
Citation: Ali, T.G.; Mrad, M.; Balma,

A.; Gharbi, A.; Samhan, A.; Louly,

M.A. Boosted Arc Flow Formulation

Using Graph Compression for the

Two-Dimensional Strip Cutting

Problem. Processes 2023, 11, 790.

https://doi.org/10.3390/pr11030790

Academic Editors: Emad Abouel

Nasr, Abdulrahman Al-Ahmari and

Adham Ragab

Received: 30 January 2023

Revised: 22 February 2023

Accepted: 1 March 2023

Published: 7 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Boosted Arc Flow Formulation Using Graph Compression for
the Two-Dimensional Strip Cutting Problem
Tamer G. Ali 1 , Mehdi Mrad 2,*, Ali Balma 3, Anis Gharbi 1,*, Ali Samhan 1 and Mohammed A. Louly 4

1 Industrial Engineering Department, College of Engineering, King Saud University,
P.O. Box 800, Riyadh 11421, Saudi Arabia

2 Ecole Supérieure des Sciences Economiques et Commerciales de Tunis, Université de Tunis,
Tunis 1089, Tunisia

3 Ecole Nationale Supérieure d’Ingénieurs de Tunis, Université de Tunis, Tunis 1008, Tunisia
4 Pôle Scientifique et Technique, Ecole Supérieure Polytechnique Mauritanie,

Nouakchott P.O. Box 4303, Mauritania
* Correspondence: mehdi.mrad@essect.u-tunis.tn (M.M.); a.gharbi@ksu.edu.sa (A.G.)

Abstract: Since the requirement for a material cutting process occurs in a wide variety of applied
contemporary manufacturing, the cutting stock problem plays a critical role in optimizing the amount
of raw material utilized in everyday production operations. In this paper, we address the two-
dimension strip-cutting problem and implement the graph compression technique to improve the
performance of the arc-flow formulation. The number of variables of the obtained mathematical model
are substantially reduced. A comparative study on a large set of benchmark instances shows that
our compressed model yields very good results for the non-unitary item demand case in contrast to
the state-of-the-art mathematical models. Moreover, improved bounds are provided for 24 unsolved
benchmark instances, among which 8 have been solved to optimality.

Keywords: integer programming; cutting stock problem; arc flow formulation

1. Introduction

Achieving a good level of profit requires a well-prepared production plan, settings,
and optimized usage of available resources in production operations. In many services
and industries (such as logistics, manufacturing [1], and health services [2]), one of the
challenging problems with wide applications in the industrial and production field is the
cutting problem. In particular, finding the best way to trim raw materials in order to
manufacture finished goods while maintaining the maximum profit and minimizing the
environmental effect is difficult in the manufacturing industry. The cutting problem has
been tackled to solve various real-life manufacturing cases. These include, among others,
applications in coronary stent manufacturing [2], the glass manufacturing industry [3],
silicon steel coil manufacturing [4], paper production processes [5], green manufacturing [6],
plastic rolls manufacturing [7], multiple manufacturing modes applied to construction
industry [8], and TFT-LCD manufacturing [9].

In the cutting stock problem, a set of items with specified dimensions must be cut
from an available raw material to meet the required demand. The problem and its variants
are in strong connection to real field applications in cutting processes. One variant of the
problem consists of the two-level strip-cutting problem (hereinafter 2D-SCP). The 2D-SCP
is theoretically equivalent to the two-dimensional strip packing problem (2D-SPP). The
difference between the two versions is explained by the data structure of the instances
related to the two problems and from the different developed methods to solve them. In
fact, cutting instances are known by the high demand for items (high multiplicity factor)
while the packing instances have generally unitary or small demands (low multiplicity

Processes 2023, 11, 790. https://doi.org/10.3390/pr11030790 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11030790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-2216-9654
https://orcid.org/0000-0001-5208-4902
https://doi.org/10.3390/pr11030790
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11030790?type=check_update&version=2

Processes 2023, 11, 790 2 of 17

factor). Thus, in some cases, the developed algorithms to solve cutting instances may not
solve the packing case efficiently and vice versa [1].

Formally, the 2D-SCP can be described as follows: a set of rectangular items i = {1, 2, .., m}
with width wi, height hi and demand di are to be cut from a strip with fixed width W. In
the context of two-dimensional cutting problems, Lodi et al. [10] introduced the follow-
ing classification of the 2D-SCP based on the items’ orientation and the cutting types
(guillotine/non-guillotine).

• RF: Rotation of items by 90◦ is allowed (R) and no guillotine restriction is imposed (F)
• RG: Rotation of items by 90◦ is allowed (R) and guillotine restriction is imposed (G)
• OF: All items have a fixed orientation (O) and no guillotine restriction is imposed (F)
• OG: All items have a fixed orientation (O) and guillotine restriction is imposed (G)

Our addressed problem belongs to the OG class. The guillotine cut constraint obliges
the tool to cut the plate from edge to edge. Moreover, the number of cutting stages is
only two. In the case of a guillotine cutting process, on one hand, increasing the number
of cutting stages can reduce the waste and increase the efficiency of the cutting process.
On the other hand, it increases the hardness of the problem and may cause disorder in
the workshop.

In this paper, we modified the so-called graph compression technique and proposed
it to enhance the arc-flow formulation of the two-dimensional strip cutting problem. The
proposed compression steps reduced the size of the mathematical model that is based on
arc-flow formulation. The impact of such an improvement is assessed on a large set of
benchmark instances. Our experimental study shows the good performance of the com-
pressed model where new improved lower/upper bounds are provided for open instances.

The sequel of this paper is organized as follows. Section 2 is devoted to the literature
review of the problem and highlights the most familiar solution methods. In Section 3,
three recent mathematical models presented in [11] are described. The graph compression
technique is explained and applied on the 2D-SCP through a detailed example in Section 4.
Section 5 includes the details of the experimental studies and the analysis of the obtained
results. Finally, the conclusion of the paper is considered in Section 6.

2. Literature Review

In a pioneering work, Ref. [12] provided a set covering formulation for different ver-
sions of the two-dimensional cutting stock problem. This has been improved by Refs. [13,14]
who introduced one-dimensional bounded knapsacks and branch-and-bound procedures,
respectively. New models and bounds have been proposed by Ref. [15] to solve the two-
dimensional bin packing problem (2BP) and the two-dimensional strip packing problem
(2SP). The tightness of the proposed bounds were tested on 10 classes of instances, class 1–4
in Ref. [10] and class 5–10 in Ref. [16]. An effective branch-and-price algorithm associated
with the generation of Chvatal–Gomory cutting planes is introduced by Ref. [17] for the two-
dimensional cutting stock problem. Better bounds obtained by decomposition techniques
and constraint programming were used by Ref. [18]. Dichotomous-based lower bounds
introduced by Ref. [19] showed good computational results in terms of optimality. An
extension of the one-cut model of Ref. [20] for the one-dimensional cutting stock problem
has been performed by Ref. [21]. Macedo et al., in Ref. [22], extended the arc-flow model of
one-dimensional case in Ref. [23] to solve the two-dimensional cutting stock problem and
obtained better results than those in Ref. [15]. An SOS-based branch-and-price algorithm
has been derived from the arc-flow formulation by Ref. [24].

Rinaldi and Franz [25] developed two heuristics to solve the two-dimensional strip-
cutting problem with sequencing constraints. An efficient Branch-and-Price algorithm for
the two-dimensional cutting stock and the two-dimensional strip-packing problems has
been developed by Ref. [26]. Another column generation-based algorithm is presented
by Ref. [27] with a set covering formulation of the two dimensional level strip packing
problem. Mrad [28] developed a strong arc-flow model for the two-stage guillotine strip
cutting problem. Bezerra et al. Ref. [11] proposed three mathematical formulations to

Processes 2023, 11, 790 3 of 17

solve the 2D-SCP that turned out to be very sensitive to the structure of the considered
instances. A hybrid heuristic based on new improved rules and reinforcement learning,
proposed by Ref. [29], outperformed many heuristics from the literature for the 2D-SCP.
For a comprehensive review of the two-dimensional cutting and packing problems, the
reader may refer to the recent paper of Ref. [30].

