shown in Figure 2b. When comparing three different mesh
densities, the turbulence dissipation rate was overestimated between a column height of
0.01 and 0.2 m, with the lowest grid density of 17.8 M. At a grid density of 24.1 M, the
changes of ε were minor compared to the highest resolution and therefore this mesh was
chosen for all ongoing simulations. In order to accurately assess the impact of turbulence
on bubble breakage, it is essential to ensure precise reproduction of ε for all reactor heights.

In the framework of the EL approach, it is recommended that bubble diameters be at
least an order of magnitude smaller than the mesh spacing to ensure that the impulse between
the bubble and the fluid is accurately transferred [33]. Interestingly, Sungkorn et al. [18]
suggested that minimal numerical mesh sizes double the bubble diameter were sufficient.
However, none of those criteria were applied in the present work, as bubbles are larger than
the grid spacing for the sake of high fluid resolution. Accordingly, it was assumed that
the bubble-induced fluid movement was underestimated with the current approach. In the
current application, this bias was of minor importance since the flow field was dominated by
the convective flow of the recirculation pump. Notably, this simulation setting was chosen as
it was the pivotal interest of this study to investigate the interaction of ε with bubbles.

The BSD was evaluated at a column height between 0.95 and 1.15 m. At this height, no
further bubble breakage occurred. After 10 s, a pseudo-equilibrium was established, so that
the evaluation was carried out for an additional 10 s in each case. The state of each bubble
was recorded every 0.01 s. A lattice time step size ∆t between 3 × 10−6 and 1.6 × 10−5 s
kept lattice density deviation below 2% (usually significantly lower). A summary of all
settings is listed in Table 2.



Processes 2023, 11, 1018 6 of 22

Table 2. Geometry, simulation set-up, boundary conditions and solver setting of bubble column
simulation in M-Star.

Properties Boundary Conditions Units

Fluid inlet Volume flow: 0.6, 0.9, 1.2, 1.5 L s−1

Air inlet Volume flow: 4 L min−1

Outlet Free Surface
Wall No-slip

Initial bubble size 16 mm
Column diameter 0.2 m

Column height 1.3 m
Ring sparger diameter Ring diameter × tube diameter (8.8 × 0.9) cm

Fluid inlet diameter 24 mm
Multiphase Euler-Lagrange

Breakage model Modified Weber number
Turbulence LES

Sub-grid model [32]
Smagorinsky coefficient 0.1

Phase interactions
Drag [25]
Lift [28]

Fluid-bubble coupling Density
Velocity vector set D3Q19

Time step size Between 3 × 10−6 s and 1.6 × 10−5 s s
Total mesh size 24.1 M

2.3. Bubble Breakage Models for the Euler-Euler Approach

The models of Luo et al. [4] and Lehr et al. [1] differ in the formulation of the force
balance equation. Luo et al. assumed that the hitting eddy transfers more energy than
needed to merge the cells, which would lead to an increased bubble surface. The criterion
of Lehr et al. [1] compares interfacial forces with external stress by the eddies and considers
breakup if the latter exceeds the interfacial stability. The breakup of a bubble is caused by
the hydrodynamic conditions in the surrounding fluid and by individual bubble properties.
A detailed review of bubble breakage models may be found in [34], indicating that turbulent
fluctuations and bubble-to-eddy collisions are the dominating factors for breakage. As
bubbles interact with turbulent eddies, they exchange energy and momentum with the
fluid, resulting in interfacial instabilities. Once the stabilizing effects by inertia and surface
tension are smaller, bubble breakage occurs. In EE applications, a breakup kernel function
is usually defined as:

ΩB
(
V : V′

)
=
∫ λmax

λmin

ωB(V)PB
(
V, V′

)
dλ (5)

Here, ωB(V) is the frequency of eddies of length scale between λ and λ + dλ hitting
the bubble, and PB(V, V′) is the probability that said bubble breaks into two smaller
parts, if sufficient turbulent energy is provided. The volumes of the parent and daughter
bubbles are denoted by V and V’, respectively. The collision frequency ωB(V) for the
model Luo et al. [4] may be determined in analogy to kinetic gas theory and depends on
the bubble diameter d and the number density of bubbles.

