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Abstract: The input layer, hidden layer, and output layer are three models of the neural processors
that make up feedforward neural networks (FNNs). Evolutionary algorithms have been extensively
employed in training FNNs, which can correctly actualize any finite training sample set. In this
paper, an enhanced marine predators algorithm (MPA) based on the ranking-based mutation operator
(EMPA) was presented to train FNNs, and the objective was to attain the minimum classification,
prediction, and approximation errors by modifying the connection weight and deviation value.
The ranking-based mutation operator not only determines the best search agent and elevates the
exploitation ability, but it also delays premature convergence and accelerates the optimization process.
The EMPA integrates exploration and exploitation to mitigate search stagnation, and it has sufficient
stability and flexibility to acquire the finest solution. To assess the significance and stability of the
EMPA, a series of experiments on seventeen distinct datasets from the machine learning repository of
the University of California Irvine (UCI) were utilized. The experimental results demonstrated that
the EMPA has a quicker convergence speed, greater calculation accuracy, higher classification rate,
strong stability and robustness, which is productive and reliable for training FNNs.

Keywords: feedforward neural networks; marine predators algorithm; ranking-based mutation
operator; experimental results

1. Introduction

Artificial neural networks are a cross-disciplinary subject that involves neuroscience,
brain science, artificial intelligence, computer science, and so on, and they mainly simulate
the network structure of human brain neurons to process memory information [1–5]. As an
effective and feasible mathematical model, the networks have been employed in various
domains, such as pattern recognition, intelligent robots, intelligent control, biomedicine,
and function approximation. Feedforward neural networks (FNNs) are one of the relatively
prominent methods, which have some characteristics of simple network topology, fault-
tolerant distributed storage, massively parallel computation, and strong self-organization
and self-adaptability. The purpose of training is to obtain the minimal objective function
with connection weights and deviation values in the network according to the collected
dataset information, which effectively measure the discrepancy between the predicted
values and real values. In recent years, various swarm intelligence methodologies have been
used to train feedforward neural networks, such as ant lion optimization (ALO) [6], African
vultures optimization algorithm (AVOA) [7], dingo optimization algorithm (DOA) [8],
flower pollination algorithm (FPA) [9], moth flame optimization (MFO) [10], salp swarm
algorithm (SSA) [11], and sperm swarm optimization (SSO) [12].

Zhang et al. designed an efficient grafting constructive algorithm to train FNNs. This
algorithm had faster convergence accuracy and a smaller calculation error [13]. Fan et al.,
introduced a new backpropagation learning algorithm based on graph regularization to
resolve FNNs; this algorithm obtained a better objective value and adjustment parame-
ters [14]. Qu et al. applied a learnable anti-noise receiver algorithm to optimize FNNs; this
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algorithm had a higher search efficiency and training accuracy [15]. Admon et al. utilized a
novel search algorithm to train FNNs and resolve integer order differential equations; this
algorithm had a certain practicability and reliability to obtain a high-precision solution [16].
Guo et al. invented an indicator correlation elimination algorithm to optimize FNNs; this
algorithm had better training results [17]. Zhang et al. introduced a quantum genetic algo-
rithm to train FNNs; this algorithm had superiority and robustness in obtaining the tuning
parameters [18]. Venkatachalapathy et al. utilized FNNs to resolve nonlinear ordinary
differential equations; this method had a simple network framework and high convergence
accuracy [19]. Liao et al. created a novel deep learning algorithm based on FNNs to resolve
the flows of dynamical systems; this algorithm’s efficiency and accuracy were relatively
excellent [20]. Shao et al. produced a genetic approach to train optical FNNs; this algorithm
had strong integrity and flexibility to satisfy a high classification accuracy [21]. Wu et al.
employed the swarm intelligence algorithm to optimize the welding sequence optimiza-
tion and FNNs; this algorithm eliminated premature convergence and generated the best
solution [22]. Raziani et al. combined a modified whale optimization algorithm based on
a nonlinear function with FNNs to resolve medical classification problems; this method
had faster operation efficiency and better evaluation indexes [23]. Dong et al. designed an
efficient and reliable training algorithm to solve FNNs; this algorithm utilized flexibility
and stability to obtain a better objective value [24]. Fontes et al. designed a modified
constructive algorithm to configure FNNs; this algorithm effectively trained datasets to
obtain a higher classification accuracy [25]. Zheng et al. employed the Tschauner–Hempel
equation to optimize FNNs; this method had high analytical solutions and good training
results [26]. Yılmaz et al. introduced a differential evolution method to train artificial neural
networks; this method used a better network structure to obtain the best solution [27]. Luo
et al. presented a spotted hyena optimization to optimize FNNs; this algorithm had certain
superiority and robustness for obtaining relatively optimal parameters [28]. Askari et al.
introduced a political optimization algorithm to train FNNs; the classification accuracy
and optimization rate of this algorithm were better [29]. Duman et al. integrated a manta
ray foraging optimization algorithm to train FNNs; this algorithm utilized an effective
search mechanism to obtain the optimal parameters [30]. Pan et al. employed FNNs to
optimize full wave nonlinear inverse scattering; this technique had a faster calculation
rate [31]. Wu et al. described a beetle antennae search method to optimize neural networks;
this approach had a strong robustness for determining the superior solution [32]. Mah-
moud et al. designed a pseudoinverse learning algorithm to train side road convolution
neural networks; this algorithm had strong dependability and reliability for achieving the
best experimental results [33]. Jamshidi et al. introduced a hybrid echo state network for
pattern recognition and classification; this method had faster processing speed and the
best optimization results [34]. Khalaj et al. utilized hybrid machine learning techniques
and computational mechanics to design oxide precipitation hardened alloys; the method
had strong robustness and stability for obtaining a high accuracy [35]. Daneshfar et al.
applied an octonion-based nonlinear echo state network for speech emotion recognition
in the metaverse; this method had a strong stability to obtain a high calculation accuracy
and better optimization performance [36]. Abd Elminaam et al. proposed the marine
predators algorithm to resolve feature selection; and the algorithm had better accuracy,
sensitivity, and specificity [37]. Zhang et al. presented a domain adaptation network for
remaining useful life prediction; this proposed method had a strong stability to determine
the best results [38]. Zhang et al. utilized an integrated multitasking intelligent bearing fault
diagnosis scheme to realize detection, classification, and fault identification [39]. Zhang
et al. proposed an integrated multi-head dual sparse self-attention network for remaining
useful life prediction; this method had excellent superiority and robustness [40]. Zhang
et al. designed a parallel hybrid neural network for remaining useful life prediction in
prognostics; this method had better results [41]. To summarize, evolutionary algorithms
have strong robustness, parallelism, and scalability to train FNNs. These algorithms have
strong stability and feasibility to determine the objective function value.
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The MPA is derived from the universal hunting and gathering mechanisms, partic-
ularly Lévy flight, Brownian motion, and the optimal encounter rate policy between the
predator and prey [42]. To enhance the availability and practicability, the ranking-based
mutation operator was added to the basic MPA, which accelerates the calculation speed
and enhances the exploitation to improve the selection probability to mitigate premature
convergence. The EMPA was utilized to train FNNs, and the objective was to attain the
minimum classification, prediction, and approximation errors by training the FNNs and
modifying the connection weight and deviation value. The EMPA has the properties of
straightforward algorithm architecture, excellent control parameters, great traversal ef-
ficiency, strong stability, and easy implementation. The EMPA integrates exploration or
exploitation to determine the best solution. The experimental results demonstrated that the
EMPA has certain effectiveness and feasibility to achieve a quicker convergence speed and
a greater calculation accuracy. Meanwhile, the EMPA has strong stability and robustness
for achieving a higher classification rate.

The following sections make up the article. Section 2 covers the mathematical modeling
of FNNs. Section 3 explains the MPA. Section 4 shows the EMPA. Section 5 depicts EMPA-
based feedforward neural networks. The experimental results and analysis are exhibited in
Section 6. Finally, conclusions and future research are illustrated in Section 7.

2. Mathematical Modeling of FNNs

The FNNs are also known as multilayer perception (MLP), which are among the most
widely used and rapidly developed artificial neural networks. Each neuron is exclusively
coupled to the neuron in the previous layer, and they are arranged in layers. There is no
feedback between layers. Three-layer FNNs mainly include the input layer, hidden layer,
and output layer, which is shown in Figure 1.
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Figure 1. Three-layer feedforward neural networks. 
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Figure 1. Three-layer feedforward neural networks.

