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Abstract: Resilience is regarded as an essential design objective of a wide range of systems in modern
society. This work is based on a vision that networks of mobile energy storage systems could provide
an alternative off-grid power system design for rural and underdeveloped regions. To evaluate
the resiliency of networked energy storage systems under overload failure, a model of concurrent
cascading failure and healing processes is developed and demonstrated. Two resilience metrics are
used to evaluate the resilience of a real-world network, namely the recovery level at a specified time
and the recovery time. The simulations generate system trajectories at each time step. We explore
the dependence of the system behavior on different model parameters that capture key recovery
strategies. The success probability of the recovery of a failed node needs to be high enough for the
network to restore its original functionality. Similarly, the increase in recovery budget parameter also
leads to faster and higher recovery levels. However, in most cases, there appears to be upper limits
for both parameters, beyond which any further increase could not improve the recovery performance.
There is an optimum portion of the loads of the active neighboring nodes that will be carried by
the newly recovered node that results in the shortest recovery times or highest recovery levels. Our
work sheds light on how to enhance networked systems resiliency by considering the optimization of
various model parameters.

Keywords: battery energy storage systems; mobile energy storage systems; complex networks;
cascading failure; self-healing; resilience metrics

1. Introduction

Energy storage systems (ESSs) have been indispensable to the modernization of electric
grids in developed nations [1], the rebuilding of power systems in regions following major
disasters [2], and the electrification of remote, poor, or underdeveloped communities [3].
While ESSs are often associated with distributed renewable generations and contribute
to improved reliability of the grid and reduced cost of electricity [4,5], the deployment of
utility-scale ESSs in the U.S. was approximately 1 GW at the end of 2019 (~0.1% of the total
generating capacity) [6], which is far less than the 2050 goal of 59 GW power capacity [7].

In the last decade, there have been many studies on strategies to expand ESS de-
ployment. The potential of combined applications of stationary battery ESSs to increase
profitability was shown in [8]. The concept of mobile ESSs, mainly based on electric vehi-
cles, was developed to improve power system operations [9,10]. In [11–14], the promise
of a hybrid (stationary + mobile), grid-independent form of battery ESSs to maximize
renewable generation, incentivize ESS deployment, and promote electrical transportation
was demonstrated.

However, the previous studies have focused on individual ESSs instead of ESS net-
works, i.e., “interconnected” systems of ESSs. As a forward-looking concept, ESS networks,
compared with a single ESS, would be able to deliver improved grid services via coordi-
nated operations of multiple ESSs. On the other hand, as candidates of off-grid power
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systems, ESS networks would also be more reliable and economic than isolated ESSs. ESS
networks can also provide back-up power and emergency power when the grid is down
due to catastrophic disasters, accidents, cyberattacks, or wars [15–17]. While it is widely
accepted that ESSs can improve the resiliency of power systems, there have been few
studies on the resiliency of ESS networks themselves. In view of this, the objective of this
work is to develop a modeling and simulation framework to provide decision support for
the resiliency planning of mobile ESS networks.

Many complex systems of modern society such as power systems [18], telecommuni-
cation systems [19], financial transaction systems [20], command and control systems [21]
have been widely modeled as networks. To evaluate the resiliency of networked systems,
three elements need to be taken into consideration: initial failure, cascading, and healing.
For ESS networks, the primary concern here is overload failures, i.e., ESSs not able to meet
demands due to supply loss or demand surge. Starting from a small number of failed
ESSs, the overload failure may propagate over the network. Cascading overload failures
have been studied intensively [22–24]. In [22], for instance, researchers studied a type of
overload failure in evolving scale-free networks. It was shown that if the capacities of nodes
grow with the size of the network, cascading failure could be avoided. The authors of [23]
studied cascading failures in an electric transmission system model when power demand
is increased. It was found that operations near critical points can produce power-law
tails in the blackout size probability distribution similar to those observed during various
North American blackouts. In [24], the authors considered cascades due to load redistribu-
tion in an interdependent system consisting of two networks. These previous studies on
cascading failures have also informed various methods to increase networks robustness
against overload failures. On the other hand, there have been many studies on healing
processes in networked systems [25–27]. Suppressing cascading failures in networks by
activating healing mechanisms was designed in [25,26], where the healing was achieved
by forming a link at each stage of the cascade, with a certain probability, to link the failed
nodes with functioning ones. It was shown that only with the probability above a critical
value, systemic failure can be prevented. In [27], the authors stated that after cascading
failure fragmented the system into smaller clusters, each node has the option of whether
to establish a new edge or not, depending on the ratio of its degree after the failure to its
original degree. This proposed healing mechanism was able to restore the functionality of
the system and was also validated by applying it to real-world systems. However, healing
in load-based failure scenarios has not been adequately investigated [28]. Further, very
little research attention has been paid to networks with concurrent cascading failure and
healing [29].

