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Abstract: The chemical industry includes a wide range of factories focused on obtaining final products
as: (i) plastics; (ii) chemical fibers; (iii) rubber; (iv) perfumery and cosmetic products; and (v) cleaning
products. Although the level of safety in the activities and installations of this sector is very high, the
use of dangerous substances implies an increased risk of suffering an accident involving the emission
of hazardous substances, as well as endangering the safety of workers. In the case of the manufacture
of softeners, the presence of isopropanol (C3H8O), and dimethyl sulfate (CH3)2SO4), have been
reported to be the accident cause in most of the cases. The European accident database (eMars)
reported an accident in which the presence of impurities of nickel (Ni) in the hydrogenated tallow
used as raw material for softener production may have increased thermal reactivity and the chances
of spontaneous combustion. This paper analyzes the results obtained with the Maciejasz Index (MI)
to understand the thermal susceptibility of these substances in liquid state. The results show that
combinations of nickel (hydrogenated tallow catalyst) with other liquid substances (isopropanol,
dimethyl sulfate, and sulfuric acid) are not sufficiently reactive with oxygen to cause a spontaneous
combustion.

Keywords: chemical industry; esterquat softener; thermal susceptibility; Maciejasz Index (MI);
spontaneous combustion

1. Introduction

The main target of any industry is to obtain repair, maintenance, transformation, or
reuse of industrial products, as well as the use, recovery, and disposal of waste or by-
products. To achieve this goal, it is necessary to establish a business strategy based on
two fundamental pillars: (i) the sustainability and efficiency of the system; and (ii) the
safety of the installation and of the workers who carry out their professional activity [1,2].
However, numerous events endanger these pillars of the business strategy of the industrial
sector, causing considerable material damage and sometimes even countless fatalities,
unfortunately.

The International Labour Organization (ILO)—a specialized agency of the United
Nations (UN) that has brought together governments, employers, and workers from 187 UN
Member States—estimates that every year some 2.3 million women and men succumb
to work-related accidents or diseases. (Approximately 6000 deaths per day). Worldwide,
it is estimated that some 340 million occupational accidents and 160 million victims of
work-related illness occur annually [3]. Combining the results of injuries and diseases, at
the beginning of the 21st century the annual number of deaths of workers resulting from
occupational exposure was about two million, with 350,000 deaths from injuries and about
1.65 million deaths from work-related diseases [4,5].

One of the industrial sectors that has most promoted the safety of its facilities and
its workers has been the chemical sector [6,7]. The aim of this transversal and integrating
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industrial sector is extracting and processing raw materials, natural and synthetic, and their
transformation into new substances and components. On the other hand, the chemical
industry divides into two major subsectors: (i) the basic chemical industry: which uses
raw materials or resources in their natural state, which it transforms and converts into
intermediate products; and (ii) the processing chemical industry: which uses as raw
materials the intermediate products produced by the basic chemical industry. Within this
last subsector, various industrial activities focused on obtaining different final products are
included: (i) plastics; (ii) chemical fibers; (iii) rubber; (iv) perfumery and cosmetic products;
(v) cleaning products [8–12]; and (vi) resin materials [13].

Although the level of safety in chemical installations is very high, the use of hazardous
substances poses a high risk of suffering a serious event, which could involve the emission
or discharge of dangerous substances, explosion risk [14,15], as well as a situation of risk
to the safety of workers [16–19]. An example of this high risk in chemical installations is
the accident that originated in 1976 in a small chemical plant in the Italian municipality
of Seveso [20,21]. The accident produced the release to the environment of high amounts
of Tetrachlorodibenzo-p-dioxin (TCDD dioxin) [22,23], which reached several inhabited
areas, damaging the health of many of its inhabitants and the environment in between.
Following the accident, the European Economic Community agreed in 1982 on new safety
rules for industrial plants using dangerous chemical compounds through the internation-
ally known European Directive 82/501/EEC or “Seveso Directive” and its subsequent
amendments [24,25].

Within the chemical sector, household softeners are manufactured using intermediates
produced in the basic chemical industry [26–30]. Accidents in these types of industries
(Table 1), according to the record found in the eMARS accident database [31]—which
represents the European Union major accident reporting system—are mainly due to the use
of different chemicals [32]: (i) Isopropanol; (ii) Dimethyl sulfate; (iii) Amines participating
in esterquat; and (iv) the resulting product itself.

Table 1. Chemical accidents in Europe related to Isopropanol and esterquats.

Start Date Accident Title Substances Involved Causes Description

8 Jun. 1988 Explosion followed by a fire caused by wrong
mixing operation in a reactor [33]. Sodium Hypochlorite. Wrong mixing in a reactor, more than 100 substances

involved including, isopropanol.