The weighted sum of the input layer is computed as:

sj =
n

∑
i=1

(Wi,j·Xi)− θj, j = 1, 2, . . . , h (1)

where n denotes the input nodes, Wij denotes the connection weight from the ith note of
the input layer to the jth note of the hidden layer, Xi denotes the ith input node, and θj
denotes the deviation value of jth hidden node.

The output value of each hidden layer is computed as:

Sj = sigmoid(sj) =
1

(1 + exp(−sj))
, j = 1, 2, . . . , h (2)
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The values of the output layer are computed as:

ok =
h

∑
j=1

(wj,k·Sj)− θ′k, k = 1, 2, . . . , m (3)

Ok = sigmoid(ok) =
1

(1 + exp(−ok))
, k = 1, 2, . . . , m (4)

where h denotes the input nodes, wjk denotes the connection weight from the jth note of
the hidden layer to the kth note of the output layer, Sj denotes the jth input node, and θ′k
denotes the deviation value of the kth output node. The connection weight and deviation
value are the most important component of FNNs, which determine the final output value.

3. MPA

The MPA utilizes the Lévy flight, Brownian motion, and the optimal encounter rate
policy between the predator and prey in marine ecosystems to achieve the best value.

3.1. Initialization

The MPA utilizes a random positioning mechanism to initialize the population and to
simulate marine predation. The position is computed as follows:

X0 = Xmin + rand(Xmax − Xmin) (5)

where Xmax and Xmin denote the search space boundary, and rand denotes a uniformly
distributed randomized number in [0, 1].

The Elite matrix is computed as follows:

Elite =



X I
1,1 X I

1,2 · · · X I
1,D

X I
2,1 X I

2,2 · · · X I
2,D

...
...

...
...

...
...

...
...

...
...

...
...

X I
N,1 X I

N,2 · · · X I
N,D


N×D

(6)

where
→
X

I
denotes the top predator vector, N denotes the population size, and D denotes

the spatial dimension.
The Prey matrix is computed as follows:

Prey =



X1,1 X1,2 · · · X1,D
X2,1 X2,2 · · · X2,D

X3,1 X3,2
... X3,D

...
...

...
...

...
...

...
...

XN,1 XN,2 · · · XN,D


N×D

(7)

where Xij denotes the jth spatial position of the ith prey.

3.2. MPA Optimization Scenarios

According to the different velocity ratios of the predator and prey, the MPA is separated
into three parts: high-velocity ratio, unit velocity ratio, and low-velocity ratio.

Phase 1: The high-velocity ratio. The predator moves more slowly than the prey. The
best foraging strategy is to capture the prey by utilizing Brownian motion and retaining
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the original position. In this phase, the MPA performs the exploration. The position is
computed as follows:

Iter <
1
3

Max_Iter (8)

−−−−−→
stepsizei =

→
RB ⊗ (

−−−→
Elitei −

→
RB ⊗

−−→
Preyi), i = 1, . . . , N (9)

−−→
Preyi =

−−→
Preyi + P ·

→
R ⊗
−−−−−→
stepsizei (10)

where
−−−−−→
stepsizei denotes a motion step,

→
RB denotes a random walk vector with normal

distribution,
−−−→
Elitei denotes a top predator matrix,

−−→
Preyi denotes a prey matrix, P = 0.5

denotes a constant value,
→
R denotes a randomized vector in [0, 1], and⊗ denotes entry-wise

multiplication.
Phase 2: The unit velocity ratio. The moving velocity of the predator and prey is

consistent. In this phase, the MPA gradually transits from exploration to exploitation. The
prey is based on Lévy flight, and half of the population quantity is designed for exploitation.
The predator is based on Brownian motion, and the other half of the population quantity is
designed for exploration. The position is computed as follows:

1
3

Max_Iter < Iter <
2
3

Max_Iter (11)

For the first half of the population quality, we compute:

−−−−−→
stepsizei =

→
RL ⊗ (

−−−→
Elitei −

→
RL ⊗

−−→
Preyi), i = 1, . . . , N/2 (12)

−−→
Preyi =

−−→
Preyi + P ·

→
R ⊗
−−−−−→
stepsizei (13)

where
→
RL denotes a randomized vector of Lévy flight.

For the second half of the population quality, we compute:

−−−−−→
stepsizei =

→
RB ⊗ (

→
RB ⊗

−−−→
Elitei −

−−→
Preyi), i = N/2, . . . , N (14)

−−→
Preyi =

−−−→
Elitei + P · CF⊗

−−−−−→
stepsizei (15)

CF = (1− Iter
Max_Iter

)
(2 Iter

Max_Iter )

(16)

where CF denotes a flexible parameter.
Phase 3: The low-velocity ratio. The predator moves more swiftly than the prey. The

predator is based on Lévy flight and utilizes exploitation to capture the prey. The position
is computed as follows:

Iter >
2
3

Max_Iter (17)

−−−−−→
stepsizei =

→
RL ⊗ (

→
RL ⊗

−−−→
Elitei −

−−→
Preyi), i = 1, . . . , N (18)

−−→
Preyi =

−−−→
Elitei + P · CF⊗

−−−−−→
stepsizei (19)

3.3. Eddy Formation and FAD’s Effect

The eddy formation and fish aggregating devices (FADs) have a profound impact on
the feeding behavior of marine predators, which avoids premature convergence and search
stagnation. The position is computed as follows:
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−−→
Preyi =


−−→
Preyi + CF[

→
Xmin +

→
R ⊗ (

→
Xmax −

→
Xmin)]⊗

→
U i f r ≤ FADs

−−→
Preyi + [FADs(1− r) + r](

−−−→
Preyr1 −

−−−→
Preyr2 ) i f r > FADs

(20)

where FADs = 0.2 denotes a probability of the FADs effect,
→
U denotes a binary vector with

arrays containing zero and one, r denotes a randomized number in [0, 1], and r1 and r2
denote randomized indexes of the prey matrix.

To precisely clarify the solution process, the pseudocode of the MPA is expressed in
Algorithm 1.

Algorithm 1: MPA

Begin
Step 1. Initialize the marine predator population Xi(i = 1, 2, . . . , N) and control parameters
Step 2. Assess the fitness value of each predator

Discover the ideal predator
Step 3. while (Iter < Max_Iter) do

for each predator
Construct the Elite and prey matrices via Equations (6) and (7)
If (Iter < 1

3 Max_Iter)
Renew prey via Equations (9) and (10)

Else if 1
3 Max_Iter < Iter < 2

3 Max_Iter
For the first half of the population quality (i = 1, . . . , N/2)
Renew prey via Equations (12) and (13)
For the other half of the population quality ( i = N/2, . . . , N)
Renew prey via Equations (14) and (15)

Else if Iter > 2
3 Max_Iter

Renew prey via Equations (18) and (19)
End if
Identify and amend any predator that travels beyond the search scope
Complete memory conserving and Elite Renew
Utilizing FADs effect and renewing prey via Equation (20)
Iter = Iter + 1
Return the best predator

End

4. EMPA

The ranking-based mutation operator filters out the best marine predator to avoid
search stagnation and to enhance exploitation ability [43]. The ranking of fitness values
from best to worst is computed as follows:

Ri = N − i, i = 1, 2, . . . , N (21)

where N is the population size. The optimal predator has the best ranking, and the selection
probability Pi of the ith predator is calculated as follows:

pi =
Ri
N

, i = 1, 2, . . . , N (22)

The ranking-based mutation operator “DE/rand/1” is given in Algorithm 2. The
aquatic predator with the highest ranking is more likely to be allocated as a terminal vector
or vector, and the genetic information is transmitted to the offspring. If both differential
mutation vectors are from the higher-order vector, the operator’s search step may drastically
reduce and avoid premature convergence.
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Algorithm 2: Ranking-based mutation operator of “DE/rand/1”

Begin
Sort the population, and assign the ranking and selection probability Pi for each predator
Randomly select r1 ∈ {1, N} {base vector index}
while rand > pr1 or r1 == i
Randomly select r1 ∈ {1, N}
end
Randomly select r2 ∈ {1, N} {terminal vector index}
while rand > pr2 or r2 == r1 or r2 == i
Randomly select r2 ∈ {1, N}
end
Randomly select r3 ∈ {1, N} {starting vector index}
while r3 == r2 or r3 == r1 or r3 == i
Randomly select r3 ∈ {1, N}
end
End

The EMPA can balance the exploration and exploitation to improve the convergence
speed and calculation accuracy. The pseudocode of the EMPA is expressed in Algorithm 3.