In this work, we examine the performance of off-grid ESS networks under overload
cascading failure with a newly proposed dynamic healing mechanism. Via numerical simu-
lations, we explore the effects of various model parameters on the system dynamics. For the
purpose of resiliency planning, we use two resiliency metrics called systemic impact and
the time to restoration [30,31]. The main contributions of this work are summarized as fol-
lows. First, a new concept of mobile energy storage network is proposed and demonstrated
via computer simulation. Second, a modeling-based planning approach is developed to
evaluate the resilience of the networked system. Finally, the results provide some insights
on the recovery strategies to improve system resiliency.

The rest of the paper is organized as follows. In Section 2, the networked energy storage
system model is described, and the simulation framework for network resiliency planning
is presented. The results of the network dynamics and resiliency metrics under various
combinations of model parameters are shown and discussed in Section 3. Conclusions are
in Section 4.
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2. Model Description
2.1. Off-Grid ESS Networks

Different from the conventional electric power grid, a scenario of an off-grid network
of energy storage system warehouses (ESS-WHs) is introduced and analyzed in this study.
Each ESS-WH houses a certain number of large-scale mobile battery energy storage systems
(MoBESSs). The size of each MoBESS is anticipated to be ~5 MWh and will be charged
at the respective warehouse [11–14]. Figure 1 illustrates the conceptual description of the
networked energy storage systems model. In this network, each ESS-WH represents a
hub that is responsible for supplying the energy demands of a cluster of facilities such
as residential, commercial, and industrial buildings, as well as the critical infrastructures
(i.e., hospitals, police stations, call centers, schools, etc.). Transportation is also integrated
into this network. It is worth mentioning here that the transportation sector is electrified
(e-Mobility) and utilized by electric vehicles (EVs), e-buses, e-trucks, and e-rails. When
discussing the energy sources of the ESS-WHs, other than the power grid, renewable energy
sources (RESs) could be the dominant energy suppliers to the MoBESSs through stationed
chargers at the ESS-WHs. The MoBESSs are then shipped by large electric trucks to the
targeted destinations including demand facilities and other ESS-WHs.
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Figure 1. A conceptual description of the networked energy storage systems model. ESS-WHs
house a number of MoBESSs. Each ESS-WH provides a cluster of services and is connected to other
ESS-WHs through the road network (dashed lines). Electric trucks ship MoBESSs from an ESS-WH
to its demand locations or the neighboring ESS-WHs. The network of ESS-WHs thus becomes an
off-grid power system, the resiliency of which is the subject of this study.

2.2. Simulation Framework

In the ESS-WH network, a load-based failure occurs when the loads of some nodes
(ESS-WHs) exceed their maximum loads (capacity). The failure of these nodes might trigger
a cascading overload failure, which in turn could cause the entire system to collapse. In
this paper, such initial failure of an ESS-WH (called attack) can be attributed to an overload
in energy demand or a shortage in the RES supply to the ESS-WH. In such a scenario, the
energy demand of a failed ESS-WH will be fully or partially covered by the neighboring
ESS-WHs via transportation by electric trucks based on the network healing model until the
normal operation of the failed ESS-WHs is maximally restored. Under many circumstances,
the failure could cascade as a result of this mechanism, i.e., more ESS-WHs will turn to
failure. Figure 2 shows the components of the simulation framework to study the load-
based failure and healing in the ESS-WH network. Table 1 provides the explanation of
the symbols used in the simulation framework. And Table 2 lists the inputs, outputs, and
parameters of each of the 6 modules in Figure 2.
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Figure 2. Modules involved in the simulation of the ESS-WH network load-based cascading failure
and the healing process.

Table 1. Nomenclature.

Symbol Explanation

G graph network
N total number of nodes
Labels labels of all nodes
Loads loads of all nodes
a tolerance factor
C capacities of all nodes
GO graph object where labels, Loads, and C are fields in it
tmax maximum simulation time
Mde mode of attack
attack number of initially attacked nodes
D disturbance of additional load
G_dmg damaged graph network
M number of inactive nodes
Nrn nodes that need to be removed
Nld loads that need to be redistributed
LC load-to-capacity ratio
Nodes_P prioritized nodes
P portion of the load of each active neighboring node
RP recovery potential
α certainty level
T triggering level
G_rec recovered graph network
iv inactive nodes
b active neighboring nodes of iv
bl loads of active neighboring nodes
l mean (P ∗ bl)
ratio ratio of the active nodes to the total number of nodes
ESS-WHs energy storage systems warehouses
MoBESSs mobile battery energy storage systems
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Table 2. Module description.