For the final description of ΩB(V : V′) in Equation (6), the equations for ωB(V) and
PB(V, V′) are inserted into (5):

ΩB
(
V : V′

)
= 0.9238ε

1
3 d−

2
3 α
∫ 1

ξmin

(1 + ξ)2

ξ11/3 e−12( f
2
3

V +(1− fV)
2
3−1)σβ ρ−1ε

− 2
3 d

5
3 ξ
− 11

3 dξ (6)

The model, according to Lehr et al. [1], employs equivalent formulations for ωB(V).
However, the breakage probability is obtained from the balance between bubble surface
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tension and the interfacial force of the hitting eddy. The former explicitly refers to the
surface tension of the smaller bubble. For this purpose, the velocity spectrum around the
mean value is considered, which can be assumed to be normally distributed [35]:

The final breakage frequency ΩB(V : V′) is formulated in Equation (7).

ΩB
(
V : V′

)
= 1.19ε

−2
3 d−

2
3 σρ−1 f−

1
3

V

∫ 1

ξmin

(1 + ξ)2

ξ
13
3

exp
(
−2σρ−1ε−

2
3 d−

5
3 f−

1
3

V ξ−
2
3

)
dξ (7)

Lehr et al. were able to provide an analytical solution without the integral in Equation (8),
which was very helpful when considering Lagrangian particles.

ΩB
(
V : V′

)
= 0.5

d
5
3
i ε

19
15 ρ

7
5

σ
7
5

exp

(
−
√

2σ
9
5

d3
i ρ

9
5 ε

6
5

)
(8)

The work of Luo et al. [4] and Lehr et al. [1] limited the integration on the turbulence
wavenumber such that only eddies smaller or equal to the bubbles may cause their breakage.
In both cases, only binary bubble breakage is considered.

2.4. Bubble Breakage Model Description for the Euler-Lagrange Approach

A crucial limit for the occurrence of breakage in EL is formulated by comparing the
disruptive and cohesive stress of the bubble, as it is done by the We number (Equation (9)),
a dimensionless number describing fluid’s inertia compared to its surface tension σ.

We =
ρu2d

σ
(9)

Under the action of viscous shear, a drop elongates into the shape of a prolate ellipsoid.
If the exposed energy force exceeds a critical value, the bubble breaks.

We =
ρδu2(d)d

σ
(10)

In turbulent flows, the deformation is induced by δu2(d) which is the mean square ve-
locity difference over a distance equal to d. Kolmogorov [36] postulated that the criteria be-
comes independent of viscosity if the Reynold number is high enough. Assuming isotropic
turbulence, δu2(d) can be replaced by the dominant hitting eddy influence in Equation (10).

We =
ρβ(εd)

2
3 d

σ
=

ρβε
2
3 d

5
3

σ
(11)

The model constant β in Equation (11) varies throughout the literature and is measured
with a value of 2 according to [37], which is offset against the critical Weber number Wecrit.
Since ρ and σ are assumed to be constant during the simulation, ε and d are the crucial
parameters for breakage. These influencing variables are also decisive in the original
models. A critical We number needs to be found in such a way that it is able to reproduce
the bubble breakup rates of the considered models. For bubble breakage, the condition of
Equation (12) applies:

Wecrit < We (12)

The number of breakage events increases with increasing bubble diameter and turbu-
lent dissipation rate. Notably, only these local parameters affect bubble breakage but not
the experimental setting that is used for creating the breakage scenario. In our study, all
simulations were performed for a water–air system. However, the presented kernels are
functions of surface tension and fluid density. Therefore, they are transferable to liquids
with changed physical properties.
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2.5. Daughter Size Distribution for Bubble Breakage Models