Algorithm 3: EMPA

Begin
Step 1. Initialize the marine predator population Xi(i = 1, 2, . . . , N) and control parameters
Step 2. Assess the fitness value of each predator
Discover the ideal predator
Step 3. while (Iter < Max_Iter) do
for each predator

Sort the population; assign the ranking and selection probability Pi for each predator
/*ranking-based mutation stage*/

Randomly select r1 ∈ {1, N} {base vector index}
while rand > pr1 or r1 == i
Randomly select r1 ∈ {1, N}
end

Randomly select r2 ∈ {1, N} {terminal vector index}
while rand > pr2 or r2 == r1 or r2 == i

Randomly select r2 ∈ {1, N}
end

Randomly select r3 ∈ {1, N} {starting vector index}
while r3 == r2 or r3 == r1 or r3 == i

Randomly select r3 ∈ {1, N}
end /*end of ranking-based mutation stage*/

Construct the Elite and prey matrices via Equations (6) and (7)
If (Iter < 1

3 Max_Iter)
Renew prey via Equations (9) and (10)
Else if 1

3 Max_Iter < Iter < 2
3 Max_Iter

For the first half of the population quality (i = 1, . . . , N/2)
Renew prey via Equations (12) and (13)
For the other half of the population quality ( i = N/2, . . . , N)
Renew prey via Equations (14) and (15)
Else if Iter > 2

3 Max_Iter
Renew prey via Equations (18) and (19)
End if
Identify and amend any predator that travels beyond the search scope
Complete memory conserving and Elite Renew
Utilizing FADs effect and renewing prey via Equation (20)
Iter = Iter + 1
Return the best predator
End
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5. EMPA-Based Feedforward Neural Networks

The intention of training the FNNs is not only to acquire the global optimal solution
for the given input value, but also to identify the best combination of the connection weight
and deviation value. The FNNs with vector mechanisms are computed as follows:

→
V =

{→
W,
→
θ

}
= {W1,1, W1,2, . . . , Wn,n, h, θ1, θ2, . . . , θh} (23)

The mean squared error (MSE) is used as an evaluation index to estimate the expected
output and actual output, which classifies and predicts all training samples in the datasets.
The MSE is computed as follows:

MSE =
m

∑
i=1

(ok
i − dk

i )
2

(24)

where m denotes the output size, dk
i denotes the expected value of the ith input unit

according to the kth training sample, and ok
i denotes the actual value of the ith input unit

according to the kth training sample.
The data set contains numerous training samples, and each sample needs to be evalu-

ated by FNNs. The average value of the MSE is computed as follows:

MSE =
s

∑
k=1

m
∑

i=1
(ok

i − dk
i )

2

s
(25)

where s denotes the training sample size.
The fitness value of training the FNNs is computed as follows:

Minimize : F(V) = MSE (26)

The correlation between the issue scope and the EMPA scope is revealed in Table 1.
The EMPA-based feedforward neural networks are expressed in Algorithm 4. The flowchart
of the EMPA for FNNs is shown in Figure 2.

Table 1. Correlation between issue scope and EMPA scope.

Issue Scope EMPA Scope

A set scheme (P1, P2, . . . , PN) to tackle the FNNs A marine predator population
(X1, X2, . . . , XN)

The optimal scheme to obtain the best solution The marine predator or search agent
The evaluation value of FNNs The fitness value of EMPA
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Algorithm 4: EMPA-based feedforward neural networks

Begin
Step 1. Initialize the marine predator population Xi(i = 1, 2, . . . , N), control parameters, and the
structure of FNNs; each predator denotes the connection weight and deviation value
Step 2. Assess the fitness value of each predator via Equation (24); assign connection weight to
the predator
Discover the ideal predator
Step 3. while (Iter < Max_Iter) do
for each predator

Sort the population; assign the ranking and selection probability Pi for each predator
/*ranking-based mutation stage*/

Randomly select r1 ∈ {1, N} {base vector index}
while rand > pr1 or r1 == i
Randomly select r1 ∈ {1, N}
end
Randomly select r2 ∈ {1, N} {terminal vector index}
while rand > pr2 or r2 == r1 or r2 == i
Randomly select r2 ∈ {1, N}
end

Randomly select r3 ∈ {1, N} {starting vector index}
while r3 == r2 or r3 == r1 or r3 == i

Randomly select r3 ∈ {1, N}
end /*end of ranking-based mutation stage*/

Construct the Elite and prey matrices via Equations (6) and (7)
If (Iter < 1

3 Max_Iter)
Renew prey via Equations (9) and (10)
Else if 1

3 Max_Iter < Iter < 2
3 Max_Iter

For the first half of the population quality (i = 1, . . . , N/2)
Renew prey via Equations (12) and (13)
For the other half of the population quality ( i = N/2, . . . , N)
Renew prey via Equations (14) and (15)
Else if Iter > 2

3 Max_Iter
Renew prey via Equations (18) and (19)
End if
Identify and amend any predator that travels beyond the search scope
Complete memory conserving and Elite Renew
Utilizing FADs effect and renewing prey via Equation (20), and assessing the fitness value of each
predator via Equation (24)
Iter = Iter + 1
Return the best predator
End

Complexity Analysis

In this section, both the time and space complexity of the EMPA-based feedforward
neural networks are analyzed.

Time complexity: The EMPA-based feedforward neural networks mainly contain four
steps: initialization, EMPA optimization scenarios (Phase 1—high-velocity ratio Phase
2—unit velocity ratio, Phase 3—low-velocity ratio), eddy formation and FAD’s effect, and
halting judgment. The population size is N, the maximum iteration is Max_Iter, and
the problem dimension is D. The time complexity of initialization is O(N ∗ D). The
time complexity of the EMPA optimization scenarios is O(N ∗ D ∗Max_Iter). The time
complexity of the eddy formation and FADs’ effect is O(Max_Iter). The time complexity
of the halting judgment is O(1). Thus, the total time complexity of the EMPA-based
feedforward neural networks is O(N ∗ D ∗Max_Iter).
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Space complexity: the amount of extra storage in an algorithm is viewed as a measure
of space complexity. The population size is N and the problem dimension is D. The
EMPA utilizes N search agents to calculate the space complexity. Therefore, the total space
complexity of the EMPA-based feedforward neural networks is O(N ∗ D), and the space
efficiency of the EMPA is effective and stable.

6. Experimental Results and Analysis
6.1. Experimental Setup

The numerical experiment was implemented on a computer with an Intel Core i9-
12900HX 2.30 GHz CPU, RTX 3080 Ti, and 64 GB memory with Windows 11 system. All
algorithms were programmed in MATLAB R2018b.

6.2. Test Datasets

The test datasets are from the machine learning repository of the University of Califor-
nia Irvine (UCI), which were used to evaluate the stability and robustness of the MPA. The
details of the datasets are revealed in Table 2.

Table 2. The details of the datasets.

Datasets Attribute Class Training Testing Input Hidden Output

Blood 4 2 493 255 4 9 2
Scale 4 3 412 213 4 9 3
Survival 3 2 202 104 3 7 2
Liver 6 2 227 118 6 13 2
Seeds 7 3 139 71 7 15 3
Wine 13 3 117 61 13 27 3
Iris 4 3 99 51 4 9 3
Statlog 13 2 178 92 13 27 2
XOR 3 2 4 4 3 7 2
Balloon 4 2 10 10 4 9 2
Cancer 9 2 599 100 9 19 2
Diabetes 8 2 507 261 8 17 2
Gene 57 2 70 36 57 115 2
Parkinson 22 2 129 66 22 45 2
Splice 60 2 660 340 60 121 2
WDBC 30 2 394 165 30 61 2
Zoo 16 7 67 34 16 33 7

6.3. Parameter Setting

To establish viability and suitability, the MPA was contrasted with other algorithms
that contained the ALO, AVOA, DOA, FPA, MFO, SSA, SSO, and MPA. The control param-
eters were indicative experimental values that were taken from the source publications.
The initial parameters of all algorithms are revealed in Table 3.

