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Abstract: Shale gas plays an important role in supplementing energy demand and reducing carbon
footprint. A precise and effective prediction of shale gas production is important for optimizing
completion parameters. This paper established a gated recurrent unit and multilayer perceptron
combined neural network (GRU-MLP model) to forecast multistage fractured horizontal shale gas
well production. A nondominated sorting genetic algorithm II (NSGA II) was introduced into the
model to enable its automatic architectural optimization. In addition, embedded discrete fracture
models (EDFM) and a reservoir simulator were used to generate training datasets. Meanwhile,
a sensitivity analysis was carried out to find the variable’s importance and support the history
matching. The results illustrated that the GRU-MLP model can precisely and efficiently predict the
productivity of multistage fractured horizontal shale gas in a rapid and effective manner. Additionally,
the model fits better at peak values of shale gas production. The GRU-MLP hybrid model has a higher
accuracy within an acceptable computational time range compared to recurrent neural networks
(RNN), long short-term memory (LSTM), and GRU models. The mean absolute percentage error
(MAPE) and root mean square percentage error (RMSPE) for shale gas production generated by
GRU-MLP model were 3.90% and 3.93%, respectively, values 84.87% and 84.88% smaller than those of
the GRU model. Consequently, compared with a purely data-driven method, the physics-constrained
data-driven method behaved better. The main results of the study will hopefully contribute to the
intelligent development of shale gas production prediction.

Keywords: shale gas; physics-constrained; data-driven; complex fracture networks

1. Introduction

Natural gas is considered to be the cleanest fossil fuel, and the role of shale gas is
increasing in terms of the third energy conversion from fossil energy to new energy [1,2].
According to IEA’s World Energy Outlook 2022, the world’s unconventional natural gas
production reached 1.185 × 1012 m3, of which shale gas production accounted for 66.67%
in 2021. It is predicted that the natural gas demand in the Stated Policies Scenario will
increase to 4.357 × 1012 m3 by 2050 (Figure 1) [3]. Natural gas produced lower carbon
emissions during combustion than oil and coal, and it will play an important role in the
future energy mix [4,5]. The electricity sector which is currently the main carbon-emitting
sector globally, still uses fossil fuels, such as coal, oil, and natural gas, as the dominant
materials to generate electricity [3]. Therefore, shale gas, as a major component of natural
gas, contributes to reducing carbon footprint and has huge development potential in energy
supply. However, owing to the ultralow porosity and permeability, stimulation methods
are necessary to achieve industrial development of shale gas resources [6]. A number of
shale gas stimulation methods have been proposed to increase shale gas production, such as
supercritical CO2 fracturing [7], application of micro-nanoparticles [8], nitrogen/carbon
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dioxide injection, and thermal stimulation methods [9]. Hydraulic fracturing, which has
been performed efficiently in recent decades, is the main method for shale gas develop-
ment [10]. Accurate prediction of shale gas production after hydraulic fracturing plays a
vital role in evaluating production status and selecting optimal completion methods and
parameters. However, the complex multi-scale system containing micro-nano pores and
natural and hydraulic fracture networks make the fluid flow in the stimulation area more
complicated [11,12]. Therefore, the accurate prediction of shale gas production faces large
challenges due to the complex flow mechanism of a complex multi-scale system.
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The analytical approach and numerical analysis are traditional approaches to shale
gas production prediction [11,13]. The analytical approach establishes a production model
based on complex mechanisms, relying on certain assumptions that limit the range of usage.
The commonly used approach is decline curve analysis, which is suitable for long-term
production prediction, but not for daily production prediction [13]. Numerical analysis
considers compositional study and high-dimensional physics, which make models with
high accuracy in predicting shale gas production. However, the numerical model faces the
challenges of gridding and computational costs, especially dealing with complex fracture
networks, history matching, parameter optimization [11], etc.