In addition to the breakup frequency, the size of the two generated daughter bubbles
must be known. In [34], different types of DSD formulations are categorized. The distribu-
tions of [4] and [1] are formulated as algebraic expressions, finally creating either bell-, U- or
M-shape daughter bubbles. Hesketh et al. [38] experimentally showed that equal breakup
is unlikely because more energy is required to outplay the increased surface tension of
equal bubbles compared to non-equal bubbles. Since only binary splitting is considered,
the distribution has to be symmetric. This results in a U-shape of the distribution with a
global minimum at fV = 0.5. The DSD used by [4] is created by normalizing the breakup
frequency by the overall breakage frequency, as seen in Equation (13).

DSD
(
dj, di

)
=

ΩB(V : V′)
ΩB(V)

(13)

This model causes a high probability of daughter bubbles close to zero and one. The
DSD in the U-shape is formulated in its final form according to Luo et al. in Equation (14):

DSD
(
dj, di

)
=

2
∫ 1

ξmin

(1+ξ)2

ξ
11
3

e−12( f
2
3

V +(1− fV)
2
3−1)σβ ρ−1ε

− 2
3 d

5
3 ξ
− 11

3 dξ

∫ 1
0

∫ 1
ξmin

(1+ξ)2

ξ
11
3

e−12( f
2
3

V +(1− fV)
2
3−1)σβρ−1ε

− 2
3 d

5
3 ξ
− 11

3 dξd fV

(14)

Lehr et al. [1] provided a separate function for DSD
(
dj, di

)
which is rooted on a

lognormal distribution:

DSD
(
dj, di

)
=

1√
π fV

exp

− 9
4

(
ln

(
2

2
5 djρ

3
5 ε

2
5

σ
3
5

))2


1 + er f
(

3
2

(
ln
(

2
1

15 diρ
3
5 ε

2
5

σ
3
5

))) (15)

The DSD of [1] is basically characterized by an M-shape, with a local minimum
at fV = 0.5, thereby preferring non-equally sized daughter bubbles. The conditions for
M-shaped daughter size distribution are typically observed. However, deviations of the
M-shape may occur in the following extreme scenarios: If parent bubbles are small and
interfacial forces are high, a bell-shape occurs with a maximum at fV = 0.5. In contrast, if
parent bubbles are large, unequal breakage is preferred and a U-shape is ultimately created.

For each bubble breaking event, an equally distributed random number between 0 and 0.5
is created. The random number is then distorted according to a given function. In [18] and [17],
the U-shape of [4] is created by using a tanh or gamma function. These algebraic expressions
lead to rigid functions without dependency on d. For this, Equations (14) and (15) were solved
directly for each bubble breakage event. First, the integral of the Luo et al. DSD was solved.
This was done with the help of an analytic solution based on the gamma function. The gamma
function was approximated by the fitting parameters. For Lehr et al., the analytic solution
was already available in Equation (15). With a step size of 0.01, a probability was determined
for each fV from 0.01 to 0.99. The original equally distributed random number was then
distorted accordingly. In comparison to RANS, ε was not time-averaged when calculated with
the LES turbulence model. As can be seen in Figure 2, ε was therefore one order of magnitude
larger. The influence of ε on the original DSD was smaller compared to d, as indicated by the
exponents in (14) and (15). The effect of ε on DSD was therefore neglected entirely by replacing
it with a constant. Details are given in Appendix B. The software code for implementation in
M-Star can be found in Supplementary Materials.
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2.6. Bubble Breakage Duration