Table 3. Initial parameters of all algorithms.

Algorithms Parameters Values

ALO Unpredictable value rand [0,1]
Constant number w 5

AVOA Randomized number L1 [0,1]
Randomized number L2 [0,1]
Randomized number z [−1,1]
Randomized number h [−2,2]
Randomized number rand [0,1]
Randomized number u [0,1]
Randomized number v [0,1]
Constant number β 1.5
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Table 3. Cont.

Algorithms Parameters Values

DOA Randomized vector a1 [0,1]
Randomized vector a2 [0,1]
Coefficient vector A (1,0)
Coefficient vector B (1,1)
Randomized number b (0,3)

FPA Switch probability ρ 0.8
Step size λ 1.5
Randomized number ε [0,1]

MFO Constant number b 1
Randomized number t [−1,1]
Randomized number r [−2,−1]

SSA Randomized number c2 [0,1]
Randomized number c3 [0,1]

SSO Velocity damping factor D [0,1]
Randomized number
ph_Rand1

[7,14]

Randomized number
ph_Rand2

[7,14]

Randomized number
ph_Rand3

[7,14]

MPA Uniform randomized number
rand [0,1]

Uniform randomized number
R [0,1]

Constant number P 0.5
Probability of FADs effect 0.2
Binary vector U [0,1]
Randomized number r [0,1]

MPA Uniform randomized number
rand [0,1]

Uniform randomized number
R [0,1]

Constant number P 0.5
Probability of FADs effect 0.2
Binary vector U [0,1]
Randomized number r [0,1]
Scaling factor F 0.7

6.4. Results and Analysis

For each algorithm, the population size was 30, the maximum iteration was 500, and
the independent run was 20. Best, Worst, Mean and Std denote the optimal value, worst
value, mean value, and standard deviation, respectively. Accuracy denotes the classification
rate, and the ranking is based on accuracy. These evaluation indexes can comprehensively
reflect the overall reliability and superiority of each algorithm.

The experimental results of multiple datasets are revealed in Table 4. Different algo-
rithms utilized different datasets to train the feedforward neural networks, and the purpose
was to minimize the gap between anticipated output and actual output by modifying
the connection weight and deviation value. To verify the effectiveness and feasibility, the
EMPA was compared with other algorithms by training massive datasets. For the blood
and scale datasets, the optimal values, worst values, mean values and standard deviations
of the EMPA were superior to those of the ALO, AVOA, DOA, FPA, SSA, SSO, and MPA.
The classification rate and ranking of the EMPA were the highest, which indicates that the
EMPA appropriately modifies the traversal mechanism to arrive at the overall optimum
solution. For survival, liver, and statlog datasets, when compared with the ALO, AVOA,
DOA, FPA, MFO, SSA, SSO, and MPA, the optimal values, worst values, and mean values
of the EMPA were superior, and the standard deviations, classification rate, and ranking of
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the EMPA were comparatively greater, which indicates that the EMPA provides superiority
and feasibility to integrate the exploration and exploitation, as well as to obtain the best
solution. For the XOR, balloon, splice, and zoo datasets, all evaluation indexes of the EMPA
were superior to those of the ALO, AVOA, DOA, FPA, MFO, SSA, SSO, and MPA, which
indicates that the EMPA utilizes the unique predatory mechanism and position update
mechanism to avoid search stagnation and obtain the accurate solutions. For the seeds,
wine, iris, cancer, diabetes, gene, parkinson, WDBC datasets, all evaluation indexes of the
EMPA were better than those of the ALO, AVOA, DOA, FPA, MFO, SSA, SSO, and MPA,
which indicates that the EMPA utilizes some advantages and characteristics to achieve
parameter adjustment and traversal search. All classification rates and ranking of the
EMPA were better compared to the ALO, AVOA, DOA, FPA, MFO, SSA, SSO, and MPA.
These comparison algorithms achieve the balance between exploration and exploitation
by adjusting control parameters to a certain extent, but they easily fall into local optimum
and premature convergences to yield a slow convergence speed, low calculation accuracy,
and worse classification rate. The EMPA, based on the marine predators foraging strategy,
utilizes a distinctive optimization mechanism of Lévy flight, Brownian motion, and the
optimal encounter rate policy to capture the prey in the marine ecosystem. The EMPA
has the properties of straightforward algorithm architecture, excellent control parameters,
great traversal efficiency, strong stability, and easy implementation. The EMPA not only
successfully balances exploration and exploitation to eliminate search stagnation and slow
convergence, but it also efficiently traverses the entire search space to modify parameters
and identify the ideal solution. In summary, the EMPA has significant resilience and
stability to efficiently train the feedforward neural networks.

Table 4. Experimental results of multiple datasets.

Datasets Result ALO AVOA DOA FPA MFO SSA SSO MPA EMPA

Blood Best 3.07 × 10−1 2.99 × 10−1 3.18 × 10−1 3.09 × 10−1 2.99 × 10−1 3.06 × 10−1 3.39 × 10−1 3.02 × 10−1 2.96 × 10−1

Worst 3.21 × 10−1 3.58 × 10−1 3.66 × 10−1 3.22 × 10−1 3.08 × 10−1 3.95 × 10−1 3.64 × 10−1 3.07 × 10−1 3.06 × 10−1

Mean 3.15 × 10−1 3.17 × 10−1 3.47 × 10−1 3.16 × 10−1 3.03 × 10−1 3.26 × 10−1 3.50 × 10−1 3.05 × 10−1 3.02 × 10−1

Std 4.25 × 10−3 1.55 × 10−2 1.49 × 10−2 2.99 × 10−3 2.07 × 10−3 2.21 × 10−2 7.50 × 10−3 1.53 × 10−3 2.31 × 10−3

Accuracy 80.39 80.39 79.61 80 80 80 77.25 81.57 85.21
Rank 3 3 5 4 4 4 6 2 1

Scale Best 1.39 × 10−1 1.21 × 10−1 2.86 × 10−1 1.56 × 10−1 1.20 × 10−1 1.28 × 10−1 2.27 × 10−1 1.05 × 10−1 9.74× 10−2

Worst 1.86 × 10−1 2.99 × 10−1 6.42 × 10−1 1.85 × 10−1 1.57 × 10−1 2.13 × 10−1 4.79 × 10−1 1.79 × 10−1 1.57 × 10−1

Mean 1.60 × 10−1 1.80 × 10−1 4.69 × 10−1 1.68 × 10−1 1.41 × 10−1 1.59 × 10−1 3.63 × 10−1 1.33 × 10−1 1.23 × 10−1

Std 1.18 × 10−2 5.18 × 10−2 9.35 × 10−2 7.18 × 10−3 9.75 × 10−3 2.24 × 10−2 7.96 × 10−2 2.14 × 10−2 1.68 × 10−2

Accuracy 89.20 86.85 79.34 88.03 87.32 90.14 85.92 90.61 92.02
Rank 4 7 9 5 6 3 8 2 1

Survival Best 3.60 × 10−1 3.46 × 10−1 3.87 × 10−1 3.59 × 10−1 3.11 × 10−1 3.36 × 10−1 4.08 × 10−1 3.03 × 10−1 2.96 × 10−1

Worst 3.86 × 10−1 3.95 × 10−1 4.26 × 10−1 3.80 × 10−1 3.62 × 10−1 4.15 × 10−1 4.39 × 10−1 3.49 × 10−1 3.38 × 10−1

Mean 3.75 × 10−1 3.67 × 10−1 4.09 × 10−1 3.71 × 10−1 3.33 × 10−1 3.64 × 10−1 4.19 × 10−1 3.27 × 10−1 3.21 × 10−1

Std 5.74 × 10−3 1.21 × 10−2 1.30 × 10−2 6.20 × 10−3 1.46 × 10−2 2.56 × 10−2 8.38 × 10−3 1.08 × 10−2 1.04 × 10−2

Accuracy 80.76 79.33 80.29 79.81 77.88 78.85 79.33 81.73 81.94
Rank 3 6 4 5 8 7 6 2 1