The first applications of artificial intelligence (AI) in the oil and gas industry trace back
to the 1970s [14]. With the rapid development of AI, machine learning (ML) algorithms have
been widely applied in petroleum engineering, including reservoir engineering, drilling,
completion, production, etc. [15–17], and have broad application prospects. Production
prediction is an important application of ML algorithms in oil and gas development.
Extensive research has been conducted to forecast shale gas production with ML-based
algorithms, such as artificial neural networks (ANN), LSTM, the support vector machine
(SVM), etc. [2,15,18,19]. Accurate results are obtained frequently and efficiently. Syed et al.
compare different ML algorithms, including decision tree (DT), random forest (RF), SVM,
and gradient boosting for regression tree (GBRT), and describe their advantages and
disadvantages [20]. Nguyen-Le and Shin propose three ANN architectures developed based
on 370 stimulation data, including geological and engineering parameters for predicting
peak production [21]. ANN contains deep feed-forward neural networks (DFNN). Liu et al.
applied DFNN to predict the EUR of shale gas wells in the Weiyuan block. Niu et al.
concluded that SVM is the most reliable algorithm for predicting shale gas estimate ultimate
recovery (EUR) compared with K-nearest neighbor (KNN), RF, and gradient boosting
decision tree [22]. Deep-learning (DL) algorithms represent a branch of ML where RNN
is extensively used for time series predictions [23]. LSTM is a variation of RNN which
can combine short-term and long-term memory by gating, compared to RNN, which can
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only remember short-term memory [24]. Zhu et al. applied LSTM to guide shale gas well
production. The changing trend of production for the next 10 days can be captured by the
LSTM model [13]. Yang et al. used the LSTM model for long-term shale gas production
prediction, and it provided the best-fitting effect and smallest error compared to traditional
analytical methods [2]. However, data-driven methods rely much more on data collected
from the field, and well-accepted physical laws exist [25]. To solve the above disadvantages,
some researchers have proposed hybrid physical data approaches, which can be divided
into three types according to the physical mechanism and data, one of which is to enforce
known physical constraints into the data-driven models [25].

Methods for enforcing physical constraints into data-driven models, have attracted
the attention of researchers due to the preservation of field data with high computational
efficiency and a low requirement for historical data [15]. Li et al. presented a physics-
constrained deep learning method with a combined neural network based on a bidirectional
gated recurrent unit (BiGRU) and a deep hybrid neural network (DHNN) for production
prediction [26]. Salehi et al. developed a model based on physics-based and data-driven
algorithms without considering time series analysis [27]. Park et al. developed a hybrid
model by using reservoir simulations to generate training datasets and data-driven ML
algorithms [28]. However, the optimization of the automatic model structure requires
further research for production prediction. Yang et al. proposed a new physics-constrained
data-driven workflow with a GRU-MLP model considering time series analysis and a mul-
tiobjective algorithm (NSGA II) which can achieve automatic optimization of the model’s
structure [15]. The hybrid model can forecast the coalbed methane (CBM) production accu-
rately, quickly, and stably. However, there are some shortcomings, such as the unevaluated
contribution of each feature to the model’s performance.

In summary, numerous studies have been carried out on data-driven shale gas pro-
duction prediction; however, the quality and quantity of field data affect its accuracy.
The physics-constrained and data-driven model is less commonly used, and physical-
constrained data-driven workflows are not well established in production forecasting of
shale gas. This study introduces the GRU-MLP model to shale gas production forecasting
and evaluates the contributions of each feature to accelerating the history matching process.

In this paper, we first introduce the data preprocessing method, the EDFM, and the
neural network. Then, sensitivity analysis is performed to find the variable importance
for quick and efficient history matching. Finally, comparisons between different ML
algorithms are performed to confirm the accuracy and computational efficiency of the
model. This study aims to increase the accuracy of shale gas production prediction, and is
anticipated to provide theoretical guidance for intelligent shale gas production.

2. Methodology
2.1. Embedded Discrete Fracture Model

EDFM was developed by Li and Lee to overcome the limits of bi-continuum and
discrete fracture models [29]. As the method has been continuously developed and re-
fined by many scholars, the model has been applied in many reservoir simulators [30].
EDFM [31–33], as a numerical simulation tool for complex fracture networks, can effec-
tively solve the problems of modeling complex fracture geometries. This method embeds
complex hydraulic and natural fractures into matrix blocks by generating extra grids in
the computational domain. Based on the fracture well index and non-neighboring connec-
tions (NNCs) transmissibility factor, EDFM can model fractures explicitly. Generally, there
are three types of NNCs: (1) connection between a matrix block and a fracture segment
that penetrates it, (2) connection between fracture segments of the same fracture, and
(3) connection between intersecting fracture segments [34].