In an EL framework, it must be ensured that a bubble can only break once within a
time step to prevent a cascade of breakage events in high turbulence areas. The parameter
tBreak defines the minimum time between two consecutive bubble breakage events and thus
limits the number of successive separations. A proxy for the time scale of this parameter is
the duration of the breakage process of a single bubble. First, the bubbles undergo unstable
oscillations before stable daughter bubbles are created after division. According to [39], the
breakage time may be estimated by the motion of two fractions of fluid in a turbulent flow
field and is therefore proportional to ε. The bubble diameter is the characteristic length
along the turbulent fluctuations. Therefore, it can be written:

tBreak = 0.5ε−
1
3 d

2
3 (16)

Both deformation and breakage times of drops were measured with high-speed movie
cameras in different experiments [38,40,41]. When transferring bubble breakage models
from the EE to the EL approach, tBreak is an important fitting parameter, as this factor must
be found in such a way that the model is valid in a wide turbulence spectrum. With a large
value for tBreak, over-proportional breaking can be prevented in highly turbulent regions.

2.7. Bubble Size Distribution Evaluation

In summary, the bubble breakage description for an EL approach consists of the
optimized Wecrit, the minimum time between two bubble breakages and a suitable DSD.
The related parameters must be found individually for each scenario and are only valid for
the given setting. In our study, the quality of the fitted solution was evaluated based on
multiple criteria. The Sauter diameter d32 weights the size classes and is influenced by the
shape of the overall distribution, as shown in Equation (17).

d32 =
∑∞

i=1 d3
i

∑∞
i=1 d2

i
(17)

3. Results and Discussion
3.1. Influence of the Turbulence Model

Figure 3a,b depict contour plots of ε using FV and LBM, respectively. In both cases,
the plane is placed in the center of the column and spans the height from the inlet to the
outlet. As indicated, the fluid field is dominated by the convective flow at the inlet. Bubble
breakage occurs only in the region of pump-induced turbulence. Since the added liquid
is simultaneously removed at the top, the superposed flow directs upward unidirectional
with the bubble movement. At the inlet, the fluid movement is concentrated in the column
center and slightly disperses with rising column height, finally becoming entirely dispersed.
There, upward motions transform into vortices and dissipate, creating small high-energy
eddies. The air sparger is located a few centimeters above the pump inlet. Interestingly,
bubbles rather escort the main flow field up to 30 cm, where they start experiencing velocity
gradients and different intensities of ε.

Characteristics of FV performance have been discussed intensively [29–31], outlining
substantial deviations of said k-ε approach compared to LES in LBM simulations. Compar-
ing Figure 3a,b, those differences become obvious. The key distinction is the time averaging
of ε in the k-ε model which is not performed in LES. Such a ‘pseudo’ steady-state solution is
shown in Figure 3a. As indicated, ε values that act on the bubbles depend on their position,
i.e., those close to the center of the column tend to break more frequently, as local ε values
are higher. In contrast, Figure 3b only provides a snapshot of the very dynamic fluid field
that constrains bubble breakage to discrete events when bubbles are hit by strong eddies.

Figure 3a shows that there is almost no turbulence predicted by FV, whereas a different
scenario is depicted in Figure 3b using LBM. Regarding FV, most bubble breakage occurs



Processes 2023, 11, 1018 10 of 22

in the lower half of the column, whereas LBM identifies upward eddies that may also lead
to bubble breakage in higher regions.

Figure 3. Flow field as contour plot shown as a section plane, where turbulent dissipation rate is depicted.
Simulation of bubble column in Ansys Fluent. (a): Ansys Fluent simulation (b): M-Star simulation.

The large differences in the resulting contour plots demonstrate that successful transfer
of bubble breakage models that are usually applied in EE applications is only possible
based on solved fluid fields. Then, the impacts of local eddies on bubble sizes may be
additionally considered.