3. State-of-the-Art Mathematical Models

In this section, the most recent mathematical models from literature for the 2D-SCP
are presented. The literature stated the high flexibility of using a formulation of packing
problem to solve the cutting version and vice versa. Three different formulations were
rewritten by Ref. [11]. The first one is based on the model of Lodi et al. [15], while the second
formulation is based on the work of Furini et al., Ref. [31], about the two dimensional
two-staged guillotine cutting stock problem with multiple stock size. The third formulation
is developed based on the model of Silva et al. [21]. An interesting model which is based
on arc-flow formulation has been introduced by Ref. [28]. The proposed model made it
feasible to efficiently solve some classes of the benchmark instances of the 2D-SCP.

3.1. The Model Based on Lodi et al. [15]

To each individual item, j is associated a shelf with height, hj, that may include any
item with height less than or equal to hj (including item j itself). Note that not all the
defined shelves need to be used. The decision variables are therefore defined as follows:

xjk =

{
1, i f item j is cut f rom level k; (j, k = 1, .., n)

0, otherwise

where n = ∑m
i=1 di denotes the total number of items. Let αi = ∑i

s=1 ds, i = 1, . . . , m with
α0 = 0. The proposed model can be described by the following:

Min H (1)

j

∑
k=1

xjk = 1, j = 1, . . . , n (2)

∑n
j=k+1 wjxjk ≤ (W − wk)xkk, k = 1, . . . , n− 1 (3)

∑n
k=1 hkxkk ≤ H (4)

xtt ≥ xt+1,t+1, t ∈ [αi−1 + 1, αi − 1], i = 1, . . . , m (5)

∑αi
s=t+1 xst ≥∑αi

s=t+2 xs,t+1, t ∈ [αi−1 + 1, αi − 1], i = 1, . . . , m (6)

xjk ∈ {0, 1}, k = 1, .., n, j = k, . . . , n (7)

The objective function (1) aims to minimize the total height used from the strip.
Constraints (2) ensure that each item is placed once on its own level or on a higher level.
Constraints (3) oblige the width of any level to be enough to include all the assigned
items. Constraint (4) is related to the objective function and forces its value to be larger
or equal to the total used height. Constraints (5) and (6) are two valid inequalities of the
two-dimensional knapsack problem that were introduced by Ref. [32]. The purpose of these
two inequalities is to break symmetry that might occur in the solution. The model (1)–(7) is
denoted by M1ineq.

3.2. The Model Based on Furini et al. [31]

The same method of cutting items into shelves, as explained in M1ineq, is adopted
for this model. The latter is introduced by Ref. [31] for the two-dimensional two-staged
guillotine cutting stock problem with multiple stock size. In addition to the decision

Processes 2023, 11, 790 4 of 17

variables xjk, a continuous decision variable yk is included that represents the height of
shelf k (k = 1, . . . , n). The model is formulated as follows:

Min H (8)

∑n
k=1 yk ≤ H (9)

∑n
j=1 wjxjk ≤W k = 1, . . . , n (10)

∑n
k=1 xjk = 1 j = 1, . . . , n (11)

hjxjk ≤ yk j, k = 1, . . . , n (12)

n

∑
j=1

(
wjhj

)
xjk ≤ ykW k = 1, . . . , n (13)

yk ≤ yk+1 k = 1, . . . , n− 1 (14)

yk ≥ 0 k = 1, . . . , n (15)

xjk ∈ {0, 1} j, k = 1, .., n (16)

The objective function (8) minimizes the total height H used to cut all items. Con-
straint (9) assures that the total height of the shelves is less than or equal to the used strip
height H. Constraints (10) state that the total width of shelves should be less than or equal
to the strip width W. Constraints (11) amount to the initialization of each shelf k, which
means that a shelf k is initialized by cutting item j. Constraints (12) ensure that the height
of each item which is cut from shelf k should be smaller than or equal to the height yk.
Constraints (13) and (14) are valid inequalities that were introduced by Ref. [31] to enhance
their formulation. Inequality (13) ensures that the overall area of items placed in shelf k is
smaller than the area of the shelf k. Inequality (14) prevents the occurrence of symmetry,
where the shelves are sorted in increasing order. The model (8)–(16) is denoted by M2ineq.

3.3. The Model Based on Silva et al. [21]

In fact, cutting one item produces two residual boards: the right residual board and
the top residual board. For each item, the model checks iteratively the possibility of cutting
some other items from the corresponding residual boards (see Example 1). Thus, all cuts
and residual boards are known in advance.

Let B be the set of all residual boards. Note that for each k ∈ B, the residual boards with
height and width (Hk, Wk) are such that Hk ≤ H and Wk ≤W . In addition, N designates
the subset of B which dimensions are equal to one of the items. The model variables are:

xjk =

{
1, i f item j is cut f rom level k; (j = 1, .., n; k = 0, . . . , m)

0, otherwise

ajki =

{
1, i f board type i results f rom cutting item j f rom board k; (j = 1, .., n; k = 0, . . . , m; i = 1, . . . , m)

0, otherwise

The model can then be formulated as follows:

Min H (17)

∑n
j=1 hjxj0 ≤ H (18)

∑m
k=0 xjk = 1 j = 1, . . . , n (19)

∑m
k=0 ∑n

j=1 ajkixjk ≥∑n
j=1 xji i ∈ N (20)

∑m
k=0 ∑n

j=1 ajkixjk ≥∑n
j=1 xji i ∈ B\N (21)

Processes 2023, 11, 790 5 of 17

xjk ∈ {0, 1} j = 1, . . . , n; k = 0, ..m (22)

The objective function (17) minimizes the total consumed height H defined by (18).
Constraints (19) ensure the demand satisfaction. In constraints (20) and (21), the number
of residual boards obtained from cutting board i is greater than or equal to the number of
cut items from board i. The difference between (20) and (21) is that in (20), the residual
boards from item i still offer possible cutting smaller items. Finally, the domain of decision
variables is given in (22). The model (17)–(22) is denoted by M3.

Example 1. Consider a strip with an infinite height and fixed width W = 20. Three items are to be
cut from the strip. The height and width (hj,wj) of each item j are presented in Table 1.

Table 1. Data for Example 1.

Item j Height hj Width wj

1 40 20

2 30 10

3 20 40

The first phase is to establish all initial boards by applying a horizontal cut for each
item j. In this cutting phase, three boards are initialized. As shown in Figure 1, boards (a),
(b) and (c) correspond to items 1, 2 and 3, respectively.

Processes 2023, 11, x FOR PEER REVIEW 5 of 17

∑ ∑ 𝑎 𝑥 ≥ ∑ 𝑥 𝑖 ∈ 𝑁 (20)∑ ∑ 𝑎 𝑥 ≥ ∑ 𝑥 𝑖 ∈ 𝐵\𝑁 (21)𝑥 ∈ {0,1} 𝑗 = 1, … , 𝑛; 𝑘 = 0, . . 𝑚 (22)

The objective function (17) minimizes the total consumed height H defined by (18).
Constraints (19) ensure the demand satisfaction. In constraints (20) and (21), the number
of residual boards obtained from cutting board i is greater than or equal to the number of
cut items from board i. The difference between (20) and (21) is that in (20), the residual
boards from item i still offer possible cutting smaller items. Finally, the domain of decision
variables is given in (22). The model (17)–(22) is denoted by M3.

Example 1. Consider a strip with an infinite height and fixed width W = 20. Three items are to be
cut from the strip. The height and width (ℎ ,𝑤) of each item j are presented in Table 1.

Table 1. Data for Example 1.

Item 𝒋 Height 𝒉𝒋 Width 𝒘𝒋
1 40 20
2 30 10
3 20 40

The first phase is to establish all initial boards by applying a horizontal cut for each
item 𝑗. In this cutting phase, three boards are initialized. As shown in Figure 1, boards (a),
(b) and (c) correspond to items 1, 2 and 3, respectively.

Figure 1. Initial boards in first phase of cutting items of Example 1.