The advantage of EDFM is that the precision afforded by the discrete fracture model
and the efficiency provided by structured gridding is preserved. This study combines
EDFM and CMG commercial reservoir simulators to simulate shale gas production with
complex fracture geometries.
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2.2. GRU-MLP Combined Neural Network
2.2.1. Gated Recurrent Unit (GRU)

RNN is effective and precise in the application of time series predictions [35]. GRU
is a variant of LSTM, which is developed based on RNN. GRU is faster when processing
information, but a comparable prediction performance is obtained due to the fact that its
inner structure is much simpler than that of LSTM [36]. Figure 2 shows the structure of
the GRU model. The GRU model includes a reset gate rt and an update gate zt. First, the
output ht−1 at the last time step and the new data xt, are introduced into the network as
the input. Then, the output is reset by a reset gate to remove the information of ht−1 that
is temporarily stored in ht after adding on xt. The reset gate determines the proportion of
ht−1 and ht when updating ht.
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2.2.2. Multilayer Perceptron (MLP)

MLP is a kind of feedforward ANN which consists of an input layer, one or more
hidden layers, and an output layer [38]. The complex nonlinear mapping between a group
of input and output variables is described by activation functions. The nodes in the next
and previous layers are fully connected by weights and nonlinear transfer/activation
functions. The input of a node in the next layer is obtained by scaling the output of
nodes in the previous layer and feeding forward. The superposition of nonlinear transfer
functions enables the MLP to be superior in learning and expressing nonlinear relations [39].
Therefore, the main advantage of MLP is solving complex problems quickly. MLP is a
generalization of the perceptron that overcomes the weakness of its inability to recognize
linear, inseparable data. MLP also has a better capability to express and learn nonlinear
relations. However, MLP does not handle sequence problems well due to the lack of
memory function [40].

2.2.3. GRU-MLP Combined Neural Network

Production prediction of multi-fracture horizontal shale gas wells is a complex non-
linear time series prediction problem. Combining the ability of GRU to store long-term
sequential data with the flexibility of MLP in handling the nonlinear relationship between
input and output data, we applied a new type of combined neural network, the GRU-MLP
combined neural network (Figure 3), to predict shale gas production [14]. GRU was em-
ployed for the time series task. The main function of GRU is to learn relationships between
historical data, expressed as X1, X2, X3, . . . , X4, and predict the future trend, represented as
XT+1. The new inputs of MLP were combined with physical constraints (x1, x2, x3, . . . , xn)
and output generated through the GRU layer, a vector merge layer, and a linear activation
layer. The nonlinear relationship between production data and physical constraints was
learned by MLP to increase the accuracy of prediction by improving the effects of physical
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constraints on the production performance. Finally, the production prediction results at
time step T + 1 were obtained [41].
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2.2.4. Workflow Based on the GRU-MLP Model

The workflow based on the GRU-MLP is proposed to predict shale gas and water
production. Figure 4 illustrates the workflow. First, the field data was collected and prepro-
cessed by exploratory data analysis (EDA) to build a multidisciplinary data set. Second,
a supervised-learning data set, obtained from production history data together with a
multidisciplinary data set as physical constraints, formed the input of MLP. Third, the GRU-
MLP network architecture was optimized by NSGA II and the production performance
was forecasted.
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3. Field Application

In this section, a shale gas reservoir model and a GRU-MLP model were established.
The data were collected from a multistage fractured horizontal shale gas well located at
Fuling area in the Sichuan Basin, China. Longmaxi Formation was developed. In November
2012, JY1HF, located at the study area, was drilled with 2.03 × 105 m3 of gas flow rate in the
testing process, representing a breakthrough in this area. The cumulative gas production
of the area reached 3.4 × 1010 m3 in 2020 [42]. The well spacing was approximately 600 m
and infilled well spacing was reduced to approximately 300 m. First, a reservoir numerical
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model was established based on field data. Then, sensitivity analysis was performed to find
the variable importance to aid history matching. Based on the data generated by history
matching, the GRU-MLP model was developed and the model architecture was optimized,
with the goals of minimum training time and as few prediction errors as possible.