Liver Best 4.05 × 10−1 3.70 × 10−1 4.52 × 10−1 4.25 × 10−1 3.49 × 10−1 3.60 × 10−1 4.85 × 10−1 3.39 × 10−1 3.00 × 10−1

Worst 4.57 × 10−1 4.59 × 10−1 4.85 × 10−1 4.64 × 10−1 3.97 × 10−1 5.66 × 10−1 5.11 × 10−1 3.89 × 10−1 3.60 × 10−1

Mean 4.32 × 10−1 4.12 × 10−1 4.72 × 10−1 4.45 × 10−1 3.76 × 10−1 4.42 × 10−1 4.94 × 10−1 3.59 × 10−1 3.38 × 10−1

Std 1.54 × 10−2 2.70 × 10−2 1.04 × 10−2 9.28 × 10−3 1.38 × 10−2 5.63 × 10−2 7.52 × 10−3 1.47 × 10−2 1.55 × 10−2

Accuracy 69.49 71.19 56.78 60.17 72.88 60.59 56.78 74.58 75.43
Rank 5 4 8 7 3 6 8 2 1

Seeds Best 6.25 × 10−2 4.32 × 10−2 2.35 × 10−1 8.39 × 10−2 1.74 × 10−3 4.29 × 10−2 2.20 × 10−1 1.29 × 10−2 1.43 × 10−2

Worst 3.84 × 10−1 1.66 × 10−1 6.76 × 10−1 1.19 × 10−1 8.10 × 10−2 3.57 × 10−1 5.12 × 10−1 9.35 × 10−2 9.35 × 10−2

Mean 2.25 × 10−1 8.63 × 10−2 3.99 × 10−1 9.85 × 10−2 4.64 × 10−2 1.04 × 10−1 3.47 × 10−1 5.77 × 10−2 4.94 × 10−2

Std 1.48 × 10−1 3.35 × 10−2 1.38 × 10−1 8.74 × 10−3 2.05 × 10−2 8.62 × 10−2 7.81 × 10−2 2.23 × 10−2 2.18 × 10−2

Accuracy 73.38 90.14 70.42 92.96 92.96 88.73 78.87 94.37 94.43
Rank 7 4 8 3 3 5 6 2 1

Wine Best 4.68 × 10−2 8.55 × 10−3 3.93 × 10−1 1.97 × 10−2 8.68 × 10−6 8.55 × 10−3 2.39 × 10−1 8.54 × 10−3 0
Worst 6.07 × 10−1 3.32 × 10−1 7.26 × 10−1 7.55 × 10−2 5.98 × 10−2 4.27 × 10−1 6.48 × 10−1 1.03 × 10−1 5.12 × 10−2

Mean 2.91 × 10−1 8.49 × 10−2 5.36 × 10−1 4.23 × 10−2 3.28 × 10−2 1.34 × 10−1 4.56 × 10−1 4.49 × 10−2 1.75 × 10−2

Std 1.62 × 10−1 7.77 × 10−2 8.74 × 10−2 1.60 × 10−2 1.56 × 10−2 1.42 × 10−1 1.05 × 10−1 2.74 × 10−2 1.47 × 10−2

Accuracy 86.89 91.80 54.10 88.52 86.88 90.16 77.05 93.44 95.08
Rank 6 3 9 5 7 4 8 2 1
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Table 4. Cont.

Datasets Result ALO AVOA DOA FPA MFO SSA SSO MPA EMPA

Iris Best 3.56× 10−2 9.01× 10−4 1.95 × 10−1 9.34× 10−2 6.57× 10−4 4.60× 10−3 2.12 × 10−1 0 0
Worst 2.30 × 10−1 1.21 × 10−1 6.02 × 10−1 1.54 × 10−1 4.56× 10−2 3.85 × 10−1 4.58 × 10−1 7.77× 10−2 7.07× 10−2

Mean 1.55 × 10−1 4.55× 10−2 3.99 × 10−1 1.21 × 10−1 2.23× 10−2 8.86× 10−2 3.35 × 10−1 4.27× 10−2 3.64× 10−2

Std 6.72× 10−2 3.16× 10−2 1.20 × 10−1 1.98× 10−2 1.15× 10−2 1.28 × 10−1 6.16× 10−2 2.20× 10−2 1.48× 10−2

Accuracy 89.22 85.29 90.20 97.55 88.24 90.20 90.20 98.04 98.23
Rank 5 7 4 3 6 4 4 2 1

Statlog Best 1.85 × 10−1 1.20 × 10−1 3.17 × 10−1 1.74 × 10−1 1.51 × 10−1 1.97 × 10−1 3.22 × 10−1 1.02 × 10−1 8.25× 10−2

Worst 5.57 × 10−1 2.92 × 10−1 4.81 × 10−1 2.30 × 10−1 2.51 × 10−1 3.03 × 10−1 4.93 × 10−1 2.42 × 10−1 1.74 × 10−1

Mean 2.64 × 10−1 2.36 × 10−1 3.92 × 10−1 1.96 × 10−1 1.79 × 10−1 2.37 × 10−1 4.09 × 10−1 1.56 × 10−1 1.23 × 10−1

Std 7.46 × 10−2 4.60 × 10−2 4.52 × 10−2 1.57 × 10−2 2.41 × 10−2 2.90 × 10−2 5.01 × 10−2 4.32 × 10−2 2.68 × 10−2

Accuracy 81.52 80.43 67.39 80.43 83.70 80.43 75 85.87 85.96
Rank 4 5 7 5 3 5 6 2 1

XOR Best 2.53× 10−3 0 0 2.21× 10−2 0 1.77 ×
10−56 3.04 × 10−3 0 0

Worst 8.96 × 10−2 5.00 × 10−1 5.00 × 10−1 6.51 × 10−2 4.58 ×
10−11 2.50 × 10−1 3.27 × 10−1 0 0

Mean 1.90 × 10−2 3.00 × 10−1 2.24 × 10−1 3.49 × 10−2 2.30 ×
10−12 1.25 × 10−2 1.87 × 10−1 0 0

Std 2.01 × 10−2 2.51 × 10−1 2.19 × 10−1 1.28 × 10−2 1.02 ×
10−11 5.59 × 10−2 1.08 × 10−1 0 0

Accuracy 100 50 75 75 50 75 50 100 100
Rank 1 3 2 2 3 2 3 1 1

Balloon Best 1.37 × 10−9 0 0 1.83× 10−5 0 0 1.82× 10−4 0 0

Worst 9.06 × 10−5 0 4.96 × 10−1 9.38× 10−4 0 5.06 ×
10−30 2.13 × 10−1 0 0

Mean 2.36 × 10−5 0 1.45 × 10−1 2.23× 10−4 0 2.54 ×
10−31 6.22 × 10−2 0 0

Std 3.12 × 10−5 0 1.56 × 10−1 2.49× 10−4 0 1.13 ×
10−30 6.55 × 10−2 0 0

Accuracy 100 100 80 100 80 80 100 100 100
Rank 1 1 2 1 2 2 1 1 1

Cancer Best 3.59 × 10−2 3.35 × 10−2 5.92 × 10−2 3.44 × 10−2 2.43 × 10−2 3.69 × 10−2 7.07 × 10−2 2.44 × 10−2 2.15 × 10−2

Worst 2.55 × 10−1 7.77 × 10−2 2.91 × 10−1 4.82 × 10−2 4.84 × 10−2 5.80 × 10−2 1.58 × 10−1 5.01 × 10−2 4.50 × 10−2

Mean 7.66 × 10−2 4.78 × 10−2 2.22 × 10−1 4.41 × 10−2 3.70 × 10−2 4.62 × 10−2 1.15 × 10−1 3.84 × 10−2 3.45 × 10−2

Std 7.31 × 10−2 9.00 × 10−3 7.57 × 10−2 3.59 × 10−3 5.19 × 10−3 5.51 × 10−3 2.60 × 10−2 6.08 × 10−3 7.04 × 10−3

Accuracy 99 99 98 99 99 99 99 99 99
Rank 1 1 2 1 1 1 1 1 1

Diabetes Best 3.22 × 10−1 3.03 × 10−1 3.58 × 10−1 3.17 × 10−1 2.88 × 10−1 3.15 × 10−1 3.87 × 10−1 2.93 × 10−1 2.70 × 10−1