Then, we proceed by cutting board (a) to produce item 1 with (ℎ , 𝑤) = (40,20) and
a residual board with (𝐻 , 𝑊) = (40,20). This generates the variable 𝑥 , = 1 and means
that item 1 is cut from initial board 0. In addition to the 𝑥 , variable, a parameter 𝑎 , ,
is generated and means that a new board of type 4 is created (see Figure 2). The same step
is applied to obtain item 2 with (ℎ , 𝑤) = (30,10). In Figure 1, a vertical cut of board (b)
will generate 𝑥 , = 1 and a parameter 𝑎 , , . Then, a residual board type 5 is generated
with (𝐻 , 𝑊) = (30,30). The same process generates for item 3 a variable 𝑥 , and a pa-
rameter 𝑎 , , .

Figure 1. Initial boards in first phase of cutting items of Example 1.

Then, we proceed by cutting board (a) to produce item 1 with (h1, w1) = (40, 20)
and a residual board with (H4, W4) = (40, 20). This generates the variable x1,0 = 1 and
means that item 1 is cut from initial board 0. In addition to the x1,0 variable, a parameter
a1,0,4 is generated and means that a new board of type 4 is created (see Figure 2). The
same step is applied to obtain item 2 with (h2, w2) = (30, 10). In Figure 1, a vertical cut
of board (b) will generate x2,0 = 1 and a parameter a2,0,5. Then, a residual board type 5 is
generated with (H5, W5) = (30, 30). The same process generates for item 3 a variable x3,0
and a parameter a3,0,6.

For all the generated residual boards, a step for fitting items into residual boards is
applied. For example, consider board type 4 (H4, W4) = (40, 20), which is generated in
cutting phase 1. It is applicable to cut item 2 and to generate x2,4 and parameter a2,4,7 (see
Figure 3). All of these generations related to cuts and residual boards could be implemented
by using the algorithm in [21]. This algorithm is used by [11] to only generate right residual
boards, while in [21] they generate both top and right residual boards.

Processes 2023, 11, 790 6 of 17

Processes 2023, 11, x FOR PEER REVIEW 6 of 17

Figure 2. Deduction of item 1 and the residual board 4 of Example 1.

For all the generated residual boards, a step for fitting items into residual boards is
applied. For example, consider board type 4 (𝐻 , 𝑊) = (40,20), which is generated in
cutting phase 1. It is applicable to cut item 2 and to generate 𝑥 , and parameter 𝑎 , , (see
Figure 3). All of these generations related to cuts and residual boards could be imple-
mented by using the algorithm in [21]. This algorithm is used by [11] to only generate
right residual boards, while in [21] they generate both top and right residual boards.

Figure 3. Using residual board 4 to cut item 2 of Example 1.

3.4. The Model of Mrad [28]
Mrad [28] extended the model introduced in Ref. [22] and used the graph technique

in Ref. [23] to solve the 2D-SCP, where the items are cut through two stages. In the first
stage, the strip is cut into shelves, denoted by 𝜋 for each item k. In the second stage, each
shelf is cut to produce the required items. Clearly, for each shelf 𝜋 , a subset of items 𝑆 ={𝑖|ℎ ≤ ℎ } could be cut. Thus, the cutting of items in set 𝑆 could be presented as a path
in a specific graph as introduced in Ref. [23]. For each shelf 𝜋 , 𝑘 ∈ {1, … , 𝑛}, a graph 𝐺 =(𝑉 , 𝐴) is constructed where 𝑉 is the set of vertices and 𝐴 is the set of arcs. Actually,
any path in 𝐺 , between nodes 0 and W, represents a sequence of no-overlapping items,
which total width is less than or equal to W. This path amounts to a cutting pattern. Algo-
rithm 1 is used to build the graphs 𝐺 (𝑘 = 1, … , 𝑛). Interestingly, the following simple
breaking-symmetry rules significantly reduce the size of the graphs:
1. The items are ordered according to a decreasing order of their widths.
2. In each shelf, any path must include an item with the same height as the shelf.

Figure 2. Deduction of item 1 and the residual board 4 of Example 1.

Processes 2023, 11, x FOR PEER REVIEW 6 of 17

Figure 2. Deduction of item 1 and the residual board 4 of Example 1.

For all the generated residual boards, a step for fitting items into residual boards is
applied. For example, consider board type 4 (𝐻 , 𝑊) = (40,20), which is generated in
cutting phase 1. It is applicable to cut item 2 and to generate 𝑥 , and parameter 𝑎 , , (see
Figure 3). All of these generations related to cuts and residual boards could be imple-
mented by using the algorithm in [21]. This algorithm is used by [11] to only generate
right residual boards, while in [21] they generate both top and right residual boards.

Figure 3. Using residual board 4 to cut item 2 of Example 1.

3.4. The Model of Mrad [28]
Mrad [28] extended the model introduced in Ref. [22] and used the graph technique

in Ref. [23] to solve the 2D-SCP, where the items are cut through two stages. In the first
stage, the strip is cut into shelves, denoted by 𝜋 for each item k. In the second stage, each
shelf is cut to produce the required items. Clearly, for each shelf 𝜋 , a subset of items 𝑆 ={𝑖|ℎ ≤ ℎ } could be cut. Thus, the cutting of items in set 𝑆 could be presented as a path
in a specific graph as introduced in Ref. [23]. For each shelf 𝜋 , 𝑘 ∈ {1, … , 𝑛}, a graph 𝐺 =(𝑉 , 𝐴) is constructed where 𝑉 is the set of vertices and 𝐴 is the set of arcs. Actually,
any path in 𝐺 , between nodes 0 and W, represents a sequence of no-overlapping items,
which total width is less than or equal to W. This path amounts to a cutting pattern. Algo-
rithm 1 is used to build the graphs 𝐺 (𝑘 = 1, … , 𝑛). Interestingly, the following simple
breaking-symmetry rules significantly reduce the size of the graphs:
1. The items are ordered according to a decreasing order of their widths.
2. In each shelf, any path must include an item with the same height as the shelf.

Figure 3. Using residual board 4 to cut item 2 of Example 1.

3.4. The Model of Mrad [28]

Mrad [28] extended the model introduced in Ref. [22] and used the graph technique
in Ref. [23] to solve the 2D-SCP, where the items are cut through two stages. In the first
stage, the strip is cut into shelves, denoted by πk for each item k. In the second stage, each
shelf is cut to produce the required items. Clearly, for each shelf πk, a subset of items
Sk = {i|hi ≤ hk} could be cut. Thus, the cutting of items in set Sk could be presented as
a path in a specific graph as introduced in Ref. [23]. For each shelf πk, k ∈ {1, . . . , n}, a
graph Gk = (Vk, Ak) is constructed where Vk is the set of vertices and Ak is the set of arcs.
Actually, any path in Gk, between nodes 0 and W, represents a sequence of no-overlapping
items, which total width is less than or equal to W. This path amounts to a cutting pattern.
Algorithm 1 is used to build the graphs Gk (k = 1, . . . , n). Interestingly, the following
simple breaking-symmetry rules significantly reduce the size of the graphs:

1. The items are ordered according to a decreasing order of their widths.
2. In each shelf, any path must include an item with the same height as the shelf.
3. The number of occurrences of an item in a path cannot exceed its own demand.