3.2. Describing Daughter Size Distribution (DSD) for the Euler-Lagrange Approach

The current study aimed to find simulation settings that enable the use of the established
models by Luo et al. [4] and Lehr et al. [1], not only for EE but also for EL simulations. Conse-
quently, the shapes of DSDs should remain, but proper parameters for EL need to be identified.
In the case of the Luo et al. model, this was achieved by a fit function (see Appendix B).
Figures 4 and 5 depict the DSD distributions obtained by Equations (14) and (15), respectively.
As depicted, varying probabilities for the corresponding fV are observed. As seen in Figure 6,
the DSD shape only changed depending on the parent bubble diameter. As local ε values
differ (see Figure 3a,b), a constant value for ε had to be found to represent the fluid field over a
wide spectrum of turbulence to finally create similar DSD shapes. In the column section of the
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FV simulation for bubble breakage, the average ε ranges from 0.036 W m−3 to 0.446 W m−3,
depending on the pump energy input. Therefore, constant ε values were set for Luo et al. as
0.08 W m−3 and for Lehr et al. as 0.1 W m−3. These ε settings enabled the creation of the char-
acteristic distributions, as depicted in Figures 4 and 5. Regarding the approach of [4], there is
still a non-zero minimum at fV = 0.5. Equal breakup, however, becomes more likely with rising
dparent. As expected, the distribution of Lehr et al. transforms from a bell, via M to U-shape,
with increasing dparent. For a dparent of 4 mm or smaller, similar-sized daughter bubbles are
most likely.

Figure 4. Prediction of daughter size distributions using the approach of Luo et al. for different
parent bubble sizes with the set value ε = 0.08 W m−3.

Figure 5. Prediction of daughter size distributions using the approach of Lehr et al. for different
parent bubble sizes with the set value ε = 0.1 W m−3.
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Figure 6. Overview of fitting parameters for the EL breakage model. The function, as well as
the method for the determination of the parameters, is illustrated. The left column depicts the
bubble breakage implementation in EE and the right column shows how the implementation is
transferred into an EL implementation. (Top left): Different bubble sizes exist in a PBM solely as
distribution quantities that shift into smaller classes in case of a breakage. (Top right): A breakage
of an individual bubble is executed only if the breakage criterion in the form of Wecrit is exceeded.
(Center left): The shape of the DSD changes three-dimensionally with varying bubble diameters and
turbulent dissipation energy. (Center right): The shape of the DSD changes solely with varying
bubble diameter and the influence of the turbulent dissipation energy is replaced by a constant.
(Bottom left): The integro-differential equation of the PBM calculates bubble breakage events per
unit of time. (Bottom right): After an executed bubble breakage, a subsequent division can take place
at the earliest after the time tbreak.

3.3. Optimal Critical We Number and Setting of tBreak

In addition to the DSD, the parameters tBreak and Wecrit had to be determined. The
functionality of the parameters and the method of evaluation are shown in Figure 6. The
values for tBreak for Luo et al. and Lehr et al. were set to 10 and 250 ms, respectively. In previ-
ous studies, a timespan between 3 and 60 ms was experimentally identified for the duration
of bubble breakage [40–42]. Hence, the duration of 10 ms for the approach of Luo et al. fits
in this range. In contrast, the period of 250 ms set for the model of Lehr et al. model is rela-
tively high, reflecting the timespan of breakage of a single bubble. Lehr et al. [1] validated
their model based on the experimental findings of [43,44], in which they studied the
breakup of air bubbles in a turbulent water jet. Bubbles were injected into the core of the jet,
and the spatial evolution of the BSD was measured. Shuai et al. [40] described the effect that
if the daughter bubble undergoes a transport process during breakup, the duration is sig-
nificantly longer, leading to a timespan between 1000 and 2500 ms. Luo et al. [4] validated
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their model based on experiments of [38] in which no jet flow was involved and thus no
transport process associated. It is therefore reasonable to identify a significantly longer
tBreak for Lehr et al. According to Equation (16), it can be deduced that the individual
duration of bubble breakage depends on ε and d, similar to the We number. In contrast, the
breakage times found here represent an average and constant value of the actual dynamic
and local duration times.