1 Oct. 2000
Tonnes of mixed chemical wastes consumed in the
fire of a site for treatment and storage of chemical

waste [34].
Isopropanol. Fire spreads to a large number of flammable substances.

Start of fire: Isopropanol.

11 Feb. 2005
Plant destroyed by the fire of a broken oil cooling
system caused by overpressure due to runaway

reaction [35].
Sodium Ethylate.

The sodium borohydride in a mixture with alcohols caused
an exothermic reaction, inflammation, and the flame broke

the oil cooling system.

26 Jul. 2006 Large burning of hydrocarbon chemicals in a
terminal [36].

Acetone.
Styrene.
Toluene.

Methanol.
Isopropanol.

Hexane.

It may be a combination of a leakage (even not from xylene)
and static electricity or spark caused by accidental

strike/friction of metal equipment. It is under juridical
investigation.

24 Mar. 2007 Spillage of rinsing water containing chromium
trioxide in a galvanic installation [37]. Sodium bisulfite.

The event was triggered by the opening of the threaded
pipe joint (on the pressure side) connecting the shutoff ball
valve with the circulating pump. The rinsing liquid (under

pressure) sprayed beyond the catching cup.

27 May. 2011 Release of substances and subsequent fire at a
surfactant production plant [38]. Phthalic anhydride.

The ignition of the phthalic anhydride was probably
caused by sparking resulting from short-circuiting of

electrical cables positioned close to the ground. The cables
were flooded by the hot phthalic anhydride, melting their

insulation.

27 Aug. 2015 Deflagration reactor accident during
manufacturing process softening Roquat 75 [39].

Isopropyl alcohol.
Diethylenetriamine.

Sodium bromide.
Hydrogen peroxide.

Dimethyl sulfate.

The SM 75 ROQUAT finished product is a flammable solid,
skin irritant and presented specific toxicity effects of

drowsiness and dizziness.
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In the case of the accident caused by the deflagration of the reactor during the manu-
facturing process of the Roquat 75 softener, in addition to the substances mentioned above:
(i) isopropanol; (ii) dimethyl sulfate; (iii) amines participating in esterquat; and (iv) the
resulting product itself; it is necessary to add the presence of traces of nickel [39] as a differ-
entiating element. Given this situation, if proven that traces of nickel and other chemical
compounds were the initiating elements of the event, the procedures and regulations of
surfactant companies should be reconsidered and modified, including traces of nickel as
potential risk when the fat has been hydrogenated.

For these reasons, this paper aims to analyze the reactivity of impurities of the catalyst
(nickel) with the rest of the substances that make up the manufactured esterquat and to
check whether this reactivity can cause an explosion. Thus, it is necessary to resort to the
Maciejasz Index (MI) test, used to characterize thermal [40] susceptibility or predisposition
to oxidation [40–42].

2. Materials and Methods

To achieve the research aims, it is crucial to develop a structured methodology in
different phases (Figure 1): Phase I: fabrication process of fabric softeners and importance
of nickel; Phase II: test for the reactivity of catalyst Ni in the batch of hydrogenated tallow;
Phase III: analysis of the results obtained.
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2.1. The Production Process of Fabric Softeners Using Nickel and Esterquats

Softeners contain fatty acid esterquats as main components. For the formation of
esterquats (Figure 2) a tertiary alkanolamine is esterified with a mixture of fatty acids or
their esters, such as glycerides; after this step, there is a quaternization reaction of the
alkanolamine esterified with an alkylating agent [43]. If compared with other fats on the
market, with higher industrial value, hydrogenated tallow is a common raw material in
this industry, due to its low price. Hydrogenation of oils and fats aims to raise their melting
point and gain more stability. The hydrogenation reaction (Figure 2) adds hydrogen atoms
to tallow until the total saturation of its double bonds is achieved. For this exothermic and
irreversible reaction to happen, pressurized hydrogen, temperatures above 156 ◦C, and
nickel as a catalyst are needed.

In industrial softener formulations, it is common practice to use dimethyl sulfate as
the alkyl agent and Isopropanol as its solvent. It is known that Isopropanol stays unreactive
during the hold processes and remains in the final product. After obtaining the softener,
the last step is bleaching the product with a solution of H2O2 (30% in water).

The manufacturing process of hydrogenated fats (Figure 3) at the industrial level is a
batch process carried out in 2 jacketed and agitated tank reactors, which controls reaction
time, pressure and working temperature, and the hydrogen addition. The mix of the
catalyst (nickel source) with the oil happens before entering the reactor. At the exit of the
reactor, the hydrogenated sebum passes through a filter plate which retains the catalyst for
later reuse.

