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Abstract: In this paper, by analyzing the heat and mass transfer characteristics of the dehumidification
runner microelement channel of a drinking water emergency extraction vehicle, a mathematical
model of heat and mass transfer in the water intake process is established, and the influence of
the runner parameters (adsorbent thickness, regeneration angle, rotation speed) and air parameters
(treatment air temperature/humidity, regenerated air temperature/humidity) on the water intake
characteristics is mainly studied. Water extraction experiments are carried out in arid desert areas
and humid island environments. The test results showed that compared with the calculated data,
the deviations in the temperature and humidity of the treated air outlet were 3.03% and 4.14%,
respectively, and the deviation value of the water intake was 8.23% when the moisture content of the
inlet air was 2 g/kg.

Keywords: drinking water emergency extraction vehicle; water intake characteristics; mathematical
model; verification test

1. Introduction

Water is one of the most precious resources in the world, and the shortage of fresh
water is a problem worldwide. However, air water intake, which is not restricted by
region, has the advantages of strong adaptability and less restrictions with regard to the
environment, and it is one of the most effective means to solve the issue of the shortage
of fresh water. Biswas et al., analyzed the worldwide water crisis [1], and Salehi et al.,
have suggested that there is a maximum water reserve in the air [2]. Tu et al., summarized
the working principles, performance and test setup or simulation methods of various air
extraction technologies, comparing and evaluating these [3]. The most commonly used
methods for extracting water from air include cooling and condensation extraction, mist
extraction and adsorption extraction. Patel et al., developed a condensing water extraction
device and conducted experimental studies under seven different climatic conditions [4].
Kandeal et al., conducted a comparative analysis of the factors affecting air water extrac-
tion for cooling condensation and adsorption methods [5]. Shafeian et al., summarized
and discussed different water extraction technologies and looked forward to the devel-
opment of air water extraction technologies [6]. Raveesh summarized and compared the
performances of various water extraction technologies in terms of important performance
parameters, constraints, etc. [7]. In recent years, there has been much research on the
adsorption mechanism, the improvement of adsorption performance, the relationship
between adsorption capacity and the air state, and developing a matching adsorbent and
condensation system. Toribio et al., elucidated the adsorption mechanism of hydrophilic
polymer and its adsorption performance [8]. Seo et al., developed a layered porous metal
adsorption material with a good dehumidification performance [9]. Tao et al., analyzed the
adsorption/desorption performance of a molecular sieve desiccant using a comparative
method [10]. Hao et al., conducted a study on the matching of a dehumidification rotor
and a condensing system [11]. At the same time, Zhang et al., focused on the matching
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characteristics of heat transfer processes and coupled heat and mass transfer processes to
optimize system performance [12]. Ge et al., studied the heat and mass transfer mechanism
and a modeling method [13]. Zhang et al., analyzed temperature and humidity distribution
inside a dehumidification runner and the heat and mass transfer coupling relationship [14].
Hao and Eslami analyzed the relationship between dehumidification capacity and energy
consumption under different influencing factors [15,16]. In order to improve the efficiency
of water intake, research has recently been carried out in the areas of solar air intake and
semiconductor refrigeration water intake. Chen et al., conducted an analytical summary
of solar-powered adsorption/desorption atmospheric water collection technologies [17].
Kim et al., developed a device to implement air extraction using low-grade heat from
natural sunlight [18]. Abdelgaied et al., conducted an experimental study to improve the
performance of adsorption air-conditioning systems using solar reheating technology [19].
Ge et al., conducted a comparative analysis of energy consumption in dehumidification
systems with solar energy alone and with a mixture of conventional and solar energy
sources [20]. Pang et al., conducted a theoretical analysis of the optimum state for obtaining
high cooling capacity with low power from semiconductors and deduced a theoretical
formula for the optimum current [21]. Wei et al., conducted a comprehensive analysis of
energy savings in solar semiconductor condensing wall water extraction systems [22].

A drinking water emergency intake water-making vehicle can obtain drinking water
in various complicated situations with air water and surface water purification. Possible
circumstances include: (1) in a desert or other area in which there is no surface water area,
runner water can be used; (2) air condensation can be used for water intake in islands
and coastal areas with high moisture content; (3) reverse osmosis can be used for water
purification in areas with surface water.