Using the settings for DSDs and the tBreak values, Wecrit numbers for EL were iden-
tified as 7 and 11 for the Luo et al. [4] and the Lehr et al. [1] models, respectively. As
indicated in Figures 7 and 8, they represent minima for the best estimates of summed
Sauter diameter deviations between the EE and EL approaches. Note that the sensitivity
on the critical We number at the optimum is more pronounced for the Luo approach than
for the Lehr model. In the investigated setup, the Sauter diameter of [4] is smaller than that
of [1] for all BSDs, e.g., 3.8-fold smaller at the energy input of 202 W m−3. This finding is in
accordance with the studies of [45,46].

Wang et al. [45] emphasized that Lehr et al. included capillary pressure as the domi-
nant force, making bubble breakage increasingly unlikely at smaller diameters. This is true
even if an incoming eddy has enough energy to overcome the energy demand to increase
the surface tension of the daughters, as Luo et al. claimed. Thus, it explains the need for a
critical We number, which is significantly larger for the Lehr et al. description in order to
keep the bubble breakage rate moderate.

In summary, the implementation of individual Wecrit numbers managed well to predict
the original bubble distribution by the models of Luo et al. and Lehr et al. with the EL
approach. Only small sums of Sauter diameter deviation of 3.06 and 2.07 mm were found,
which is qualified as a fairly good estimate. Furthermore, previous studies identified critical
We numbers of 6, 12 and 15 [16,47,48] for bubble breakage events, which underline the
soundness of this study’s results. As Wecrit values intrinsically depend on the settings for
DSD, turbulence model, and tBreak, the observed well accordance with independent studies
may be taken as an additional hint for qualifying the appropriateness of these settings.
Often, the critical We number of [49] is cited with Wecrit = 2.3. However, this value reflects
breakage of a single bubble in water, which excludes the superimposing bubble-to-bubble
effects that are created in the experimental set-up of this study mirroring real aeration
conditions. An overview of all the fitted parameters is listed in Table 3.

Figure 7. The summed deviation of the Sauter mean bubble diameter for different critical We numbers
of the fitted model for Luo et al. recreation.
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Figure 8. The summed deviation of the Sauter mean bubble diameter for different critical We numbers
of the fitted model for Lehr et al. recreation.

Table 3. Summary of all determined parameters to be able to implement the bubble breakage model
of Luo et al. and Lehr et al. in LBM.

Luo et al. [4] Lehr et al. [1]

Critical Weber number Wecrit 7 11

Min. Daughter Volume, Fraction and Increment fV,min; ∆ fV 0.01 0.01

Min. Time Between to Breakages tbreak 10 ms 250 ms

Daughter Size Distribution DSD(d, ε) ⇒
ε constant

DSD(d) Original U-Shape Original M-Shape

Constant ε in DSD 0.08 W m−3 0.1 W m−3

Figures 9 and 10 depict the comparison of Sauter and arithmetic mean diameters of
EE and EL simulations for the breakage models of Luo et al. and Lehr et al., respectively.
In general, EE and EL calculations show the same courses, namely asymptotically falling
bubble diameters with rising power inputs—which is reasonable.

Regarding Figure 9, the Sauter diameter is almost exactly identified if a power input
of 13 W m−3 is installed. At 44 W m−3, it is underestimated by 0.91 mm. By trend,
increasing energy inputs of 103 and 202 W m−3, lead to overestimated Sauter diameters
with deviations of 0.83 and 1.38 mm. By analogy, Figure 10 depicts similar findings for
the model of [1]. Again, only small deviations are observed, not indicating a clear trend.
However, a vague hypothesis may be formulated: EE bubble simulations might be biased
by the configuration of discrete bubble size classes. The latter might lead to classes of
‘lumped’ small bubbles that are less accurately describing real bubble distributions than
the individual EL approaches.
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Figure 9. Arithmetic diameter and Sauter diameter of the bubble breakage model given by Luo et al.
The solution is compared with the EE approach and the fitted model in EL. Shown for pump volume
flow 13, 44, 103 and 202 W m−3.