Worst 3.74 × 10−1 4.13 × 10−1 4.58 × 10−1 3.63 × 10−1 3.22 × 10−1 5.41 × 10−1 4.83 × 10−1 3.15 × 10−1 3.12 × 10−1

Mean 3.45 × 10−1 3.32 × 10−1 4.14 × 10−1 3.38 × 10−1 3.03 × 10−1 3.90 × 10−1 4.47 × 10−1 3.03 × 10−1 2.90 × 10−1

Std 1.53 × 10−2 2.48 × 10−2 2.64 × 10−2 1.33 × 10−2 7.50 × 10−3 6.06 × 10−2 2.76 × 10−2 5.61 × 10−3 9.99 × 10−3

Accuracy 78.16 77.01 74.33 80.08 77.78 78.93 67.82 80.84 80.93
Rank 5 7 8 3 6 4 9 2 1

Gene Best 2.43 × 10−1 7.14 × 10−2 2.83 × 10−1 5.08 × 10−4 7.14 × 10−2 1.57 × 10−1 3.77 × 10−1 7.95 ×
10−11 0

Worst 4.14 × 10−1 3.57 × 10−1 9.00 × 10−1 2.45 × 10−1 2.71 × 10−1 3.57 × 10−1 4.50 × 10−1 1.43 × 10−1 5.71 × 10−2

Mean 3.19 × 10−1 2.18 × 10−1 3.93 × 10−1 1.08 × 10−1 1.78 × 10−1 2.79 × 10−1 4.15 × 10−1 5.22 × 10−2 2.35 × 10−2

Std 5.53 × 10−2 7.55 × 10−2 1.57 × 10−1 5.97 × 10−2 5.22× 10−2 5.78 × 10−2 1.86 × 10−2 4.38 × 10−2 1.75 × 10−2

Accuracy 5.56 19.44 8.33 30.56 25 8.33 2.78 33.33 40.33
Rank 7 5 6 3 4 6 8 2 1

Parkinson Best 7.38 × 10−2 1.99 × 10−2 1.44 × 10−1 3.87 × 10−2 4.60 × 10−3 3.88 × 10−2 1.47 × 10−1 1.8 ×
10−121 0

Worst 2.33 × 10−1 2.56 × 10−1 4.04 × 10−1 9.76 × 10−2 1.86 × 10−1 2.33 × 10−1 2.96 × 10−1 9.30 × 10−2 9.30 × 10−2

Mean 1.44 × 10−1 8.66 × 10−2 3.06 × 10−1 7.40 × 10−2 5.36 × 10−2 1.33 × 10−1 2.17 × 10−1 4.35 × 10−2 4.50 × 10−2

Std 5.42 × 10−2 6.39 × 10−2 7.75 × 10−2 1.71 × 10−2 4.33 × 10−2 6.27 × 10−2 3.69 × 10−2 3.88 × 10−2 3.11 × 10−2

Accuracy 71.21 72.73 68.18 72.73 71.21 72.73 69.70 75.76 75.76
Rank 3 2 5 2 3 2 4 1 1

Splice Best 5.42 × 10−1 2.80 × 10−1 4.67 × 10−1 3.88 × 10−1 3.36 × 10−1 4.50 × 10−1 6.63 × 10−1 1.27 × 10−1 9.81 × 10−2

Worst 6.59 × 10−1 4.74 × 10−1 4.99 × 10−1 4.86 × 10−1 6.68 × 10−1 6.15 × 10−1 8.53 × 10−1 1.55 × 10−1 4.31 × 10−1

Mean 5.94 × 10−1 3.86 × 10−1 4.86 × 10−1 4.33 × 10−1 4.29 × 10−1 5.47 × 10−1 7.76 × 10−1 1.41 × 10−1 1.93 × 10−1

Std 3.32 × 10−2 6.09 × 10−2 9.92 × 10−3 2.15 × 10−2 8.67 × 10−2 4.54 × 10−2 5.22 × 10−2 8.04 × 10−3 1.12 × 10−1

Accuracy 52.65 74.12 50.88 64.71 77.94 59.12 48.53 82.65 83.27
Rank 7 4 8 5 3 6 9 2 1

WDBC Best 4.55 × 10−2 2.23 × 10−2 1.40 × 10−1 4.42 × 10−2 2.76 × 10−2 4.57 × 10−2 1.72 × 10−1 1.38 × 10−2 8.24 × 10−3

Worst 1.17 × 10−1 2.83 × 10−1 5.12 × 10−1 6.67 × 10−2 4.67 × 10−2 1.22 × 10−1 3.58 × 10−1 6.25 × 10−2 4.56 × 10−2

Mean 7.96 × 10−2 5.96 × 10−2 3.32 × 10−1 5.50 × 10−2 3.41 × 10−2 7.18 × 10−2 2.67 × 10−1 4.16 × 10−2 2.61 × 10−2

Std 2.16 × 10−2 5.54 × 10−2 1.15 × 10−1 6.83 × 10−3 4.78 × 10−3 2.04 × 10−2 4.76 × 10−2 1.22 × 10−2 1.03 × 10−2

Accuracy 91.52 94.55 86.67 95.76 93.94 92.12 85.45 98.79 98.85
Rank 7 4 8 3 5 6 9 2 1

Zoo Best 3.58 × 10−1 7.46 × 10−2 5.04 × 10−1 1.57 × 10−1 1.49 × 10−2 8.96 × 10−2 4.18 × 10−1 1.49 × 10−2 4.13 ×
10−43

Worst 7.76 × 10−1 5.52 × 10−1 7.78 × 10−1 3.73 × 10−1 2.54 × 10−1 7.01 × 10−1 1.6 × 101 1.49 × 10−1 1.11 × 10−1

Mean 5.11 × 10−1 3.07 × 10−1 6.11 × 10−1 2.82 × 10−1 1.13 × 10−1 3.01 × 10−1 9.52 × 10−1 6.33 × 10−2 4.40 × 10−2

Std 1.14 × 10−1 1.24 × 10−1 7.18 × 10−2 5.46 × 10−2 6.36 × 10−2 1.69 × 10−1 3.37 × 10−1 3.22 × 10−2 3.22 × 10−2

Accuracy 52.94 52.94 41.18 67.65 76.47 64.71 50 82.35 87.27
Rank 6 6 8 4 3 5 7 2 1
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The Wilcoxon rank–sum test was actualized to distinguish the EMPA and other algo-
rithms [44]. p < 0.05 indicates that the discrepancy is noteworthy, p ≥ 0.05 indicates that
the discrepancy is not noteworthy, and N/A indicates that a “not applicable” discrepancy.
The results of the p-value Wilcoxon rank–sum test are revealed in Table 5. The experimental
results indicate that the discrepancy between EMPA and other algorithms was noteworthy.

Table 5. Results of the p-value Wilcoxon rank-sum test.

Datasets ALO AVOA DOA FPA MFO SSA SSO MPA

Blood 6.80 × 10−8 1.20 × 10−6 6.80 × 10−8 6.80 × 10−8 2.85 × 10−2 9.17 × 10−8 6.80 × 10−8 7.58 × 10−4

Scale 5.22 × 10−7 2.59 × 10−5 6.79 × 10−8 7.89 × 10−8 1.48 × 10−3 1.41 × 10−5 6.79 × 10−8 1.56 × 10−3

Survival 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8 1.14 × 10−2 1.06 × 10−7 6.80 × 10−8 1.08 × 10−3

Liver 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8 6.80 × 10−8 5.23 × 10−7 7.90 × 10−8 6.80 × 10−8 7.58 × 10−4

Seeds 3.95 × 10−6 1.98 × 10−4 6.71 × 10−8 2.19 × 10−7 9.68 × 10−5 2.73 × 10−4 6.71 × 10−8 2.55 × 10−2

Wine 7.31 × 10−8 1.72 × 10−5 6.29 × 10−8 3.54 × 10−5 1.56 × 10−3 3.04 × 10−6 6.29 × 10−8 7.64 × 10−4

Iris 5.17 × 10−7 4.40 × 10−2 6.71 × 10−8 6.71 × 10−8 3.18 × 10−3 5.07 × 10−4 6.71 × 10−8 3.78 × 10−2