Processes 2023, 11, 790 7 of 17

Algorithm 1. Graph Construction Algorithm

Let M be a matrix with W + 1 rows and nk columns. Where nk is the number of items in the set
Sk . M[i][j] takes 0 if it is allowed to build an arc representing item j and starting from node i
and 1 otherwise.
1: M[i][j]←0 ∀ i = 0, . . . , W ∀ j ∈ Sk
2: Vk ← {0, W}
3: f or j ∈ Sk/{k} do
4: f or i = 0, . . . , wk − 1
5: M[i][j]←1
6: end for
7: end for
8: f or i ∈ Sk do
9: SetO f NewNodes← ∅
10: f or j ∈ Vk/{W} do
11: α← j
12: r ← 0
13: while (α + wi 6 W) and (r 6 di) do
14: if M[α][i] = 0 do
15: Ak ← Ak ∪ (α, α + wi)
16: M[α][i]=1
17: SetO f NewNodes ← SetO f NewNodes ∪ {α + wi}
18: end if
19: r ← r + 1
20: α ← α + wi
21: end while
22: end f or
23: Vk ← Vk ∪ SetO f NewNodes
24: end f or
25: f or j ∈ Vk/{W} do
26: i f @(a, b) ∈ Ak such that a = j
27: Ak ← Ak ∪ (j, W)
28: end if
29: end for

Example 2. Consider a strip with width W = 8 and infinite height H, and a set of four items
I1 (7, 5, 2), I2 (6, 4, 1), I3 (5, 3, 2) and I4 (4, 2, 2) (where I (h, w, d) denotes an item I of height h,
width w and demand d). Four shelves π1, π2, π3 and π4 are then required to be used in the second
stage. Figure 4 depicts the corresponding four graphs G1, G2, G3 and G4, generated by Algorithm 1.
In each graph, each non-dashed arc represents an associated item. Dashed arcs represent dummy
items (waste material) and are added in order to respect the path between the source node and the
target node.

For a given shelf πk, denote by Hk the set of different item heights in Sk. Let xk
abh be

an integer variable associated to each arc (a,b) ∈ Ak that takes the number of items of width
(b−a) and height h ∈ Hk placed at position a from the beginning of shelf πk. This variable
represents the flow on the arc (a, b) associated to the item of height h in the graph Gk. For
example, for shelf π3, we have S3 = {3, 4} and H3 = {5, 4}. Consider the arc (5,7) in graph
G3, then the variable x3

685 (resp. x3
684) denotes the number of items of width 8 − 6 = 2 and

height 5 (resp. 4) placed at position 6 from the beginning of shelf π3.

Consider the decision variable zk that represents the total flow on the graph cor-
responding to the πk. The arc flow-based mathematical formulation of the 2D-SCP is
the following:

Min ∑n
k=1 hkzk (23)

Processes 2023, 11, 790 8 of 17

∑(a,b)∈Ak , h∈Hk
xk

abh −∑(b,c)∈Ak , h∈Hk
xk

bch =

zk i f b = 0
0 i f 1 ≤ b ≤W − 1
−zk i f b = W

; k = 1, .., n (24)

∑k,hk≥hj
∑(a,a+wi)∈Ak xk

a,a+wj ,hj
≥ bj j = 1, . . . , n (25)

xk
abh ≥ 0 and integer f or all (a, b) ∈ Ak, h ∈ Hk, and k = 1, . . . , n (26)

zk ≥ 0 k = 1, . . . , n (27)

The objective function (23) consists of minimizing the total height used from the strip.
Constraints (24) correspond to the flow conservation equality. That is, the value of the flow
leaving each node b ∈ {1,2, . . . , W − 1} in any graph Gk must be equal to the value of the
flow entering this node. In addition, the flow leaving node 0 must be equal to the flow
entering node W. Constraints (25) imply that the demand of each item should be satisfied,
i.e., the total number of cut items of j ∈ {1, . . . , n} from any πk (k = 1, . . . , n) should be
larger than or equal to the demand of this item. This mathematical formulation is strongly
related to the structure of the proposed graphs and presents the strip-cutting problem
as a minimum cost multi-flow problem with uncapacitated arcs and additional demand
constraints. The model (23)–(27) is denoted by Arc_Flow.

Processes 2023, 11, x FOR PEER REVIEW 8 of 17

Figure 4. Graphs corresponding to Example 2.

For a given shelf 𝜋k, denote by 𝐻 the set of different item heights in 𝑆 . Let 𝑥
be an integer variable associated to each arc (a,b) ∈ 𝐴 that takes the number of items of
width (b−a) and height ℎ ∈ 𝐻 placed at position 𝑎 from the beginning of shelf 𝜋k. This
variable represents the flow on the arc (𝑎, 𝑏) associated to the item of height ℎ in the
graph 𝐺 . For example, for shelf 𝜋3, we have 𝑆 = {3,4} and 𝐻 = {5,4}. Consider the arc
(5,7) in graph 𝐺 , then the variable 𝑥 (resp. 𝑥) denotes the number of items of width
8 − 6 = 2 and height 5 (resp. 4) placed at position 6 from the beginning of shelf 𝜋3.

Consider the decision variable 𝑧 that represents the total flow on the graph corre-
sponding to the 𝜋 . The arc flow-based mathematical formulation of the 2D-SCP is the
following: 𝑀𝑖𝑛 ∑ ℎ 𝑧 (23)

∑ 𝑥(,)∈ , ∈ − ∑ 𝑥(,)∈ , ∈ = 𝑧 𝑖𝑓 𝑏 = 0 0 𝑖𝑓 1 ≤ 𝑏 ≤ 𝑊 − 1−𝑧 𝑖𝑓 𝑏 = 𝑊 ; 𝑘 = 1, . . , 𝑛 (24)

∑ ∑ 𝑥 , , ≥ 𝑏(,)∈, 𝑗 = 1, … , 𝑛 (25)𝑥 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑎, 𝑏) ∈ 𝐴 , ℎ ∈ 𝐻 , 𝑎𝑛𝑑 𝑘 = 1, … , 𝑛 (26)𝑧 ≥ 0 𝑘 = 1, … , 𝑛 (27)

The objective function (23) consists of minimizing the total height used from the strip.
Constraints (24) correspond to the flow conservation equality. That is, the value of the
flow leaving each node b ∈ {1,2, …, W − 1} in any graph 𝐺 must be equal to the value of
the flow entering this node. In addition, the flow leaving node 0 must be equal to the flow
entering node W. Constraints (25) imply that the demand of each item should be satisfied,
i.e., the total number of cut items of j ∈ {1, …, n} from any 𝜋 (k = 1, …, n) should be
larger than or equal to the demand of this item. This mathematical formulation is strongly
related to the structure of the proposed graphs and presents the strip-cutting problem as
a minimum cost multi-flow problem with uncapacitated arcs and additional demand con-
straints. The model (23)–(27) is denoted by Arc_Flow.

Figure 4. Graphs corresponding to Example 2.

4. Application of the Graph Compression Technique to the 2D-SCP

In this section, we introduce the graph compression technique that we applied to
the arc flow-based model for the 2D-SCP. Our experimental results showed a substantial
improvement of the performance of this model through applying this technique.

The graph compression method is introduced by Ref. [33] to decrease the resulting
large size graphs related to the arc-flow formulation of the one-dimensional packing and
cutting problems. It proved a substantial saving in the computational effort required to
solve hard packing problems. Based on Ref. [33], the implementation of graph compression
on HARD4 instances in Ref. [34] leads to 97% and 95% reduction in the number of nodes
and arcs, respectively. Thus, the reduction of graph size can significantly hit the time
needed by MIP solvers.

The graph compression requires at least two stages: Breaking Symmetry and Com-
pression. In the first stage, the symmetry of the existing graph is broken. In fact, graphs

Processes 2023, 11, 790 9 of 17

delivered by Algorithm 1 may include different paths that represent the same cutting
pattern. Example 3 explains the occurrence of similar cutting patterns.

Example 3. Consider a strip with width W = 9 and infinite height H, and a set of three items
I1 (5, 4, 1), I2 (5, 3, 3) and I3 (3, 2, 1) (using the same notations of Example 2). Figure 5 shows the
graph corresponding to h = 5 (without dummy arcs). Clearly, the two paths 0-4-6-9 and 0-4-7-9
represent the same cutting pattern.

Processes 2023, 11, x FOR PEER REVIEW 9 of 17

4. Application of the Graph Compression Technique to the 2D-SCP
In this section, we introduce the graph compression technique that we applied to the

arc flow-based model for the 2D-SCP. Our experimental results showed a substantial im-
provement of the performance of this model through applying this technique.

The graph compression method is introduced by Ref. [33] to decrease the resulting
large size graphs related to the arc-flow formulation of the one-dimensional packing and
cutting problems. It proved a substantial saving in the computational effort required to
solve hard packing problems. Based on Ref. [33], the implementation of graph compres-
sion on HARD4 instances in Ref. [34] leads to 97% and 95% reduction in the number of
nodes and arcs, respectively. Thus, the reduction of graph size can significantly hit the
time needed by MIP solvers.