3.1. Reservoir Simulation Model

EDFM has been proven to be feasible in previous studies [34,43]. The model is assumed
to involve isothermal seepage with two-phase gas/water flow patterns. In this model,
the permeability of the reservoir and the permeability of the fractures are assumed to be
functions of pressure. Based on a Cartesian grid system, we established the reservoir model
to have dimensions of 1500 m × 400 m × 30 m, representing reservoir length, width, and
thickness, respectively. The reservoir model consisted of a horizontal well with 20 hydraulic
fractures and spacing between 2 adjacent hydraulic fractures, as shown in Figure 5. The
total lateral length of the multistage fractured horizontal shale gas well was 1150 m.
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The sensitivity of the base case was investigated to quantify the effect of geologic
properties and completion of operational parameters on complex gas–water two-phase
flow and shale gas production. The effects of hydraulic fracture parameters, including
the half-length and initial conductivity of hydraulic fractures; and the natural fracture
properties, including the number and initial conductivity of natural fractures, are presented.
Table 1 shows the simulation parameters of sensitivity cases.

Table 1. Parameters values for sensitivity studies.

Parameter Value Unit

Hydraulic fracture properties
Hydraulic fracture half-length 75, 100, 125, 150 m

Initial hydraulic fracture conductivity 10, 25, 50, 75 mD·m
Natural fractures properties

Natural fracture number 250, 500, 750, 1000 -
Initial natural fracture conductivity 0.01, 0.1, 1 3 mD·m
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3.1.1. Effect of Hydraulic Fracture

Figure 6 demonstrates that the effects of hydraulic fracture half-length and daily gas
production rate grow as the hydraulic fracture half-length increases. As illustrated in
Figure 6a, the effect on gas flow rate gradually decreased after 305 days of development
due to the hydraulic fracture half-length. The gas production rose sharply around the 140th
day. In the absence of other production stimulation measures, the greater the production
pressure difference, i.e., the difference between reservoir pressure and bottom hole pressure,
the greater the gas flow rate. Figure 6b reveals the effect of hydraulic fracture half-length
on cumulative gas production. An increase in hydraulic fracture half-length will further
improve the stimulated reservoir volume (SRV), connecting more natural fractures. The
cumulative production with a 125 m hydraulic fracture half-length is 5.01 × 107 m3, which
is 17.05% higher than a 100 m hydraulic fracture half-length. However, with a hydraulic
fracture half-length of 150 m, the cumulative production is 9.82% greater than with one of
125 m. The results reflect that as the hydraulic fracture half-length increases, the growth rate
of cumulative gas production slows down. Therefore, the hydraulic fracture half-length
needs to be optimized to achieve economic benefits.
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gas production.

The initial conductivity of hydraulic fractures has an impact on the gas flow rate
and cumulative gas production of the shale gas well. With the increase in hydraulic
fracture conductivity, the gas flow rate rises while the increase rate decreases, as shown
in Figure 7a. As production time increases, the fracture conductivity decreases compared
to the initial fracture conductivity, and there is a small reduction in daily gas production.
However, as the production pressure difference increases, daily gas production rises and
the reduction is not significant. The effect of initial hydraulic fracture conductivity on
cumulative gas production is shown in Figure 7b. At 305 days, the cumulative production
with an initial hydraulic fracture conductivity of 25 mD·m increased by 12.94% over that
with an initial hydraulic fracture conductivity of 10 mD·m, while cumulative production
increased by only 1.88% when the initial hydraulic fracture conductivity increased from
50 mD·m to 75 mD·m. This represents a significant slowdown in the rate of increase.
The transportability of hydraulic fractures improves with increasing hydraulic fracture
conductivity. However, the supply ability of shale matrix does not change with increased
initial hydraulic fracture conductivity [44]. Therefore, the gas flow rate is slightly affected
by the increasing hydraulic fracturing conductivity, especially when the initial hydraulic
fracture conductivity is sufficiently large.
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3.1.2. Effect of Natural Fracture