Figure 10. Arithmetic diameter and Sauter diameter of the bubble breakage model given by Lehr et al.
The solution is compared with the EE approach and the fitted model in EL. Shown for pump volume
flow 13, 44, 103 and 202 W m−3.

3.4. Comparison of Bubble Size Distribution between the Euler-Euler and Euler-Lagrange Approaches

The black bars in Figures 11 and 12 show the resulting BSD for the Luo et al. [4]
and Lehr et al. [1] models, respectively, simulated in the EE framework for different
εpump values. The gray bars represent the results of the new model simulated in EL. The
new models are able to accurately capture partial population breakage. In the case of the
Lehr et al. [1] model, the portion of bubbles that undergo breakage is smaller compared



Processes 2023, 11, 1018 16 of 22

to the Luo et al. model, as seen in Figures 11 and 12. This effect could be maintained by
using the individual levels of Wecrit. The Luo et al. model predominantly generates bubbles
around 1 mm in diameter due to the U-shaped DSD used, while the M-shaped DSD of the
Lehr et al. model mainly produces bubbles of classes 4 and 7 mm. At εpump of 13 W m−3,
a fraction of bubbles kept the initial diameter of 16 mm in the Luo et al. model, as seen
in Figure 11. With an energy input of 44 W m−3, no bubbles are left, showing an initial
diameter of 16 mm. In both simulations, bubbles with a dominant diameter of approxi-
mately 4 mm are predicted. After the energy input was increased from 103 to 202 W m−3,
distributions changed only slightly. Increasingly, more energy is needed to cause further
breakage events. Notably, the specification of discrete bins prevents the occurrence of
bubbles smaller than 1 mm in the EE approach. Although this theoretical barrier does
not exist for EL, bubble breakage also ends at 1 mm because the energy demand for fur-
ther breakage becomes too large. In the case of the model of Lehr et al., the portion of
bubbles that undergo a breakage is smaller compared to the model of Luo et al., as seen
in Figures 11 and 12. The fraction of bubbles that have not broken once is almost two times
higher in the case of the EE approach. The DSD compensates for this effect by forming
smaller bubbles, resulting in a similar Sauter diameter. The influence of the M-shape can
be seen at εpump of 44 W m−3, since very small bubbles around the size of 1 mm are not
formed at all. As the energy input increases to 103 and 202 W m−3, the increase in the
bubble breakage rate is minor compared to εpump values of 13 and 44 W m−3.

It is highlighted that the complex implementation of the original DSDs in EL was the most
crucial factor in reproducing EE framework results optimally in terms of bubble breakage.

Figure 11. Comparison of the resulting bubble size distribution created with the Luo et al. [4] model
in the EE approach (black) and the fitted model for EL (gray). Shown for energy input of 13, 44, 103
and 202 W m−3.
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Figure 12. Comparison of the resulting bubble size distribution created with the Lehr et al. [1] model
in the EE approach (black) and the fitted model for EL (gray). Shown for energy input of 13, 44, 103
and 202 W m−3.

4. Conclusions

A new bubble breakage description for an EL approach was formulated, consisting of
a critical Wecrit number, a DSD and the minimum time between two consecutive bubble
breakages. Two of the most widely used bubble breakage models have been successfully
adapted to the new model description using EE solutions in Ansys Fluent as a template.
The presented BSD was consistent with respect to both the Sauter diameter and arithmetic
diameter. Furthermore, it reproduced the distribution shape of the bubbles well. The
models were validated for a wide range of bubble diameters and a broad turbulence
spectrum as encountered in high-volume multiphase reactors. The breakage models have
no unknown parameters since all constants were determined in the original version. As
such, they are applicable to both EL simulation and the higher sophisticated LES turbulence
model. Given the rising importance of LES simulation, the framework of this study may
enable the proper consideration of bubble breakage events in LES, which is a prerequisite
for multiphase simulations in bioreactors. Wecrit represents an additional degree of freedom
that acts as a fitting parameter and is adjustable to a wide range of datasets. Therefore,
experimental datasets may well serve as input for realistic bubble breakage predictions in
the LES context.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr11041018/s1, Code for implementation of breakage models in M-Star.
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Nomenclature