Hydrogenated tallow is one of the initial components in the manufacture of soften-
ers [44]. The sebum is a lipid matrix of animal origin whose main component is triglycerides
of fatty acids with different degrees of unsaturation [45].
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Although some nickel can come out with sebum as an impurity, it is possible to limit
its concentration to values below 25 ppm and thus use it as a feed product [46,47]. However,
surfactant factories generally do not set any limits on the concentration of nickel. Also, it
may be assumed that the lack of complaints from hydrogenated tallow customers indicates
an adequate quality standard. The possibility that a certain amount of Nickel could increase
explosion risk would completely modify the safety standards required for the raw material
in the sector. Thus, the study presented in this paper is of great interest in the surfactant
manufacturing sector.

Nickel loses reaction capacity as it oxidizes in each cycle, going from pure nickel to
nickel (II) ion. Consequently, after recovering the catalyst, some of it is rejected and replaced
with fresh inputs. So, the nickel found in the hydrogenated tallow is more oxidized than the
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fresh. It is less active and has less reaction power with hydrogen peroxide (H2O2) because
it is partially or completely oxidized.

2.2. Reactivity Test for Catalyst Traces of Ni as an Impurity in Hydrogenated Tallow

This paper tests whether a high-range concentration (200 ppm) of traces of nickel
could influence the reactants or softener components with the H2O2 used in the bleaching
reactions, causing a high-temperature oxidation reaction that eventually might cause
an explosion. Due to the use of hazardous compounds within the ATEX regulations of
explosive atmospheres, the experimental part was carried out in a reference laboratory in
Spain [48–51], Laboratorio Oficial José Maradiaga (LOM), which is the only Spanish laboratory
certified by the European Union to work in hazardous areas [52].

The test used to determine the reactivity of traces of nickel in hydrogenated tallow
in the softener bleaching process is called Maciejasz Index (MI), used to characterize
thermal susceptibility or predisposition to oxidation [40–42]. It was necessary to perform
nickel reactivity tests with different compounds present in the manufactured esterquat to
determine the influence of nickel. As shown in Figure 4, the method lets a certain amount
of product react with H2O2.The operative procedure (Table 2) consists of putting 10 g of
the substance in a Dewar glass, adding 30 mL of 30% H2O2. To check whether a delayed
reaction may occur when the temperature is not reached, time is postponed at least 20 min.
At least six replicates were run. The Maciejasz Index (MI) is calculated with the measured
time as follows: MI = 100/t [40].
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Table 2. Thermogravimetry Maciejasz Index (MI) variables measured.

Variable Value

Volume 150 mL
Initial temperature 15–18 ◦C
Final temperature 80 ◦C

Ambient temperature 25 ◦C
Time test 20 min

Heating rate 3 ◦C/min
Maciejasz Index (MI) 100/t

These variables, shown in Table 2, test the tendency towards combustion or reactivity
to a H2O2-like product. In each replicate, 10 g product samples were mixed with 30 mL
H2O2 (30%) and allowed to react. The temperature measured just before adding H2O2 is
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the initial temperature. The final time is when the temperature stabilizes. If the temperature
reaches 80 ◦C, the time is measured, and the test is over. The Maciejasz Index MI is a
method applied in the mining sector. As the esterquat undergoes a bleaching process with
hydrogen peroxide (H2O2) during the industrial process, the accident report considered
that their reactivity with residual nickel detected in the tallow was a plausible cause of the
incident. It is known that if the Maciejasz Index (MI) is greater than 10, the substance is
sufficiently reactive with oxygen to consider that spontaneous combustion may occur.

In contrast to other papers analyzing the synergetic behavior of mixtures in the
gaseous state [53], this study aims to test whether the existence of liquid nickel in sebum
would catalyze the decomposition of H2O2, causing an increase in temperature until
reaching the deflagration temperature of isopropanol. The substances that can generate an
explosion depending on the formulation of this liquid product are: (i) isopropanol (C3H8O);
(ii) dimethyl sulfate (CH3)2SO4), a methylation reagent that could cause the reaction either
through an excessive dosage of dimethyl sulfate or its traces from an uncompleted reaction;
and (iii) sulfuric acid (H2SO4), which is obtained during the methylation reaction itself
by the breakdown of dimethyl sulfate. The combination of isopropanol with other liquid
substances, including nickel, limits the heating range, as the evaporation of isopropanol
occurs from 80 ◦C onwards [54]. Therefore, it is considered that there will always be
isopropanol and possibly some traces of the other products (2%). It has been reported that
Isopropanol and dimethyl sulfate caused accidents already; it is relevant to consider them
as the source of the explosion [39,40]. To detect the possible effect of this catalyst, 200 ppm
of nickel was added to some of these samples. Table 3 shows the concentrations of these
three substances in the different samples tested.

Table 3. Samples tested.

