Table S1: Weights for PRs branch with TNFa and LTs with CCL2

WrxB,

PRs branch (wpg,) Weight (wpg,) LTs branch Weight (wr,)
TNFa CCL2
WpGE, 0.25 WirB, 0.45
WpGFy, 0.27 WepiLTB, 0.32
Wpeb, 0.22 Wi2LTB, 0.23
0.26




1 Materials and Methods
The rate balance equations for all the metabolites of PRs and LTs branches are:

d|5—HETE
[ = ] = k5—HETE[AA]95—HETE(1 + kATp[ATP]) - gS—HETE[S - HETE] ( l)

d[15—HETE
% = kis_perelAAleis_pyere(1 + karp[ATP]) — g15_pprel[15 — HETE] (2)

1.1 PRsbranch

d[PGH,]
dt = = epci,kpon, [AAl(1 + karp[ATP]) — gpeu,[PGH2] — Vpep,epep, kpep, [PGH,] —

UPGEZePGEZkPGEZ [PGH,] — UPGFmePGFZakPGFZa[PGHz] - UTXBzeTXBZkTXBZ [PGH,]

(3)
d[PthDZ] = Vpcp,€pe,Kpep, [PGH2] — 9pep,[PGD,] — kapep, [PGD2] — kpgy, [PGD;] (4)
d[PdiEZ] = VpgE,€prcE,KrcE, [PGH,] — 9prGE, [PGE,] (5)
% = UPGFwePGFZakPGFm[PGHz] - gPGFZa[PGFZa] (6)
d[T:tBZ] = vTszeTszkaBz [PGH,] — 9TxB, [TxB,] (7)
% = kpg,[PGD,;] — gpey,[PGJ2] — kapey, [PGJ] (8)
AL = Kapey, [PGI2] = Gapcy, [4PGJ,] (9)
d[deDZ] = kapep,[PGD,] — gapcp,[dPGD,] (10)

For PRs branch, there are control variables upp, associated with each PR;. As an example, enzyme
balance for dimensionless ep¢p,, €pgp, IS EQ. (11 ). Similarly, for LTs branch, there are control
variables u; r, corresponding to each LT;.

!
dSPGDZ ' k €PGD, [PGHZ]uPGDZ
— = Blat — Bépgp (11)
dat KEPGD2+[PGH2] 2

The control variables for enzyme synthesis upp, are defined as
Upp, = sl for PR; = {PGDy, PGE,, PGF,,, TxB,} (12)

j=1 pPRj

The cybernetic variable for enzyme activity vpp, is defined as



PPR; .

max (ppgr;)’
j=1,2,3,4 PRj

Vpp, = PR; = {PGD,, PGE,, PGF,,, TxB,} (13)

1.2 LTsbranch

d[LTA
[dt d - erraKira, [AA](1 + kurp[ATP]) — grra, [LTA,] — 21'3=1 ULTieLTikLTi [LTA,], for

LT; = {LTB,, 12LTB,, 6tLTB,} (14)

The cybernetic control variable for a LT, LT;, is v, r,. ez, is the relevant enzyme level and g, 74,
is the degradation rate of LTA4. k, 7, is the rate constant of the product LT;. Eq. (15) is the detailed

version of Eq. ( 14).

d[LTA,)
at = = erra,Kira, [AAI(L + karp[ATP]) — grra,[LTAL] — virp,err, kirs, [LTAL] —

V12LTB4912LTB4k12LTB4 [LTA,] — VetLTB, thLTB4k6tLTB4 [LTA,] (15)

The kinetic equation for an LT, LT; is Eq. (16 ) . There are no further conversions of LTs, making
the downstream fluxes zero (Fig. 1).

d[LT;]

praaie vprerrkir, [LTAs]l — gur [LTi] for LT; = {LTB,, 6tLTB,, 12LTB,} (16)
d[L;th = VrrB, eLTB4kLTB4 [LTA,] — gL, [LTB,] (17)
d[6tstT Bl VU6tLTB,€6tLTB, k6tLTB4 [LTA,] — YetLTB, [6tLT B,] (18)
% = leLTB4elzLTB4k12LTB4 [LTA,] — ngLTB4[12LTB4] (19)