Module Input Data Model Parameter Output To

1 G Labels, Load, a, C 2, 3, 4
2 GO, tmax Mde, attack, D 3

3 G_dmg, M, Nrn, Ndl,
tmax

NA 4

4 G_dmg, Nodes_P,
tmax

LC, P, RP, α 3, 5

5 1, 2, 3, 4 T, tmax NA
6 M, N ratio NA

The ESS-WH network under study here is a form of off-grid electrification infrastruc-
ture, which is an alternative to the electric power grids in certain regions. The operation of
the network of off-grid ESS-WHs does not rely on the power grid; the dynamical processes
simulated in this work do not include those in conventional power systems. The timescale
of network failure and recovery are in the order of hours, which is typical in transportation
systems (the system operation is based on shipment of MoBESSs). We use discrete-time
simulations to model the processes in the network, each time-step representing an hour.
However, the length of each time-step can be varied to fit the timescale in different systems.

The simulation starts by assigning all the network’s nodes with random loads values
from a uniform distribution. It is assumed that the capacity of each node is proportional to
its initially load. We then perform discrete-time simulation in which the cascading failure
(CF) and the self-healing (SH) processes run concurrently. When the maximum time step is
reached, the simulation will terminate. At the initial time step, a disturbance of additional
load is added to selected nodes of highest degrees. A node fails when its new load is larger
than its capacity. The load of the failing node will be equally redistributed among its active
neighboring nodes and added to their loads as demonstrated in Figure 3a. However, in
our model, we assume that the links of the inactive node i are not removed. We just turn
it off when it initially failed or when its load exceeds its capacity. At the same time step,
our model let the SH algorithm start a two-phase recovery process, as shown in Figure 3b.
The first phase, or, as we define it, SH-decision, starts by scanning the active neighbors
of the inactive nodes. Then, it calculates the load-to-capacity ratio LC, or the capacity
usage of each active neighbor. Our main goal is to decide which nodes to save first by
finding those nodes with high-capacity usages that are about to fail in the next time step.
By ranking them in a descending order, the CF will be mitigated and suppressed. To the
best of our knowledge, we are the first who propose and design such a mechanism for
recovering any damaged loaded network. Precisely, the mechanism both mitigates the CF
and turns the inactive nodes back on again. The second phase of the recovery process is
called SH-implementation, where we take into our consideration the recovery potentials
(RP) constraints. Apparently, the higher the RP an organization has for recovering the
network, the less the CF effect and the higher the number of reactivated nodes. In particular,
the implementation of (SH) is developed by taking a portion p of the load of each active
neighboring nodes, finding the mean l, and then subtracting it from the load of each of
them. After that, this quantity will be added to the corresponding inactive node. Figure 3c
represents the main function where we run both CF and SH concurrently.
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There is another type of failure in the ESS-WH network (out of the scope of this
work). It is caused by broken links between nodes. This can be due to the malfunctioning
of the electric trucks in maintaining a full schedule of the MoBESS shipments back and
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forth between the ESS-WHs and the demand destinations. In this study, the electric truck
shipments of MoBESSs are assumed to be uninterrupted.

3. Results and Discussions
3.1. Road Network

A Minnesota road network is studied in this paper [32]. As shown in Figure 4, the
network consists of 2640 nodes and 3302 links. A node represents a road intersection or
endpoint, and a link represents a road connecting these nodes. Since the proposed ESS-WH
network has seen no actual implementation so far, to demonstrate this early concept, we
need to base the studies on a network. We use the available data of this road network
in which the nodes indicate the locations of individual ESS-WHs and the links mark the
transportation routes among the ESS-WHs. A road network is adopted as the skeleton
of the ESS-WH network mainly because the shipments of MoBESSs are road-based (not
because it is a real system configuration). Although the ESS-WH network is hypothetical,
the design based on the road network can be considered as a reasonable initial design.
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Figure 4. The road network of the state of Minnesota was chosen as a case study in this paper. It
includes 2640 nodes representing the road intersections and 3302 links representing the roads.