Statlog 6.69 × 10−8 6.83 × 10−7 6.69 × 10−8 7.78 × 10−8 2.33 × 10−6 6.69 × 10−8 6.69 × 10−8 1.14 × 10−3

XOR 8.01 × 10−9 4.68 × 10−5 2.55 × 10−5 8.01 × 10−9 1.05 × 10−7 8.01 × 10−9 8.01 × 10−9 N/A
Balloon 8.01 × 10−9 N/A 2.49 × 10−5 8.01 × 10−9 3.42 × 10−3 2.99 × 10−8 8.01 × 10−9 N/A
Cancer 7.49 × 10−6 6.59 × 10−6 6.68 × 10−8 4.12 × 10−5 1.98 × 10−4 1.58 × 10−5 6.68 × 10−8 8.54 × 10−4

Diabetes 6.80 × 10−8 1.66 × 10−7 6.80 × 10−8 6.80 × 10−8 1.04 × 10−4 6.80 × 10−8 6.80 × 10−8 5.90 × 10−5

Gene 5.97 × 10−8 6.07 × 10−8 6.07 × 10−8 2.47 × 10−6 6.07 × 10−8 5.93 × 10−8 6.07 × 10−8 1.59 × 10−2

Parkinson 2.55 × 10−7 3.84 × 10−2 6.75 × 10−8 2.56 × 10−3 7.56 × 10−4 2.93 × 10−6 6.75 × 10−8 N/A
Splice 6.80 × 10−8 1.25 × 10−5 6.80 × 10−8 2.96 × 10−7 1.58 × 10−6 6.80 × 10−8 6.80 × 10−8 2.85 × 10−5

WDBC 7.89 × 10−8 7.40 × 10−5 6.79 × 10−8 7.89 × 10−8 1.14 × 10−2 6.79 × 10−8 6.79 × 10−8 2.33 × 10−4

Zoo 6.49 × 10−8 1.18 × 10−7 6.52 × 10−8 6.52 × 10−8 3.20 × 10−4 1.56 × 10−7 6.52 × 10−8 5.27 × 10−4

The convergent curves of the EMPA and other algorithms under different datasets are
shown in Figures 3–19. The convergent curve is an important method to measure the overall
optimization and traversal search, which not only intuitively reflects the convergence rate
and computation accuracy of the feedforward neural networks trained by the EMPA and
other algorithms, but also objectively observes the iteration process, as well as the stability
and feasibility of different algorithms. For the blood, scale, survival, liver, seeds, wine, iris,
statlog, XOR, balloon, cancer, diabetes, gene, parkinson, splice, WDBC and zoo datasets,
compared with the ALO, AVOA, DOA, FPA, MFO, SSA, SSO, and MPA, the evaluation
indexes of the EMPA were relatively better in optimal values, worst values, mean values,
and standard deviations. The classification rate and ranking of the EMPA were superior
to those of other algorithms. The convergence rate and computation accuracy of the
EMPA were superior to those of the ALO, AVOA, DOA, FPA, MFO, SSA, SSO, and MPA,
which indicates that the EMPA has remarkable feasibility and resilience to eliminate search
stagnation and acquire the connection weight and deviation value. The optimal values and
convergence effect of the EMPA were superior to those of other algorithms under different
datasets. The EMPA has the properties of straightforward algorithm architecture, excellent
control parameters, great traversal efficiency, strong stability, and easy implementation.
The EMPA integrates exploration and exploitation to renew the position information and
arrive at the global ideal solution. The EMPA is a practical and efficient method for training
feedforward neural networks.
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The ANOVA tests of the EMPA and other algorithms under different datasets are
shown in Figures 20–36. The standard deviation is an important method to measure
the dispersion degree of data average values, which can accurately portray the stability
and consistency of comparison algorithms in resolving the feedforward neural networks.
The lower standard deviation showed that the algorithm has extensive exploration and
exploitation to acquire more stable experimental data. For different datasets, the standard
deviations of the EMPA were lower than those of the ALO, AVOA, DOA, FPA, MFO, SSA,
SSO, and MPA, which indicates that the EMPA has exceptional stability and durability. The
EMPA had greater computational efficiency and stronger dependability to attain a more
stable standard deviation. The optimal values, worst values, mean values, classification rate
and ranking of the EMPA were relatively better compared to ALO, AVOA, DOA, FPA, MFO,
SSA, SSO, and MPA. The EMPA, based on the marine predators foraging strategy, utilizes
a distinctive optimization mechanism of Lévy flight, Brownian motion, and the optimal
encounter rate policy to determine the global optimal solution. The EMPA has strong
global and local search abilities to avoid search stagnation and premature convergence,
which enhances the convergence effect and optimization ability. The EMPA has strong
stability and robustness to train the feedforward neural networks. Meanwhile, The EMPA
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has a certain superiority and significance for receiving the better connection weight and
deviation value.

Processes 2023, 11, x FOR PEER REVIEW 23 of 31 
 

 

Meanwhile, The EMPA has a certain superiority and significance for receiving the better 
connection weight and deviation value. 

 
Figure 20. The ANOVA test of Blood. 

 
Figure 21. The ANOVA test of Scale. 

 
Figure 22. The ANOVA test of Survival. 

Figure 20. The ANOVA test of Blood.

Processes 2023, 11, x FOR PEER REVIEW 23 of 31 
 

 

Meanwhile, The EMPA has a certain superiority and significance for receiving the better 
connection weight and deviation value. 

 
Figure 20. The ANOVA test of Blood. 

 
Figure 21. The ANOVA test of Scale. 

 
Figure 22. The ANOVA test of Survival. 

Figure 21. The ANOVA test of Scale.

Processes 2023, 11, x FOR PEER REVIEW 23 of 31 
 

 

Meanwhile, The EMPA has a certain superiority and significance for receiving the better 
connection weight and deviation value. 

 
Figure 20. The ANOVA test of Blood. 

 
Figure 21. The ANOVA test of Scale. 

 
Figure 22. The ANOVA test of Survival. 

Figure 22. The ANOVA test of Survival.



Processes 2023, 11, 924 23 of 30

Processes 2023, 11, x FOR PEER REVIEW 24 of 31 
 

 

 
Figure 23. The ANOVA test of Liver. 

 
Figure 24. The ANOVA test of Seeds. 

 
Figure 25. The ANOVA test of Wine. 

Figure 23. The ANOVA test of Liver.

Processes 2023, 11, x FOR PEER REVIEW 24 of 31 
 

 

 
Figure 23. The ANOVA test of Liver. 

 
Figure 24. The ANOVA test of Seeds. 

 
Figure 25. The ANOVA test of Wine. 

Figure 24. The ANOVA test of Seeds.

Processes 2023, 11, x FOR PEER REVIEW 24 of 31 
 

 

 
Figure 23. The ANOVA test of Liver. 

 
Figure 24. The ANOVA test of Seeds. 

 
Figure 25. The ANOVA test of Wine. 

Figure 25. The ANOVA test of Wine.



Processes 2023, 11, 924 24 of 30

Processes 2023, 11, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 26. The ANOVA test of Iris. 

 
Figure 27. The ANOVA test of Statlog. 

 

Figure 28. The ANOVA test of XOR. 

Figure 26. The ANOVA test of Iris.

Processes 2023, 11, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 26. The ANOVA test of Iris. 

 
Figure 27. The ANOVA test of Statlog. 

 

Figure 28. The ANOVA test of XOR. 

Figure 27. The ANOVA test of Statlog.

Processes 2023, 11, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 26. The ANOVA test of Iris. 

 
Figure 27. The ANOVA test of Statlog. 

 

Figure 28. The ANOVA test of XOR. 

Figure 28. The ANOVA test of XOR.



Processes 2023, 11, 924 25 of 30

Processes 2023, 11, x FOR PEER REVIEW 26 of 31 
 

 

 
Figure 29. The ANOVA test of Balloon. 

 
Figure 30. The ANOVA test of Cancer. 

 
Figure 31. The ANOVA test of Diabetes. 

Figure 29. The ANOVA test of Balloon.

Processes 2023, 11, x FOR PEER REVIEW 26 of 31 
 

 

 
Figure 29. The ANOVA test of Balloon. 

 
Figure 30. The ANOVA test of Cancer. 

 
Figure 31. The ANOVA test of Diabetes. 