The control variables for enzyme synthesis u, r, are defined as

upr, = % for LT; = {LTB,, 6tLTB,, 12LTB,} (20)
j=1PLTj
The cybernetic variable for enzyme activity vpg, is defined as
PLT;
=—*— LT; ={LTB,,6tLTB,, 12LTB 21
ULr; jinl'f‘z),(s(p”j) =1 4 4 4} (21)
2 RSTE

The AA network is a well-characterized network where the causality between any two
metabolites is known. For instance, AA (cause) leads to downstream production of metabolites
PGD,, PGE,, PGF,,,TxB, (effect). To determine the hyperparameters, we run simulations for m =



{1,2,3,...,10}, ¢ = {0.1,0.25,04, ...,3},and T = {1, 2,3,...,50}, and predict the causality for
any two metabolites. We choose the m,t and g combination for which the RSTE model best
captures causality for the AA network. The RSTE model developed using the optimized
hyperparameters is representative of the AA network causality. We predict causality between AA
and the cytokine TNFa as well as AA and the chemokine CCL2 using the same hyperparameters.

Table S2: RSTE values for AA network and AA, TNFa (and CCL2) combination

Connections (m =3, q = 0.85, T = 13) RSTE
AA_PGD:2 — PGD2_AA 0.00162
AA_PGF2a — PGF2a_AA -0.01007
AA_TxB2— TxB2_AA 0.0156
AA_15ddPGD2 —15ddPGD2_AA 0.0301
AA_PGJ2—PGJ_AA 0.0224
AA_15ddPGJ2 —15ddPGJ2_AA 0.028
AA_ketPGD2 — ketPGD2_AA 0.037
AA_LTBs—LTBa_AA 0.031
AA_epiL —epiL_AA 0.09
AA _transL — transL_AA 0.014
AA _HETES — HETE5_AA -0.025
AA _HETE15 — HETE15_AA -0.005
PGD2_15ddPGD2 —15ddPGD2_PGD:2 0.0014
PGD2_PGJ: — PGJ2_PGD:2 0.025
PGD2_15ddPGJ2 —15ddPGJ2_PGD:2 0.033
PGD2_ketPGD2 — ketPGD2_PGD:2 0.008
PGJ2_15ddPGJ2 —15ddPGJ2_PGJ2 -0.015
AA_TNFa — TNFa_AA 0.0002

AA _CCL2— CCL2_AA 0.0004




Table S3 Calculated kinetic parameters for the COX pathway. The columns represent parameters
calculated for the cybernetic model. The parameters are estimated using the simulation strategy

discussed in the paper.

Parameter Values Parameter | Values | Parameter | Values | Parameter | Values
kpce, 0.0062 K epgr, 0.8778 LT A4, 0.0005 Kenereis 0.6863
kpr,, 0.0018 eporyg 0.3786 €LTB4k, 0.5566 Kk 0.0135
krxg, 0.0103 ‘e, | 0.4835 Cepily, 0.7405 B 0.8909
kapep, 0.0520 €pGH2k, 0.8286 €transLi, 0.7306
kpgy, 0.0207 epGD2i, 0.1651 €Lras 0.7975
kapgy, 0.0388 €prGE2k, 0.1622 €HETE15k 0.6656
9péH, 0.4186 epGra, 0.7993 K.irs, 0.4317
9rep, 0.0045 €rxB2k, 0.5614 K cepir 0.2715
9rGE, 1.32E-06 kirs, 4.9256 K otransL 0.3207
9PGF,, 7.11E-07 kepir 4.4478 K'erra, 0.5733
9B, 7.12E-07 Keranst 4.4778 LTA4, 0.0010
9darep, | 7.07E-07 kira, 0.0002 LTA4g, 0.0005
9grey, 7.10E-07 Kueres 0.0005 €LTB4k, 0.5566
9arcj, 0.1032 kyereis | 0.0001 €epiLy, 0.7405
PGH2, 0.0074 9diTB, 0.8706 €transLi, 0.7306
PGH2g, 0.9999 epiL 0.4394 €rTA4g, 0.7975
karp 4.9991 JeransL 0.7316 €HETE15k, 0.6656
Komaa 48.0240 9ira, 0.3299

3 Development of Mutual information formulation for time series

In what follows, we briefly describe our approach for formulating mutual information for bivariate
time series.