The graph compression requires at least two stages: Breaking Symmetry and Com-
pression. In the first stage, the symmetry of the existing graph is broken. In fact, graphs
delivered by Algorithm 1 may include different paths that represent the same cutting pat-
tern. Example 3 explains the occurrence of similar cutting patterns.

Example 3. Consider a strip with width W = 9 and infinite height H, and a set of three items I1 (5,
4, 1), I2 (5, 3, 3) and I3 (3, 2, 1) (using the same notations of Example 2). Figure 5 shows the graph
corresponding to h = 5 (without dummy arcs). Clearly, the two paths 0-4-6-9 and 0-4-7-9 represent
the same cutting pattern.

Figure 5. Graph corresponding to Example 3.

An easy way to break symmetry is to devote a level to each item. Then, the so-called
level graph is built in a manner that only arcs related to a given item are added in its level.
Each path in the level graph is devoted to a different pattern (see Example 4). Once the
level graph is ready, the second step (compression step) can be applied. For that purpose,
we introduce for each node u the so-called labeling function 𝜌(𝑢) which amounts to the
length of the longest path between nodes 0 and 𝑢. Let 𝑠 denote the size of the item rep-
resented by the arc (u,v), T denote the node representing the width of the strip W in the
last level of the level graph, and S denote the source node representing 0 in the first level.
Then, the formula of 𝜌(𝑢) is given by the following equation:

𝜌(𝑢) = 0 𝑖𝑓 𝑢 = 𝑆, 𝑊 𝑖𝑓 𝑢 = 𝑇, 𝑚𝑖𝑛(,){𝜌(𝑣) − 𝑠 } 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (28)

Now, each node u in the level graph is translated to the node 𝜌(𝑢) in the compressed
graph. Moreover, each arc (u,v) in the level graph will be replaced by (𝜌(𝑢), 𝜌(𝑣)) in the
compressed graph. Interestingly, the nodes having the same label can be combined into
one single node leading to a substantial reduction of the graph size. Indeed, if 𝜌(𝑢) = 𝜌(𝑣)
then the two nodes u and v will be represented by only one node in the compressed graph
and the arc (u,v) will not be considered in the compressed graph. In addition, many dif-
ferent arcs in the level graph may be represented by only one arc in the compressed graph.
Thus, the number of arcs and nodes will be potentially reduced.

It is worth noting that the recursive function (28) is applied on the nodes of the level
graph after being sorted in the decreasing topological order. Once the compressed graph

Figure 5. Graph corresponding to Example 3.

An easy way to break symmetry is to devote a level to each item. Then, the so-called
level graph is built in a manner that only arcs related to a given item are added in its level.
Each path in the level graph is devoted to a different pattern (see Example 4). Once the level
graph is ready, the second step (compression step) can be applied. For that purpose, we
introduce for each node u the so-called labeling function ρ(u) which amounts to the length
of the longest path between nodes 0 and u. Let suv denote the size of the item represented
by the arc (u,v), T denote the node representing the width of the strip W in the last level of
the level graph, and S denote the source node representing 0 in the first level. Then, the
formula of ρ(u) is given by the following equation:

ρ(u) =

0 i f u = S,

W i f u = T,
min(u,v){ρ(v)− suv} otherwise

(28)

Now, each node u in the level graph is translated to the node ρ(u) in the compressed
graph. Moreover, each arc (u,v) in the level graph will be replaced by (ρ(u), ρ(v)) in the
compressed graph. Interestingly, the nodes having the same label can be combined into one
single node leading to a substantial reduction of the graph size. Indeed, if ρ(u) = ρ(v) then
the two nodes u and v will be represented by only one node in the compressed graph and
the arc (u,v) will not be considered in the compressed graph. In addition, many different
arcs in the level graph may be represented by only one arc in the compressed graph. Thus,
the number of arcs and nodes will be potentially reduced.

It is worth noting that the recursive function (28) is applied on the nodes of the level
graph after being sorted in the decreasing topological order. Once the compressed graph is
obtained, a second round of compression can be applied. In this case, the reverse topological
order of the compressed graph is considered and the following recursive function φ(u)
is used:

φ(u) =
{

0 i f u = 0
max(v,u){φ(v) + svu} otherwise (29)

Since the arc-flow formulation of the 2D-SCP requires n different graphs (one graph
for each shelf), then the compression is applied on each graph independently. The resulting
graphs with a reduced size will potentially require less variables and constraints in the
formulation. Consequently, the solving time can be enhanced. Example 4 is illustrating the
breaking symmetry and the main compression step on the graph of each shelf in the case of
the 2D-SCP. For the sake of simplicity, we only considered the first compression round.

Processes 2023, 11, 790 10 of 17

Example 4. Consider an instance with a roll of width W = 13 and three items to be cut as shown
in Table 2. Algorithm 1 is applied to construct the graph related to each resulting strip. Figures 6–8
display the simple graph, the level graph and compressed graph for shelves 0, 1 and 2, respectively.

Table 2. Data of Example 3.

Item i hi wi di

0 3 7 2

1 5 6 2

2 4 5 2

Processes 2023, 11, x FOR PEER REVIEW 10 of 17

is obtained, a second round of compression can be applied. In this case, the reverse topo-
logical order of the compressed graph is considered and the following recursive function 𝜙(𝑢) is used: 𝜙(𝑢) = 0 𝑖𝑓 𝑢 = 0𝑚𝑎𝑥(,){𝜙(𝑣) + 𝑠 } 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (29)

Since the arc-flow formulation of the 2D-SCP requires n different graphs (one graph
for each shelf), then the compression is applied on each graph independently. The result-
ing graphs with a reduced size will potentially require less variables and constraints in
the formulation. Consequently, the solving time can be enhanced. Example 4 is illustrating
the breaking symmetry and the main compression step on the graph of each shelf in the
case of the 2D-SCP. For the sake of simplicity, we only considered the first compression
round.

Example 4. Consider an instance with a roll of width 𝑊 = 13 and three items to be cut as shown
in Table 2. Algorithm 1 is applied to construct the graph related to each resulting strip. Figures 6–
8 display the simple graph, the level graph and compressed graph for shelves 0, 1 and 2, respectively.

Table 2. Data of Example 3.

Item i 𝒉𝒊 𝒘𝒊 𝒅𝒊
0 3 7 2
1 5 6 2
2 4 5 2

(a) The simple graph of shelf 0.

 𝜌((13,2)) = 13 𝜌((12,2)) = 13 𝜌((11,2)) = 13 𝜌((10,2)) = 13 𝜌((13,1)) = 13 𝜌((11,1)) = 13 𝜌((8,2)) = 9 𝜌((7,2)) = 9 𝜌((6,2)) = 9 𝜌((3,2)) = 5 𝜌((8,1)) = 8 𝜌((6,1)) = 8 𝜌((3,1)) = 3 𝜌((6,0)) = 8 𝜌((3,0)) = 3 𝜌((0,0)) = 0

(b). The level graph of shelf 0

(c). The compressed graph of shelf 0

Figure 6. The three graphs of shelf 0.
Figure 6. The three graphs of shelf 0.

Processes 2023, 11, x FOR PEER REVIEW 11 of 17

(a) The simple graph of shelf 1

 𝜌((13,1)) = 13 𝜌((13,0)) = 13 𝜌((9,1)) = 9 𝜌((10,0)) = 13 𝜌((5,1)) = 5 𝜌((5,0))= 5 𝜌((0,0)) = 0

(b) The level graph of shelf 1

(c) The compressed graph of shelf 1

Figure 7. The three graphs of shelf 1.

(a) The simple graph of shelf 2

 𝜌((8,0)) = 13 𝜌((4,0)) = 9 𝜌((0,0)) = 0

(b) The level graph of shelf 2

(c)The compressed graph of shelf 2

Figure 8. The three graphs of shelf 2.