Sample Description

S1 C3H8O
S2 C3H8O + 200 ppm Ni
S3 C3H8O + 2% (CH3)2SO4
S4 C3H8O + 2% (CH3)2SO4 + 200 ppm Ni
S5 C3H8O + 2% H2SO4
S6 C3H8O + 2% H2SO4 + 200 ppm Ni

3. Results and Discussion

Below (Table 4), the results obtained in the different samples are shown: S1: C3H8O;
S2: C3H8O + 200 ppm Ni; S3: C3H8O + 2% (CH3)2SO4; S4: C3H8O + 2% (CH3)2SO4 +
200 ppm Ni; S5: C3H8O + 2% H2SO4; S6: C3H8O + 2% H2SO4 + 200 ppm Ni. These
samples are ordered to observe the influence of the components in the formulation, with
or without nickel. It can be observed that there is no significant difference between the
reagent with Ni (samples S2, S4 and S6) and without Ni (samples S1, S3 and S5). In none
of these mixtures with or without Ni is the temperature significantly different (Table 5).
As for the temperature in the H2O2 mixture, it can be observed that there is no significant
difference between the reagent with Ni (samples S2, S4 and S6) and without Ni (samples
S1, S3 and S5).

Given the results obtained, it is possible to affirm that none of the products or mixtures
considered is highly reactive to hydrogen peroxide, at 30%. In addition, it shows that the
catalyst (nickel) did not have any significant influence in this reactivity. The deflagration
during the manufacturing process of the softener Roquat 75 [39] could have any other
cause than nickel traces, since it is proven that the reactivity to hydrogen peroxide of the
whitening products used during the production has no significant differences with or
without nickel.

Therefore, the results indicate that despite the doubts raised in the accident report [39]
regarding the possible influence of nickel on the explosion, there is no evidence that Ni is
one of the causes that can cause this type of explosion in the surfactant sector. In this way,
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this study reveals that it is not necessary to rethink the current regulations in this sector
regarding the limitation of ppm of Ni in the manufacturing process of esterquat softeners.

Table 4. Results sample S1 (C3H8O).

Sample Test Initial Temperature (◦C) Final Temperature (◦C) Time Test (min) Maciejasz Index (MI)

S1

S1-1 20 24 22 4.54
S1-2 17 22 23 4.34
S1-3 17 22 20 5.00
S1-4 18 23 23 4.34
S1-5 18 23 22 4.54
S1-6 19 24 25 4.00

S2

S2-1 20 23 43 2.32
S2-2 20 25 20 5.00
S2-3 21 26 20 5.00
S2-4 21 26 26 3.84
S2-5 22 27 21 4.76
S2-6 23 27 22 4.54

S3

S3-1 21 26 20 5.00
S3-2 22 26 22 4.54
S3-3 22 26 20 5.00
S3-4 23 27 20 5.00
S3-5 23 27 20 5.00
S3-6 23 27 23 4.34

S4

S4-1 21 26 20 5.00
S4-2 18 22 22 4.54
S4-3 19 23 20 5.00
S4-4 20 25 21 5.00
S4-5 21 25 20 5.00
S4-6 21 26 26 4.34

S5

S5-1 23 25 30 3.33
S5-2 23 26 23 4.35
S5-3 24 27 20 5.00
S5-4 24 27 21 4.76
S5-5 25 28 20 5.00
S5-6 24 27 20 5.00

S6

S6-1 25 29 30 3.33
S6-2 25 27 20 5.00
S6-3 25 28 21 4.76
S6-4 25 28 21 4.76
S6-5 25 28 22 4.54
S6-6 25 27 20 5.00

Table 5. Global results samples tested.

Sample Description ∆T (◦C) Maciejasz Index (MI)

S1 C3H8O 5.0 4.46
S2 C3H8O + 200 ppm Ni 5.0 4.24
S3 C3H8O + 2% (CH3)2SO4 4.0 4.81
S4 C3H8O + 2% (CH3)2SO4 + 200 ppm Ni 4.5 4.81
S5 C3H8O + 2% H2SO4 3.0 4.57
S6 C3H8O + 2% H2SO4 + 200 ppm Ni 3.0 4.56

4. Conclusions

The chemical sector has been one of the industrial sectors that has most promoted the
safety of its facilities and workers. However, numerous events throughout history show
that, although the safety level in chemical activities and facilities is very high, the use of
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hazardous substances poses a risk of suffering a dangerous event. Within the chemical
processing industry, there are business activities aimed at obtaining household cleaning
products from intermediates produced by the primary chemical industry, such as, for
example, the production of household softeners. The present results conclude that even
combined with other liquid substances such as isopropanol, dimethyl sulfate, and sulfuric
acid, nickel (traces of catalyst used in hydrogenated tallow) is not sufficiently reactive with
oxygen to consider that spontaneous combustion may occur.
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