This section discusses the influence of natural fracture parameters in shale gas produc-
tion. The presence of natural fractures responds positively to gas productivity in certain
scenarios. As seen in Figure 8, gas flow rate and cumulative gas production increase with
the natural fracture numbers. The reason can be attributed to the fact that more natural
fractures increase the contact between rocks, thereby increasing the available drainage area.
The gas flow rate surged around the 140th day due to fluctuations in bottom hole pressure.
The larger the number of natural fractures, the greater the fluctuation of the gas flow rate.
In theory, more natural fractures are beneficial to production; however, this is based on
characteristics of open natural fractures.
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Gas production is also affected by the initial conductivity of natural fractures, as illus-
trated in Figure 9. The gas flow rate and cumulative gas production increase with natural
fracture conductivity. As the initial natural fracture conductivity increases, more fluid flows
from the reservoir into the wellbore through the natural fractures, which communicate
with the hydraulic fractures. As production time increases, the initial conductivity of the
natural fractures has a noticeable impact on production, and the cumulative gas production
increases significantly.
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3.1.3. Sensitivity Analysis Results

Due to the inability of the GRU-MLP model to automatically evaluate the importance
of different features, the feature importance evaluation of the RNN approach is applied
to recognize the importance of each parameter. Once heavy hitters are identified, the less
influential parameters can be screened out to decrease the number of history-matching
numerical simulations. The unknown parameters have predefined ranges, including, but
not limited to, the four fracture parameters described previously. Then, the reservoir is
modeled and simulated with the unknown parameters. The results of the simulations are
used as inputs for the RNN model, and the importance of the different features is evaluated
through the model’s inherent feature importance evaluation. Figure 10 shows the influence
of each parameter.
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3.1.4. Data Generating

Table 2 presents the result of history matching and input parameters considered in
the model. The reservoir has a matrix porosity of 6%, a matrix permeability of 0.0009 mD,
and an initial water saturation of 35%. The hydraulic fracture has an initial conductivity of
10 mD·m and a half-length of 100 m. A comparison of the field data with the simulation
data is presented in Figure 11. Simulation results of the water flow rate and bottom hole
pressure (BHP) illustrate that the results of this model are consistent with the field data.
It also verifies the feasibility and accuracy of the model and shows that EDFM has an
advantage in producing nonplanar fractures.
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Table 2. Basic reservoir model parameters.

Parameter Value Unit

Reservoir properties
Model dimensions [L × W × H] 1500 × 400 × 30 m

Reservoir temperature 80 ◦C
Reservoir depth 3000 m

Initial reservoir pressure 35 MPa
Matrix permeability 0.0009 mD

Matrix porosity 0.08 %
Reservoir thickness 30 m

Initial water saturation 35 %

Hydraulic fracture properties
Hydraulic fracture number 20 -
Hydraulic fracture spacing 50 m

Hydraulic fracture half-length 100 m
Hydraulic fracture width 0.025 m

Initial hydraulic fracture conductivity 10 mD·m
Natural fracture properties

Natural fracture number 800 -
Natural fracture width 0.001 m

Initial natural fracture conductivity 3.5 mD·m
Well parameters

Wellbore diameter 0.057 m
Horizontal length 600 m
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3.2. GRU-MLP Model
3.2.1. Error Comparisons

The GRU-MLP combined neural network is used for intelligent prediction because
the model has better prediction accuracy than other single neural networks—for instance,
GRU, LSTM, and RNN. The functions of the neural networks GRU and LSTM have been
introduced above, but will not be explained in detail here. The history matching data
and field data from the shale gas well were, respectively, imported into the four neural
networks mentioned above to forecast production. Each model used one-half of the total
data as training data and one-half as test data. Finally, four models were compared and the
advantages of the GRU-MLP combined neural network were clarified compared with other
single neural networks.