5. Computational Experiments
5.1. The Benchmark Instances

We assessed the three models M1ineq, M2ineq and M3 as well as the proposed arc-
flow formulation with graph compression for the two-dimensional strip-cutting problem.
We considered the five sets of benchmark instances, utilized by Ref. [11], to evaluate the
performance of the mentioned models. We describe these sets as follows:
• Set 1 consists of 21 instances proposed by Ref. [35]. These are distributed in seven

categories C1… C7 and three types P1, P2, P3. All the item demands are equal to one.
The number of items and the strip width for each problem are shown in Table 3.

Figure 7. The three graphs of shelf 1.

Processes 2023, 11, 790 11 of 17

Processes 2023, 11, x FOR PEER REVIEW 11 of 17

(a) The simple graph of shelf 1

 𝜌((13,1)) = 13 𝜌((13,0)) = 13 𝜌((9,1)) = 9 𝜌((10,0)) = 13 𝜌((5,1)) = 5 𝜌((5,0))= 5 𝜌((0,0)) = 0

(b) The level graph of shelf 1

(c) The compressed graph of shelf 1

Figure 7. The three graphs of shelf 1.

(a) The simple graph of shelf 2

 𝜌((8,0)) = 13 𝜌((4,0)) = 9 𝜌((0,0)) = 0

(b) The level graph of shelf 2

(c)The compressed graph of shelf 2

Figure 8. The three graphs of shelf 2.

5. Computational Experiments
5.1. The Benchmark Instances

We assessed the three models M1ineq, M2ineq and M3 as well as the proposed arc-
flow formulation with graph compression for the two-dimensional strip-cutting problem.
We considered the five sets of benchmark instances, utilized by Ref. [11], to evaluate the
performance of the mentioned models. We describe these sets as follows:
• Set 1 consists of 21 instances proposed by Ref. [35]. These are distributed in seven

categories C1… C7 and three types P1, P2, P3. All the item demands are equal to one.
The number of items and the strip width for each problem are shown in Table 3.

Figure 8. The three graphs of shelf 2.

5. Computational Experiments
5.1. The Benchmark Instances

We assessed the three models M1ineq, M2ineq and M3 as well as the proposed arc-
flow formulation with graph compression for the two-dimensional strip-cutting problem.
We considered the five sets of benchmark instances, utilized by Ref. [11], to evaluate the
performance of the mentioned models. We describe these sets as follows:

• Set 1 consists of 21 instances proposed by Ref. [35]. These are distributed in seven
categories C1 . . . C7 and three types P1, P2, P3. All the item demands are equal to one.
The number of items and the strip width for each problem are shown in Table 3.

Table 3. Data parameters of Set 1.

Categories
Number of Items

Strip Width
P1 P2 P3

C1 16 17 16 20

C2 25 25 25 40

C3 28 29 28 60

C4 49 49 49 60

C5 73 73 73 60

C6 97 97 97 80

C7 196 197 196 160

• Set 2 consists of 16 instances with unitary item demands, three of them (cgcut1, cgcut2,
cgcut3) were used by Ref. [36] for the two-dimensional cutting stock problem. The
remaining 13 instances (gcut1, . . . , gcut13) are proposed by Ref. [37] for the non-
guillotine two-dimensional cutting problem.

• Set 3 consists of 500 instances that are divided into 10 classes. Each class includes
50 instances where for each value of n ε {20, 40, 60, 80, 100} there are 10 generated
instances. Berkey and Wang [16] introduced the first six classes, while the remaining
four classes were presented in Ref. [38]. The structure of instances and values of wi
and hi are uniformly distributed in the listed intervals as shown in Table 4. All the
item demands are equal to one.

Processes 2023, 11, 790 12 of 17

Table 4. Data parameters of Set 3.

Class W wi hi

1 10 [1, 10] [1, 10]

2 30 [1, 10] [1, 10]

3 40 [1, 35] [1, 35]

4 100 [1, 35] [1, 35]

5 100 [1, 100] [1, 100]

6 300 [1, 100] [1, 100]

7 100 [2W
3 , W] [1, H

2]

8 100 [1, W
2] [2H

3 , H]

9 100 [w
2 , W] [H

2 , H]

10 100 [1, W
2] [1, H

2]

• Set 4 contains 20 instances (ATP30, . . . , ATP49) that are used by Ref. [28].
• Set 5 includes 43 instances from real-world settings presented in Refs. [21,22].

All the models described in this paper have been coded using Cplex Concert technol-
ogy under C++ environment and solved using IBM ILog Cplex 12.9 solver. All computa-
tional experiments have been carried out on a desktop with Intel (R) Core (TM) i7 4930 K
CPU 3.4 GHz processor with 32 GB of memory under Windows environment. A time limit
of 3600 s has been set for all the models.

5.2. Impact of the Graph Compression

The impact of graph compression on the five sets of instances has been assessed
according to the following criteria:

• Size reduction: it reflects the impact of the graph compression on the number of vari-
ables of the generated mathematical model. It is computed as 100 (n1 − n2)/n1, where
n1 and n2 represent the number of variables corresponding to the non-compressed
and compressed graphs, respectively.

• Time ratio: it represents the ratio of the CPU time of the non-compressed model over
the one of the compressed model. It indicates the impact of the graph compression on
increasing/decreasing the running time.

• Gap improvement: it represents the percentage gap improvement for unsolved in-
stances. The gap is equal to 100 (UB− LB)/UB, where UB and LB denote the best
found upper and lower bounds, respectively. The gap improvement is computed
as 100 (gap1 − gap2)/gap1, where gap1 and gap2 represent the gaps obtained by the
non-compressed and compressed models, respectively.

Table 5 shows the results of the graph compression impact over the five sets of instances
according to the three mentioned criteria. From this table, we can see that the most
significant impact is observed for Set 5 in terms of model size reduction and time ratio.
Indeed, the compressed model was, on average, 60.32% smaller and 2.11 faster than the
non-compressed one. Sets 1 and 3 are the least impacted ones with respect to these criteria.
On the other hand, the graph compression substantially reduced the gap for the unsolved
instances where some of them have been solved to optimality in Sets 3 and 4.

Processes 2023, 11, 790 13 of 17

Table 5. Impact of graph compression.

Set 1 Set 2 Set 3 Set 4 Set 5

Average size reduction 5.22% 34.70% 12.27% 30.96% 60.32%

Maximum size reduction 23.44% 58.17% 54.22% 59.55% 81.14%

Average time ratio 0.95 1.79 1.32 1.85 2.11

Maximum time ratio 2.12 5.79 17.53 9.85 17.27

Average gap improvement 20.53% 7.86% 7.36% 31.12% -

Maximum gap improvement 56.09% 7.86% 100.00% 100.00% -

5.3. Comparison with the State-of-the-Art Mathematical Models

In this section, we present a comparison of the performance of the presented mathe-
matical models in terms of percentage of solved instances (i.e., solved to optimality within
the time limit of 3600 s), average computation time, average gap of unsolved instances,
and performance of the linear relaxation. The latter criterion is assessed by computing the
percentage of times the linear relaxation of each model equals the maximum value over all
the linear relaxations of the four ones.

Tables 6–9 depict the results of the four models in terms of these criteria for each of the
five sets of instances. From these tables, we observe that the compressed model provides
the best results in all criteria for Sets 4 and 5 (non-unitary item demands). Moreover, it
yields the second best results for Sets 1–3 (unitary item demands) in terms of percentage of
solved instances and average computation time. In particular, the average computation
time of our model is drastically better than those of the state-of-the-art models in Set 5.
Indeed, it is 41.24 times faster than the second fastest model. Moreover, Table 9 shows that
the linear relaxation of the compressed model outperforms the three other ones in all of the
five sets.

Table 6. Percentage of solved instances.

Set 1 Set 2 Set 3 Set 4 Set 5

Compressed Model 57.14% 93.75% 74.20% 20.00% 100.00%

M1ineq 71.43% 93.75% 85.60% 0.00% 76.74%

M2ineq 42.86% 62.50% 21.20% 0.00% 27.91%

M3 42.86% 93.75% 63.40% 0.00% 72.09%

Table 7. Average computation time.