A Area of inlet m2

α gas hold-up -
β model constant -
Cs Smagorinsky coefficient -
d32 Sauter bubble diameter m
d bubble diameter, m
dparent diameter of parent bubble m
ε turbulent kinetic dissipation rate W m−3

εpump specific energy dissipation rate W m−3

fV bubble volume fraction ratio -
fV,min: minimal bubble volume fraction ratio -
∆ fV : bubble volume fraction increment -
f (x, t) probability density function -
f eq(x, t) equilibrium distribution function -
k turbulent kinetic energy m2 s−2

λ eddy length scale m
PB breakage probability -
ρ density kg m−3

S filtered strain rate tensor s−1

σ surface tension N m−1

t time s
tBreak minimum time between two consecutive breakages s
τ relaxation time s
u velocity m s−1
.
v pump volume flow m3 s−1

V bubble volume m3

Vl column volume m3

νt sub-grid eddy viscosity m2 s−1

w velocity inlet m s−1

ΩB breakage frequency s−1

ωB hitting eddy frequency s−1

x position m
∆x grid size -
ξ = λ

d eddy/bubble size ratio -

Abbreviations

BSD bubble size distribution
CFD computer fluid dynamic
EE Euler-Euler approaches
EL Euler-Lagrange approaches
FV Finite volume
DSD daughter size distribution
LBM lattice Boltzmann method
LES large eddy simulation
PBM population balance model
RANS Reynolds-averaged Navier-Stoke equations
RNG renormalization group
We Weber number
Wecrit critical Weber number
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Appendix A

Figure A1. Sauter diameter of the bubble breakage model of Luo et al. obtained for 4 different energy
input rates. The solution from the EE approach and the fitted solution with 3 different critical We
numbers are shown.

Figure A2. Sauter diameter of the bubble breakage model of Lehr et al. obtained with 4 different
energy input rates. The solution from the EE approach and the fitted solution with 3 different critical
We numbers are shown.
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Appendix B

For the first integral in the Luo et al. distribution (Equation (14)), an analytic solution
based on the incomplete gamma function Γ has been used.

Ωbr =
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The incomplete gamma function Γ is approximated with a fitting function.

Γ
[

2
11

, c
]
=

{ ( 2
11
)cc−1 i f c > 1

−1587
c−0.00026 + 1588 otherwise

(A3)

Γ
[

5
11

, c
]
=

{ ( 5
11
)c+0.3

(c + 0.3)−1 i f c > 0.5
4.5618c2 − 4.3021c− 1.6351 otherwise

(A4)

Γ
[

8
11

, c
]
=

{ ( 8
11
)c+0.7

(c + 0.7)−1 i f c > 0.5
1.2354c2 − 1.8128c + 1.1805 otherwise

(A5)

The second integral is solved with the trapezoidal rule:

DSD( fV) =
2Ωbr∫ 1

0 Ωbrd fV
=

2Ωbr

∆ fV ·∑0.99
k=0.02

Ωbr( fV,k−1)−Ωbr( fV,k)
2

(A6)

After the integrals are solved, a cumulative form is calculated for Luo et al. and Lehr et al.

Cumsumi(DSD( fV)) =
i

∑
f v=0.001

DSD( fV) where i ∈ [0.01, 0.99] (A7)

The equally distributed random number is sorted into the discrete cumulative distri-
bution, and the associated index equals fV .

i f Cumsumi−1(DSD) < random < Cumsumi(DSD)→ fV = i/100 (A8)
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