Note that Shannon’s mutual information I(X;Y), Eqg. (10) can be written in terms of expectation
as follows

1Y) = Ep[A(x,5))] i Axiy;) = logp(xy,y) —logp(x;) —logp(y)) (22)
where [E, [. ] denotes the expectation operator. I(X; Y) is the expectation of the difference between
the log likelihood of two variables log p(xl-,yj) and single variable log p(x;), log p(yj) with
respect to the joint probability distribution p(x;, ;). Galka et al. [1] redefined A(x;, y;) in Eq. (22)
by pairing the time points as

A(X,,Y;) = log (pxy (CGewya), Gz y2), o (xN,yNt))) —log px (%1, %z, ..., Xy,) — logpy (1, -, ¥,



(23)

The short-hand notation for Eq. 23 is A()?t, Vt) = L()?t, Vt) — L()?t) — L(Vt) where L(.) denotes
the log-likelihood operation. Eq. 23 involves estimating high-dimensional joint probability
densities; evaluating them is computationally expensive due to the intra and inter-temporal
correlations. To overcome this obstacle, Galka et al. [1] suggest formulating them in terms of
probability densities of the corresponding innovation series [1]. The authors recommend
describing the temporal correlations by a time series prediction model. This model makes future
time predictions using past time points, ensuring that the system follows causality. Conventionally,

the vector autoregressive (VAR) model for a two-dimension time series (zt(l)) and (zt(z)) is used
to capture the data’s inter and intra-temporal correlations based on causality [2]. The VAR model
has a hyperparameter p that denotes the temporal dependency to the past time points. More
precisely, this model entails the target variable (z(l)) which equals to a weighted linear

combination of its p past values and p past values of the other time series, an error term series (e;)
and a constant u, as shown in Eq. 24 and Eq. 25.

2D =3P 1a£1> W 4 yr g0,@ Lo M, 20— 2 = e, (24)
T I o Ry ST P Ly (25)

VAR makes one-step ahead prediction, zAt(l) of the target variable (zt(l)). The innovation of the
prediction (z;") at an instant, e, is the difference between the observed z'" and predicted value
z; ™. The innovations conceptually represent the error between the model predictions and the

observed values. We use the VAR model to determine the innovation series for )?t and 17; using
EQ. 24 and 25, respectively. Our method uses VAR only unlike Galka’s technique which employs
both AR and VAR [1]. We use VAR only because (1) mutual dependence estimations tend to
improve by applying VAR filters and (2) the two series are generated according to a joint

probability distribution, indicating that X’t and 17t are correlated. Moreover, this approach is better
consistent with the standard definition of MI. We mathematically derived that the joint probability

density of X’t is the same as the joint probability density of the corresponding innovation series e;.
This is true for the 17t series and the paired ()?t, 17t) series.

Px(xpxz;xs: ---'xzvt) = pe(er, ez, ) eNt) ; PY(Y1'J’2:3’3» -"'YNt) = pr(f1, f2) ---'th) (26)
bxy ((x13’1); (x2,¥2), (x3,¥3), e, (th')’Nt)) = Per ((91f1)' (€2, f2), o) (eNt,th)) (27)

A befitting time series forecasting method yields a white noise innovation data set. If the time
points are from an independent and identically distributed (i.i.d) sequence, the joint probability of
the innovation time series deciphers as the product of marginal probability densities per Eg. (28).
This is true for joint probability distribution of time series Y; per Eq. (28).

Pe(er,€2,-..,6) = pe(e)pe(er)--pve(er); pr(fufor-- f) = pr(fpr(f2)--- 0 (fr) (28)
pef((elﬂfl)r--r(et'ft)) = pef(el'fl) pef(ezrfz)--:pef(et'ft) (29)

We write Eq. 29 as mentioned because {(e,, f1),.., (e:, f:)} are independent of each other. Thus,
Eq. 23 takes the form



. Pesleifi)
A(X,Y,) = % log <p(ef)—pf(f)) )

o o e ( i'fi)
IT(Xt; Yt) = f_oo Zivil log (pep(;)—;f(fi)) pes, f1)p(es f2) ---P(eNt'th)der . deNtdfr . dit (31)

To derive MI formulation for continuous variables, we take the average of Eq. 30 with respect to
the joint probability distribution and integrate as per Eg. 31. We know that f_cto p(e;, fideidf; =

1, hence M1 formulation for bivariate temporally correlated time series, IT()?t; 17;), IS

v .U oo Pe (eirfi)
(X %) = N 17, peyCew f) 10g (LML) deydf, (32)

For Eq. 32 derivation, we employ the fact that the integral for all time points will be the same as
they all belong to identical probability distributions.