3.2. System Recovery Trajectories

We define the recovery trajectory of a networked system as the plot of the number of
failed (or inactive) nodes against time (or time steps in our discrete-time simulations). In
the off-gird ESS-WH network, the initial attack that causes the failure of a node (ESS-WH)
can be due to the reduced energy supply from RESs or the increased demand within its
service area. Since, by design, the demand of a failed ESS-WH is to be taken care of by its
neighboring active nodes, under certain conditions, the failure could cascade and propagate
across the network. Therefore, a self-healing mechanism needs to be in place to prevent
the collapse of the entire system. Once the healing mechanism kicks in at triggering time,
depending on other process parameters (α—the success probability of restoring a failed
node, P—the portion of the loads of the active neighboring nodes that will be carried by
the newly recovered node, and RP—the ‘budget’ of recovery representing the maximum
number of nodes that can be recovered in one self-healing step, normalized by the total
number of nodes in the network), the ESS-WH network may track different recovery
trajectories.

Figure 5 shows the recovery trajectories when a various number of the road network’s
nodes are subject to initial attacks. The trend here is as expected, without self-healing
kicking in (see the initial segments of each curve); the greater number of nodes we initially
attack, the more severe the cascading failure would be. An interesting, counterintuitive
result can be observed here: all the six curves will almost merge or ripple around a specific
value at the same time step. In other words, it will take our model the same time to recover
the network in the six different attack scenarios. Here, we set α = 1, P = 0.01, T = 0.05,
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RP = 0.8. Next, we explore the parameter dependence of the recovery trajectories to better
understand the system behavior.
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With some additional simulations conducted, we observe the effect of different values
of P on the recovery trajectories. Figure 6 shows that when P is as small as 0.01, the model
can recover 98% of the inactive nodes. When P = 0.02, the recovery is approximately
92%. In the ESS-WH network, when an ESS-WH fails (turns inactive) and then is selected
for reactivation (restoration), it needs to support the network operation by covering a
certain portion of demands from its neighboring active nodes, especially those with close-
to-capacity demands. It is not difficult to see that when the portion is high, it will overload
the restored ESS-WH again and have a negative impact on the overall healing process. As
one can see in Figure 6, increasing P does not necessarily make the recovery more effective;
in fact, in this case, it has the opposite effect. For comparison, when the healing mechanism
is not implemented (or P = 0), the CF will be fully developed. The implication is that
somewhere between 0 and 0.01, in principle, one can find an optimal P value that can
accomplish maximum node recovery.
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To show the effect of the recovery potential (RP) on the recovery trajectories, more
simulations are run, and the results are presented in Figure 7. Here, other parameters are
kept fixed as α = 1, T = 0.05, P = 0.01, and number of initial attack nodes is eight. Five
different levels of recovery potentials are selected: 5%, 10%, 15%, 20%, and 80%. It can
be seen that when α is set to be one, an unexpected result occurs, which is that it is not
necessarily true that the higher the RP, the faster the recovery. The case with RP = 5%
takes the shortest time to achieve 95% node recovery. However, in this case, the number of
failed nodes in the process almost reaches 1400, which is significantly higher than other
cases. Another expected result in Figure 7 is that RP has an upper limit, beyond which
any further increase in it cannot improve the performance (see the overlapped curves for
the two cases, RP = 0.2 and RP = 0.8). Practically, this indicates that too-high recovery
potentials would be wasteful. In the ESS-WH network, the reactivation of failed ESS-WHs
could be achieved through acquiring additional energy sources (e.g., buying electricity
from the grid) at certain expenses. RP can be viewed as the budget restriction of node
healing. Therefore, the exploration of the effect of RP on the system trajectory can provide
insight into the budget planning of the ESS-WH network recovery.
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Figure 7. The number of inactive nodes as a function of time under load-based failures with different
recovery potentials. In all cases, α = 1, T = 0.05, P = 0.01, number of initial attack nodes = 8.

To investigate the effect of recovery potentials RP further, three more simulations (for
α = 0.2, α = 0.5, α = 0.8) are run and the representative results are presented in Figure 8.
For each of the five scenarios in Figure 8a–c, we run 20 iterations, find the average, and
then plot the recovery trajectories and show the precision of our simulations by using error
bars. Unlike the result shown in Figure 7, with the increase in recovery potentials in the
system under the load-failure mechanism, the time to fully recover the system shortens.
Another amazing attribute of the proposed model is that the effect of the CF will be less
and less while RP increases (see the maximum values of the curves in Figure 8a–c). One
can expect that when the certainty α of the healing mechanism is increased, the recovering
time shortens; however, it does not necessarily reduce the maximum number of inactive
nodes. Lastly, similar to the case of α = 1 shown in Figure 7, the results in Figure 8a,b show
that RP has an upper limit, beyond which any further increase in it cannot improve the
recovery performance.
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Figure 8. The number of inactive nodes as a function of time under load-based failures with different
recovery potentials for (a) α = 0.2, (b) α = 0.5, (c) α = 0.8.