Set 1 Set 2 Set 3 Set 4 Set 5

Compressed Model 1617.43 225.08 962.63 2981.18 24.72

M1ineq 1035.99 225.58 627.89 3600.00 1019.47

M2ineq 2059.22 1395.06 2842.01 3600.00 2597.23

M3 2085.10 225.78 1363.38 3600.00 1106.27

Table 8. Average gap for unsolved instances.

Set 1 Set 2 Set 3 Set 4 Set 5

Compressed Model 11.15% 7.57% 5.79% 0.53% 0.00%

M1ineq 1.83% 2.00% 1.81% 1.70% 0.53%

M2ineq 9.83% 7.57% 9.59% 16.54% 35.01%

M3 20.48% 7.11% 7.33% 9.58% 0.21%

Processes 2023, 11, 790 14 of 17

Table 9. Performance of the linear relaxation.

Set 1 Set 2 Set 3 Set 4 Set 5

Compressed Model 100.00% 100.00% 100.00% 100.00% 86.05%

M1ineq 0.00% 6.25% 0.00% 0.00% 0.00%

M2ineq 0.00% 0.00% 0.00% 0.00% 0.00%

M3 0.00% 25.00% 3.40% 0.00% 46.51%

From Tables 6 and 7, it can be observed that Set 4 is by far the hardest set to solve.
Indeed, none of its instances has been solved by the models of the literature. The only model
that makes it feasible to solve 20% of the instances is the proposed compressed model.
Interestingly, by using this model we were able to substantially improve the upper/lower
bounds of these hard benchmark instances, as will be detailed in the next section.

5.4. New Results for Open Benchmark Instances

In this section, we present new found upper and lower bounds for 24 unsolved bench-
mark instances of the two-dimensional strip cutting problem. Table 10 shows the details of
these results where UBlit (and, respectively, LBlit) denotes the best obtained upper (and, re-
spectively, lower) bound in the literature [11], and UBnew (and, respectively, LBnew) denotes
the upper (and, respectively, lower) bound obtained by the proposed compressed model.
The gap improvement is computed for each instance by 100 (Devlit − Devnew)/Devlit,
where Devlit = UBlit−LBlit and Devnew = UBnew−LBnew. The asterisk symbol indicates that
the new obtained upper/lower bound reaches the optimum.

Table 10. Improved benchmark results.

Instance UBlit LBlit UBnew LBnew
Gap Im-

provement

ATP30 1262 1242 1255 * 1255 * 100.00%

ATP31 13,068 12,866 12,964 12,893 64.85%

ATP32 1504 1491 1500 1496 69.23%

ATP33 11,802 11,742 11,771 11,770 98.33%

ATP34 2432 2421 2432 2426 45.45%

ATP35 4743 4707 4742 * 4742 * 100.00%

ATP36 1794 1778 1788 1783 68.75%

ATP37 9764 9683 9743 9722 74.07%

ATP38 3635 3611 3630 * 3630 * 100.00%

ATP39 5566 5481 5509 5506 96.47%

ATP40 2084 2037 2056 2041 68.09%

ATP41 4170 4123 4143 4137 87.23%

ATP42 4296 4227 4260 4231 57.97%

ATP43 11,235 11,001 11,118 11,030 62.39%

ATP44 4210 4150 4204 4165 35.00%

ATP45 4329 4270 4326 4293 44.07%

ATP46 5650 5534 5581 5549 72.41%

ATP47 6757 6698 6749 6708 30.51%

ATP48 1987 1950 1988 1958 21.62%

Processes 2023, 11, 790 15 of 17

Table 10. Cont.

Instance UBlit LBlit UBnew LBnew
Gap Im-

provement

ATP49 2214 2195 2211 * 2211 * 100.00%

A11 94,890 94,598 94,873 * 94,873 * 100.00%

A14 139,959 139,938 139,959 139 959 * 100.00%

A21 57,348 57,340 57,348 57,348 * 100.00%

A35 34,554 34,525 34,554 34,554 * 100.00%

Average gap improvement 69.82%

Interestingly, all of the upper/lower bounds of the hardest set of instances (namely
Set 4) have been improved (except one upper bound for instance ATP 48). Moreover,
optimality was reached for four of them. Moreover, the four open benchmark instances
of Set 5 have all been solved to optimality. Furthermore, we can appreciate the dramatic
improvement of the gap for the displayed instances since it equals 69.82%, on average,
reaching more than 96% for some unsolved ones.

6. Conclusions

We addressed the two-dimensional strip-cutting problem and proposed an improved
arc-flow-based mathematical model. It consists in extending the so-called graph compres-
sion approach formerly designed for the one-dimension case. The experimental results
showed a significant impact of the graph compression technique on the efficiency of the
proposed arc-flow model. Moreover, our computational comparison with three recent
state-of-the-art mathematical models provided strong evidence of the good performance of
our approach, especially for the instances with non-unitary item demands. New results for
24 unsolved benchmark instances were provided, with an average gap improvement of
around 70%.

The present paper is actually a part of a Ph.D. thesis [39]. The next step would be to
investigate the impact of the graph compression technique to more complex cutting and
packing problems such as the two-dimensional cutting stock problem.

Author Contributions: Conceptualization, M.M. and T.G.A.; methodology, M.M. and T.G.A.; soft-
ware, M.M., T.G.A. and A.B.; resources, A.S., M.A.L. and A.G.; data curation, A.G., A.S. and M.A.L.;
writing—original draft preparation, T.G.A.; writing—review and editing, M.M. and A.G.; funding ac-
quisition, M.M. and A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by the National Plan for Science, Technology and Innovation
(MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award
Number (13-MAT1544-02).

Data Availability Statement: Data are available for all instances in this paper from corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Valério De Carvalho, J.V. LP models for bin packing and cutting stock problems. Eur. J. Oper. Res. 2002, 141, 253–273. [CrossRef]
2. Aktin, T.; Özdemir, R.G. An integrated approach to the one-dimensional cutting stock problem in coronary stent manufacturing.

Eur. J. Oper. Res. 2009, 196, 737–743. [CrossRef]
3. Parreño, F.; Alonso, M.; Alvarez-Valdes, R. Solving a large cutting problem in the glass manufacturing industry. Eur. J. Oper. Res.

2020, 287, 378–388. [CrossRef]
4. Li, F.; Chen, Y.; Hu, X. Manufacturing-oriented silicon steel coil lengthwise cutting stock problem with useable leftover. Eng.

Comput. 2021, 39, 477–492. [CrossRef]
5. Pierini, L.M.; Poldi, K.C. Lot Sizing and cutting stock problems in a paper production process. Pesqui. Oper. 2021, 41. [CrossRef]
6. Wattanasiriseth, P.; Krairit, A. An Application of Cutting-Stock Problem in Green Manufacturing: A Case Study of Wooden Pallet

Industry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 530, 012005. [CrossRef]

http://doi.org/10.1016/S0377-2217(02)00124-8
http://doi.org/10.1016/j.ejor.2008.04.005
http://doi.org/10.1016/j.ejor.2020.05.016
http://doi.org/10.1108/EC-11-2020-0660
http://doi.org/10.1590/0101-7438.2021.041s1.00235094
http://doi.org/10.1088/1757-899X/530/1/012005

Processes 2023, 11, 790 16 of 17

7. Varela, R.; Vela, M.D.C.R.; Puente, J.; Sierra-Sanchez, M.R.; González-Rodríguez, I. An effective solution for a real cutting stock
problem in manufacturing plastic rolls. Ann. Oper. Res. 2008, 166, 125–146. [CrossRef]

8. Lemos, F.K.; Cherri, A.C.; de Araujo, S.A. The cutting stock problem with multiple manufacturing modes applied to a construction
industry. Int. J. Prod. Res. 2020, 59, 1088–1106. [CrossRef]

9. Huang, Y.-H.; Lu, H.-C.; Wang, Y.-C.; Chang, Y.-F.; Gao, C.-K. A Global Method for a Two-Dimensional Cutting Stock Problem
in the Manufacturing Industry. In Application of Decision Science in Business and Management; IntechOpen: London, UK, 2020.
[CrossRef]

10. Lodi, A.; Martello, S.; Vigo, D. Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems.
INFORMS J. Comput. 1999, 11, 345–357. [CrossRef]