Figure 12a shows the results of shale gas production, as predicted by four neural
network models, GRU-MLP, RNN, LSTM, and GRU. The predictions of the combined
neural network model resulted as more consistent with historical production, while the
GRU model showed the worst prediction results among the four models. The GRU-MLP
model performed better in capturing the peak value of gas production. Figure 12b shows
an error comparison between MAPE and RMSPE for the results obtained based on the four
neural network models. The prediction error of the GRU-MLP model was significantly
lower than other models. The MAPEs for shale gas production, generated by the RNN,
LSTM, and GRU models, were 8.54%, 14.51%, and 25.79%, respectively. Models driven
by data could learn the rule of production change, but they have difficulty in accurately
predicting late-time production to match the real data due to the lack of sufficient physical
constraints. Compared with the GRU model, which is driven by data, the GRU-MLP model
performed well because it also used physical constraints. The MAPE and RMSPE of GRU-
MLP model were 84.87% and 84.88% smaller than those of the GRU model, respectively.
Therefore, a physics-constrained, data-driven method behaved better compared with a pure
data-driven method. This indicates that the GRU-MLP model could be used to predict shale
gas production precisely to provide invaluable references for decision makers regarding
the optimization of completion parameters. Other data, such as fracture volume, total
fluid volume, etc., can be incorporated into the model as physics constraints for more
accurate predictions. It is possible to develop highly accurate models by response surface
methodology and analysis of variance (ANOVA) using experimental and field data for
prediction of various parameters during the production of shale reservoirs [45]. This can be
a topic for future work.
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3.2.2. CPU-Time Comparison

In addition to accuracy requirements, calculation efficiency is also a standard method
of judging the applicability of the model. Table 3 shows the required time to forecast
the production of the same shale gas well using numerical models and different neural
network models. A comparison of central processing unit (CPU) time between different
models is shown in Figure 13. The results obtained by time ratios (TX/TY) of different
models were used for comparison. As shown in Figure 13, the time required by the neural
network model was much less than that of the ordinary numerical simulation model, which
illustrates that ML has a higher efficiency level in its capacity for shale gas production
prediction. Meanwhile, it was observed that the GRU-MLP combined neural network
model took slightly more time than the other three neural network models. The time was
still within the acceptable range, because this combined neural network is more complex
and accurate in processing procedures than other three models.

Table 3. The CPU times of different models for gas flow rate.

Numerical Model(s) GRU-MLP(s) GRU(s) LSTM(s) RNN(s)

Gas 107.7 8.64 8.25 6.28 7.47
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Limitations

The GRU-MLP model has no capability to automatically assess the importance of
features. The gas–water two-phase numerical model analyzes the effect of fracture closure
by considering the variation of conductivity with pressure and does not consider the
variation of fracture geometry. The reservoir simulation and GRU-MLP model established
herein are suitable for a single well, but not for the whole reservoir.

4. Conclusions

In this paper, we established a physical-constrained, data-driven model to predict
shale gas production. EDFM and a numerical simulator were applied to generate data,
while the GRU-MLP combined neural network model predicted the daily gas production.
In addition, the NSGA II optimization algorithm was used to automatically optimize the
model’s architecture. Missing the best model structure due to the researcher’s empirical
decision was avoided. The result demonstrates that the workflow delivered high accuracy
and efficiency in shale gas production forecasting. The major conclusions can be drawn
as follows:

(1) The physics-constrained data-driven workflow is less dependent on field data than
pure data-driven model. In shale gas production, there is inevitable uncertainty due to data
from the subsurface. The physics-constrained data-driven workflow based on GRU-MLP is
suitable for shale gas production prediction.

(2) The GRU-MLP model can predict multistage fractured horizontal shale gas well
production efficiently and accurately. In addition, the model has a significant advantage
in capturing the peak value of shale gas production. Compared to the RNN, LSTM, and
GRU models, the GRU-MLP combined neural network model has a higher accuracy within
an acceptable computational time range. GRU-MLP model generates MAPE and RMSPE
values of 3.90% and 3.93%, respectively, which are 84.87% and 84.88% lower than those of
the GRU model.

(3) RNN was incorporated into the workflow to analyze the contribution of each fea-
ture to the model, and initial hydraulic fracture conductivity made the greatest contribution
to gas production within the features considered.

(4) There are still some limitations to our work. If microseismic data had been included
in the model, the accuracy and efficiency of predicting production for naturally fractured
reservoirs would have been improved.
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