Galka et al. developed the “innovation approach to compute mutual information” for temporally
correlated time series [1]. The authors originally considered time series with Gaussian distribution
as the innovation series. However, the innovation series can also follow nonparametric
distributions. We build upon Galka et al.’s innovation approach and propose an estimation method
for IT()?t; 17t ) valid for parametric and nonparametric distributions of the innovation series. Our
method uses VAR only for innovation series determination unlike Galka’s technique which
employs both AR and VAR [1]. We use VAR only because (1) mutual dependence estimations
tend to improve by applying VAR filters and (2) the two series are generated according to a joint
probability distribution, indicating that )?t and 17t are correlated. Moreover, this approach is
consistent with the standard definition of MI.

Eq. 33 denotes the IT(X,; Y, ) formulation in terms of joint entropy, HT (X, Y, ), defined in Eq. 34,

and entropies for X,, HT(X,) and Y,, HT(Y,), detailed in Eq. 35. Eq. 32 indicates that IT(X,;Y;)

quantifies the shared interaction between the bivariate time series similar to Shannon’s Ml
representation.

IT(X;Y,) = HT(X,) + HT(Y,) — HT(X,, Y,) (33)
HT (X, Y;) = =N, | pes(ei f:) 1ogpes(es, fi) de;df; (34)
HT(X,) = =N, [~ p.(e)logp.(e) de;; HT(Y,) = —N, [ . ps(f;)logps(f) df; (35)

Remark: Note that IT(X,; Y,), Eq. 32 observes the following properties:
(a) IT(X,;Y,) = 0. It is always non-negative.
(b) IT(X,;Y,) = 0 if and only if the time series are independent of each other.
() IT(X;Y,) = IT(Y,; X,) implies that IT(X,; Y,) is symmetric.
IT(X;Y,) < min(HT(X,), HT(Y,)), following the similar arguments based on Jensen’s

inequality application to Shanon’s MI formulation I(X;Y). It is important to note that the
properties (a)-(d) of IT()?t; ?t) retains the standard characteristics of Shannon’s MI

formulation I(X;Y).



4  F-test calculation

2 2
nt trt _ gtrt nt ctrl_ gcetrl
(ijl(yj X7 AR (v X ))/
(nexnt)

F= nt ynr trt _ gtrt 2 nt ynr ctrl_ gctrl 2
( Foa B (XX + R B (XX ))/
(

(36)
nexntx(nr—1))

where X;, X;, and ¥; denote the experimental data, mean experimental data, and simulated (fitted)
data at time point j, respectively. nr is the number of replicates (nr = 3, indexed as i), nt is the
number of time points (nt = 7, indexed as j). ne is the number of experimental conditions used, and
trt and ctrl are treatment and control groups, respectively. The degrees of freedom for determining
the F distribution are dfi= (ne x nt) and df2= (ne x nt X (nr — 1)).

Table S4. Model Accuracy for the formulated cybernetic goal. Goodness of fit, F-test, for
simulated/optimized (control, adenosine triphosphate (ATP) stimulated, and Kdo2-Lipid A (KLA)
primed data) and predicted (Kdo2-Lipid A (KLA) primed and ATP stimulated) cases. F values
smaller than Fo.os(21, 42) = 0.51 indicate that the fit-error is statistically smaller than the
experimental error; whereas, the F values smaller than Fogs(21, 42) = 1.81 indicate statistically
equal variance in simulated (fitted) and experimental data.

Model Fit Model Prediction
Metabolite to Data to KLA+ATP Data
PGD:2 0.4462 0.6549
PGE: 0.6382 0.827
PGF2q 0.2873 0.4174
TXB:> 0.4209 0.3783
dPGD2 0.4869 1.8715
PGJ> 0.4453 0.6674
dPGJ2 0.4534 1.0044
LTB4 0.233 0.2499
12-epi-LTB4 0.2473 0.291
6-trans-epi-LTB4 0.2321 0.2508
5-HETE 0.289 0.5084
15-HETE 0.2833 0.3755
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