11. Bezerra, V.M.R.; Leao, A.A.S.; Oliveira, J.F.; Santos, M.O. Models for the two-dimensional level strip packing problem—A review
and a computational evaluation. J. Oper. Res. Soc. 2019, 71, 606–627. [CrossRef]

12. Gilmore, P.C.; Gomory, R.E. Multistage Cutting Stock Problems of Two and More Dimensions. Oper. Res. 1965, 13, 94–120.
[CrossRef]

13. Hifi, M. An improvement of viswanathan and bagchi's exact algorithm for constrained two-dimensional cutting stock. Comput.
Oper. Res. 1997, 24, 727–736. [CrossRef]

14. Hifi, M. Exact algorithms for the guillotine strip cutting/packing problem. Comput. Oper. Res. 1998, 25, 925–940. [CrossRef]
15. Lodi, A.; Martello, S.; Vigo, D. Models and Bounds for Two-Dimensional Level Packing Problems. J. Comb. Optim. 2004, 8,

363–379. [CrossRef]
16. Berkey, J.O.; Wang, P.Y. Two-Dimensional Finite Bin-Packing Algorithms. J. Oper. Res. Soc. 1987, 38, 423. [CrossRef]
17. Belov, G.; Scheithauer, G. A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage

cutting. Eur. J. Oper. Res. 2006, 171, 85–106. [CrossRef]
18. Pisinger, D.; Sigurd, M. Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional

Bin-Packing Problem. INFORMS J. Comput. 2007, 19, 36–51. [CrossRef]
19. Bekrar, A.; Kacem, I. An Exact Method for the 2D Guillotine Strip Packing Problem. Adv. Oper. Res. 2009, 2009, 1–20. [CrossRef]
20. Dyckhoff, H. A New Linear Programming Approach to the Cutting Stock Problem. Oper. Res. 1981, 29, 1092–1104. [CrossRef]
21. Silva, E.; Alvelos, F.; Valério de Carvalho, J.M.V. An integer programming model for two- and three-stage two-dimensional

cutting stock problems. Eur. J. Oper. Res. 2010, 205, 699–708. [CrossRef]
22. Macedo, R.; Alves, C.; de Carvalho, J.V. Arc-flow model for the two-dimensional guillotine cutting stock problem. Comput. Oper.

Res. 2010, 37, 991–1001. [CrossRef]
23. Carvalho, J.V. Exact Solution of Cutting Stock Problems Using Column Generation and Branch-and-Bound. Int. Trans. Oper. Res.

1998, 5, 35–44. [CrossRef]
24. Mrad, M.; Meftahi, I.; Haouari, M. A branch-and-price algorithm for the two-stage guillotine cutting stock problem. J. Oper. Res.

Soc. 2013, 64, 629–637. [CrossRef]
25. Rinaldi, F.; Franz, A. A two-dimensional strip cutting problem with sequencing constraint. Eur. J. Oper. Res. 2007, 183, 1371–1384.

[CrossRef]
26. Cintra, G.; Miyazawa, F.; Wakabayashi, Y.; Xavier, E. Algorithms for two-dimensional cutting stock and strip packing problems

using dynamic programming and column generation. Eur. J. Oper. Res. 2008, 191, 61–85. [CrossRef]
27. Bettinelli, A.; Ceselli, A.; Righini, G. A branch-and-price algorithm for the two-dimensional level strip packing problem. 4OR

2007, 6, 361–374. [CrossRef]
28. Mrad, M. An arc flow-based optimization approach for the two-stage guillotine strip cutting problem. J. Oper. Res. Soc. 2015, 66,

1850–1859. [CrossRef]
29. Zhu, K.; Ji, N.; Li, X.D. Hybrid Heuristic Algorithm Based on Improved Rules & Reinforcement Learning for 2D Strip Packing

Problem. IEEE Access 2020, 8, 226784–226796. [CrossRef]
30. Iori, M.; de Lima, V.L.; Martello, S.; Miyazawa, F.K.; Monaci, M. Exact solution techniques for two-dimensional cutting and

packing. Eur. J. Oper. Res. 2020, 289, 399–415. [CrossRef]
31. Furini, F.; Malaguti, E.; Durán, R.M.; Persiani, A.; Toth, P. A column generation heuristic for the two-dimensional two-staged

guillotine cutting stock problem with multiple stock size. Eur. J. Oper. Res. 2012, 218, 251–260. [CrossRef]
32. Lodi, A.; Monaci, M. Integer linear programming models for 2-staged two-dimensional Knapsack problems. Math. Program. 2003,

94, 257–278. [CrossRef]
33. Brandão, F.; Pedroso, J.P. Bin packing and related problems: General arc-flow formulation with graph compression. Comput. Oper.

Res. 2016, 69, 56–67. [CrossRef]
34. Scholl, A.; Klein, R.; Jürgens, C. Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem.

Comput. Oper. Res. 1997, 24, 627–645. [CrossRef]
35. Hopper, E.; Turton, B. An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur. J.

Oper. Res. 2001, 128, 34–57. [CrossRef]
36. Christofides, N.; Whitlock, C. An Algorithm for Two-Dimensional Cutting Problems. Oper. Res. 1977, 25, 30–44. [CrossRef]
37. Beasley, J.E. An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure. Oper. Res. 1985, 33, 49–64. [CrossRef]

http://doi.org/10.1007/s10479-008-0407-1
http://doi.org/10.1080/00207543.2020.1720923
http://doi.org/10.5772/intechopen.89376
http://doi.org/10.1287/ijoc.11.4.345
http://doi.org/10.1080/01605682.2019.1578914
http://doi.org/10.1287/opre.13.1.94
http://doi.org/10.1016/S0305-0548(96)00095-0
http://doi.org/10.1016/s0305-0548(98)00008-2
http://doi.org/10.1023/B:JOCO.0000038915.62826.79
http://doi.org/10.1057/jors.1987.70
http://doi.org/10.1016/j.ejor.2004.08.036
http://doi.org/10.1287/ijoc.1060.0181
http://doi.org/10.1155/2009/732010
http://doi.org/10.1287/opre.29.6.1092
http://doi.org/10.1016/j.ejor.2010.01.039
http://doi.org/10.1016/j.cor.2009.08.005
http://doi.org/10.1111/j.1475-3995.1998.tb00100.x
http://doi.org/10.1057/jors.2012.70
http://doi.org/10.1016/j.ejor.2005.12.050
http://doi.org/10.1016/j.ejor.2007.08.007
http://doi.org/10.1007/s10288-007-0051-7
http://doi.org/10.1057/jors.2015.8
http://doi.org/10.1109/access.2020.3045905
http://doi.org/10.1016/j.ejor.2020.06.050
http://doi.org/10.1016/j.ejor.2011.10.018
http://doi.org/10.1007/s10107-002-0319-9
http://doi.org/10.1016/j.cor.2015.11.009
http://doi.org/10.1016/S0305-0548(96)00082-2
http://doi.org/10.1016/S0377-2217(99)00357-4
http://doi.org/10.1287/opre.25.1.30
http://doi.org/10.1287/opre.33.1.49

Processes 2023, 11, 790 17 of 17

38. Martello, S.; Vigo, D. Exact Solution of the Two-Dimensional Finite Bin Packing Problem. Manag. Sci. 1998, 44, 388–399. [CrossRef]
39. Ali, T. Impact of graph compression on the two stage cutting stock problems. Ph.D. Thesis, Department of Industrial Engineering,

College of Engineering, King Saud University, Riyadh, Saudi Arabia, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1287/mnsc.44.3.388

	Introduction
	Literature Review
	State-of-the-Art Mathematical Models
	The Model Based on Lodi et al. B15-processes-2217554
	The Model Based on Furini et al. B31-processes-2217554
	The Model Based on Silva et al. B21-processes-2217554
	The Model of Mrad B28-processes-2217554

	Application of the Graph Compression Technique to the 2D-SCP
	Computational Experiments
	The Benchmark Instances
	Impact of the Graph Compression
	Comparison with the State-of-the-Art Mathematical Models
	New Results for Open Benchmark Instances

	Conclusions
	References