3.3. System Resilience Metrics

To quantitatively assess the resiliency of the networked system, this work uses two
metrics called recovery level at time 50, A50, and 90% recovery time, T90. A50 is the ratio of
the number of recovered nodes to the total number of nodes at time step 50. T90 is the time
when 90% of the nodes in the original network are active after healing. If the number of
inactive nodes at time 90 forms more than 5% of the system’s nodes, T90 will be infinity,
which indicates that the system will never be able to recover to this level. The results of A50
and T90 for different certainty levels and recovery potential are presented in Figure 9 with
P kept fixed at a value of 0.01. For all the cases in Figure 9a, the dependence of A50 on RP is
consistent. As the RP values increase, the recovery levels at time 50 also rise; however, RP
has an upper limit, beyond which any further increase in it cannot improve the recovery
performance. It can also be observed that the recovery levels increase when α increases;
however, there is an anomaly at α = 1. At this specific value, the corresponding recovery
level is approximate to the level of α = 0.2. In Figure 9b, the general trend is that higher RP
corresponds to lower T90. Additionally, it can be observed that fast recoveries yield from an
increase in α. As pointed out in Figure 9a, there is an anomaly at α = 1, where the recovery
time T90 is long and almost equal to the time of the case α = 0.2.
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Figure 9. The results of (a) recovery levels at time step 50, P = 0.01, and (b) 90% recovery time,
P = 0.01, under load-based cascading failures with different certainty levels and various recovery
potentials in the Minnesota road network.
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To fully capture the resilience characteristics of the system, more simulations are run
for the case of P = 0.1 and the representative results are presented in Figure 10. Similar
to the results presented in Figure 9a, high RP values lead to high A50 recovery levels.
However, lower certainty α leads to worse recovery levels. It can be seen that the system
shows good resilience characteristics to some extent after using the proposed dynamic
healing mechanism. For instance, when α is 0.2, the system is ~85% recovered. However,
for the case of α = 1, one can observe an anomaly presented, since the A50 recovery level is
~50%. The dependence of T90 on RP is demonstrated and presented in Figure 10b with P
kept fixed at a value of 0.1. One single case with α = 1 is not visible, since the system fails
to recover 90%, even after long simulation times. Additionally, in Figure 10a,b, one can
see a lot of rippled curves, and these are considered to be artifacts. Figures 9 and 10 are
consistent with the values in Figure 6; higher P values lead to long time recoveries and low
recovery levels.
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Figure 10. The results of (a) recovery levels at time step 50, P = 0.1, (b) 90% recovery time, P = 0.1,
under load-based cascading failures with different certainty levels and various recovery potentials in
the Minnesota road network.

4. Conclusions

In this paper, a simulation framework to evaluate the resilience of networked energy
storage systems is proposed. A new dynamic healing mechanism is used to recover energy
storage systems against cascading overload failures. We explore the effect of running the
cascading failure model and the healing model concurrently. The results show that our
model mitigates the cascading failure and fully or partially recovers the network depending
on various parameters. Regardless of the number of the initially attacked nodes, the system
will restore its functionality almost at the same time. We also observe that when P increases,
the model loses the ability to fully recover the system. Additionally, when the recovery
potentials are sufficiently high, the road network undergoes recovery that leads to a state
where almost all inactive nodes are reactivated. We also find out that there is an upper
limit beyond which any further increase in it cannot improve the performance. Another
parameter α plays a crucial role in the healing mechanism. When it is increased, the
recovering time shortens, but it does not necessarily reduce the maximum number of
inactive nodes. Lastly, we evaluate the resilience of the network by using two metrics, A50
and T90. We investigate the dependence of both resiliency metrics on α, P, and RP. The
simulations show that as the RP values increase, the recovery levels at time 50 also rise
and the T90 values decrease. As for the increase in α, the recovery levels A50 increase and
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T90 values decrease; however, there is an anomaly at α = 1, where higher P values lead to
long time recoveries (T90) and low recovery levels (A50). This works lays the foundation for
subsequent studies on optimization of model parameters to enhance the system’s resilience.
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