Figure 30. The ANOVA test of Cancer.

Processes 2023, 11, x FOR PEER REVIEW 26 of 31 
 

 

 
Figure 29. The ANOVA test of Balloon. 

 
Figure 30. The ANOVA test of Cancer. 

 
Figure 31. The ANOVA test of Diabetes. 

Figure 31. The ANOVA test of Diabetes.



Processes 2023, 11, 924 26 of 30

Processes 2023, 11, x FOR PEER REVIEW 27 of 31 
 

 

 
Figure 32. The ANOVA test of Gene. 

 
Figure 33. The ANOVA test of Parkinson. 

 
Figure 34. The ANOVA test of Splice. 

Figure 32. The ANOVA test of Gene.

Processes 2023, 11, x FOR PEER REVIEW 27 of 31 
 

 

 
Figure 32. The ANOVA test of Gene. 

 
Figure 33. The ANOVA test of Parkinson. 

 
Figure 34. The ANOVA test of Splice. 

Figure 33. The ANOVA test of Parkinson.

Processes 2023, 11, x FOR PEER REVIEW 27 of 31 
 

 

 
Figure 32. The ANOVA test of Gene. 

 
Figure 33. The ANOVA test of Parkinson. 

 
Figure 34. The ANOVA test of Splice. 

Figure 34. The ANOVA test of Splice.



Processes 2023, 11, 924 27 of 30

Processes 2023, 11, x FOR PEER REVIEW 28 of 31 
 

 

 
Figure 35. The ANOVA test of WDBC. 

 
Figure 36. The ANOVA test of Zoo. 

Statistically, the EMPA is based on the marine predators foraging strategy to imitate 
Lévy flight, Brownian motion, and the optimal encounter rate policy to arrive at the over-
all best solution. The EMPA was employed to resolve FNNs for the following reasons. 
First, the EMPA has the properties of straightforward algorithm architecture, excellent 
control parameters, great traversal efficiency, strong stability, and easy implementation. 
Second, the EMPA utilizes the Lévy flight, Brownian motion, and the optimal encounter 
rate policy to determine the best solution. The Lévy flight can increase the population 
diversity, expand the search space, enhance the exploitation ability, and improve the cal-
culation accuracy. The Brownian motion and optimal encounter rate policy can filter out 
the best solution, avoid search stagnation, enhance the exploration ability, and accelerate 
the convergence speed. Third, the ranking-based mutation operator was introduced into 
the MPA. The EMPA not only balances exploration and exploitation to avoid falling into 
the local optimum and premature convergence, but it also utilizes a unique search mech-
anism to renew the position and identify the best solution. To summarize, the EMPA has 
a quicker convergence speed, greater calculation accuracy, higher classification rate, and 
strong stability and robustness. The EMPA has a strong overall optimization ability to 
train FNNs. 

Figure 35. The ANOVA test of WDBC.

Processes 2023, 11, x FOR PEER REVIEW 28 of 31 
 

 

 
Figure 35. The ANOVA test of WDBC. 

 
Figure 36. The ANOVA test of Zoo. 

Statistically, the EMPA is based on the marine predators foraging strategy to imitate 
Lévy flight, Brownian motion, and the optimal encounter rate policy to arrive at the over-
all best solution. The EMPA was employed to resolve FNNs for the following reasons. 
First, the EMPA has the properties of straightforward algorithm architecture, excellent 
control parameters, great traversal efficiency, strong stability, and easy implementation. 
Second, the EMPA utilizes the Lévy flight, Brownian motion, and the optimal encounter 
rate policy to determine the best solution. The Lévy flight can increase the population 
diversity, expand the search space, enhance the exploitation ability, and improve the cal-
culation accuracy. The Brownian motion and optimal encounter rate policy can filter out 
the best solution, avoid search stagnation, enhance the exploration ability, and accelerate 
the convergence speed. Third, the ranking-based mutation operator was introduced into 
the MPA. The EMPA not only balances exploration and exploitation to avoid falling into 
the local optimum and premature convergence, but it also utilizes a unique search mech-
anism to renew the position and identify the best solution. To summarize, the EMPA has 
a quicker convergence speed, greater calculation accuracy, higher classification rate, and 
strong stability and robustness. The EMPA has a strong overall optimization ability to 
train FNNs. 

Figure 36. The ANOVA test of Zoo.

Statistically, the EMPA is based on the marine predators foraging strategy to imitate
Lévy flight, Brownian motion, and the optimal encounter rate policy to arrive at the overall
best solution. The EMPA was employed to resolve FNNs for the following reasons. First,
the EMPA has the properties of straightforward algorithm architecture, excellent control
parameters, great traversal efficiency, strong stability, and easy implementation. Second, the
EMPA utilizes the Lévy flight, Brownian motion, and the optimal encounter rate policy to
determine the best solution. The Lévy flight can increase the population diversity, expand
the search space, enhance the exploitation ability, and improve the calculation accuracy. The
Brownian motion and optimal encounter rate policy can filter out the best solution, avoid
search stagnation, enhance the exploration ability, and accelerate the convergence speed.
Third, the ranking-based mutation operator was introduced into the MPA. The EMPA
not only balances exploration and exploitation to avoid falling into the local optimum
and premature convergence, but it also utilizes a unique search mechanism to renew the
position and identify the best solution. To summarize, the EMPA has a quicker convergence
speed, greater calculation accuracy, higher classification rate, and strong stability and
robustness. The EMPA has a strong overall optimization ability to train FNNs.

7. Conclusions and Future Research

In this paper, an enhanced MPA based on the ranking-based mutation operator was
presented to train FNNs, and the objective was not only to determine the best combination
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of connection weight and deviation value, but also to acquire the global best solution
according to the given input value. The ranking-based mutation operator not only enhanced
the selection probability to filter out the optimal search agent, but also mitigated search
stagnation to accelerate convergence speed. The EMPA utilized the distinctive mechanisms
of Lévy flight, Brownian motion, the optimal encounter rate policy, and the ranking-based
mutation operator to attain the minimum classification, prediction and approximation
errors. The EMPA had strong robustness, parallelism, and scalability to determine the
best value. Compared with the other algorithms, the EMPA had excellent reliability and
superiority to train FNNs. The experimental results demonstrate that the convergence
speed, calculation accuracy and classification rate of the EMPA were superior to those of
the other algorithms. Furthermore, the EMPA had strong practicability and feasibility for
training FNNs.

In future research, we will utilize the DL methods, ML methods, and CNN. We
will modify the activation function, such as RELU and sRELU. We will employ the ran-
dom forest, XGBBOST, KNN, and FNN with other optimization algorithms. The EMPA
will be utilized to resolve complex optimization problems, such as intelligent vehicle
path planning, intelligent-temperature-controlled self-adjusting electric fans, and sensor
information fusion.

Author Contributions: Conceptualization, J.Z. and Y.X.; methodology, J.Z. and Y.X..; software, J.Z.
and Y.X.; validation, J.Z. and Y.X.; formal analysis, J.Z.; investigation, Y.X.; resources, J.Z. and Y.X.;
data curation, J.Z. and Y.X.; writing—original draft preparation, J.Z.; writing—review and editing, J.Z.
and Y.X.; visualization, J.Z. and Y.X.; supervision, Y.X.; project administration, J.Z. and Y.X.; funding
acquisition, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Start-up Fee for Scientific Research of High-level Talents
in 2022 under Grant No. 00701092336.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used to support the findings of this study are included within
the article.

Acknowledgments: This research was funded by the Start-up Fee for Scientific Research of High-level
Talents in 2022 under Grant No. 00701092336. The authors would like to thank everyone involved for
their contribution to this article. They also would like to thank the editor and anonymous reviewers
for the helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
FNNs Feedforward Neural Networks
MPA Marine Predators Algorithm
EMPA Enhanced Marine Predators Algorithm
UCI University of California Irvine
ALO Ant Lion Optimization
AVOA African Vultures Optimization Algorithm
DOA Dingo Optimization Algorithm
FPA Flower Pollination Algorithm
MFO Moth Flame Optimization
SSA Salp Swarm Algorithm
SSO Sperm Swarm Optimization
MLP Multilayer Perception
MSE Mean Squared Error
N/A Not Applicable



Processes 2023, 11, 924 29 of 30

References
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