The existing research focuses on adsorption materials, channel shapes, hygroscopic
properties and other aspects of laboratory simulation, but the various parameters of system-
atic study and physical verification are relatively small. In this paper, a theoretical analysis
of the changes in the state of the adsorbent temperature, adsorption rate, air temperature
and humidity within the micro-element channel of a dehumidification runner is carried out.
On this basis, the influence of the runner’s parameters and the air parameters with regard
to the water intake characteristics of the equipment is addressed, the processes of heat
and mass transfer are analyzed, and a mathematical model is constructed. The parameters
are simulated and optimized, and their accuracy is verified by experiments. In contrast
to other existing studies, this paper presents a systematic analysis of the key parameters
affecting the water extraction characteristics of the rotor and the constraints between such
parameters, providing theoretical support for the study of the runner water intake device
to implement accurate control of the various parameters, in order to improve the water
intake rate and to reduce energy consumption.

2. Materials and Methods

The emergency drinking water production vehicle adopts a rotary wheel system of
air water intake, which is composed of a runner, a fan, an evaporator, a regeneration
heater, etc. The system includes two parts, the first of which is the treatment process.
When natural air enters the treatment area, the air water molecules are adsorbed by the
hygroscopic agent inside the runner, and after the runner has adsorbed the water molecules
and become saturated, it turns to the regeneration area with the runner and enters the
regeneration process. In the regeneration process, regeneration air is heated by the heater
to a predetermined temperature and reversed through the regeneration area of the runner.
In the high-temperature state of the water molecules being adsorbed by the runner, they
are desorbed and distributed to regeneration air, and the regeneration air creates a larger
moisture content in saturated wet air. The saturated wet air enters the condensing air duct
of the water extraction system through the regeneration fan. As the water in the adsorbent is
desorbed and taken away, the moisture absorption capacity of the adsorbent is restored. At
the same time, the runner rotates slowly at a low speed of 8~15 r/h (which can be regarded
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as an inertial system), thus ensuring the continuity of moisture absorption/desorption. The
desorbed saturated moist air enters the condensation channel to cool and completes the air
intake process, as shown in Figure 1.
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Figure 1. Schematic diagram of rotary air intake system.

For the adsorption characteristics of the quantitative analysis runner, a Lagrange
cylindrical coordinate system is established for an air microchannel in the runner, as shown
in Figure 2. In a cycle of the runner’s rotation, through the analysis of a micro-channel, the
process of change is described for the entire water intake runner’s working state.
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Figure 2. Schematic diagram of the mathematical model of the rotor.

The hygroscopic/desorption performance of the runner is mainly affected by the
parameters of the runner and the state of the air, and the heat and mass transfer processes
of the runner are coupled with each other. According to the actual shape of the runner’s
air passage, a mathematical model of heat and mass transfer is established by setting
reasonable boundary conditions, and the model is verified by test data. Analyzing the
runner’s performance through numerical calculation is an effective method to improve the
hygroscopicity and desorption of the runner.

Considering the heat and mass transfer area of water molecules in the channel and the
difficulty of runner processing, the cross section of the micro channel is in the shape of sine
wave, as shown in Figure 3.

Processes 2023, 11, x FOR PEER REVIEW 3 of 17 
 

 

air duct of the water extraction system through the regeneration fan. As the water in the 

adsorbent is desorbed and taken away, the moisture absorption capacity of the adsorbent 

is restored. At the same time, the runner rotates slowly at a low speed of 8~15 r/h (which 

can be regarded as an inertial system), thus ensuring the continuity of moisture absorp-

tion/desorption. The desorbed saturated moist air enters the condensation channel to cool 

and completes the air intake process, as shown in Figure 1. 

 

Figure 1. Schematic diagram of rotary air intake system. 

For the adsorption characteristics of the quantitative analysis runner, a Lagrange cy-

lindrical coordinate system is established for an air microchannel in the runner, as shown 

in Figure 2. In a cycle of the runner’s rotation, through the analysis of a micro-channel, the 

process of change is described for the entire water intake runner’s working state. 

 

Figure 2. Schematic diagram of the mathematical model of the rotor. 

The hygroscopic/desorption performance of the runner is mainly affected by the pa-

rameters of the runner and the state of the air, and the heat and mass transfer processes 

of the runner are coupled with each other. According to the actual shape of the runner’s 

air passage, a mathematical model of heat and mass transfer is established by setting rea-

sonable boundary conditions, and the model is verified by test data. Analyzing the run-

ner’s performance through numerical calculation is an effective method to improve the 

hygroscopicity and desorption of the runner. 

Considering the heat and mass transfer area of water molecules in the channel and 

the difficulty of runner processing, the cross section of the micro channel is in the shape 

of sine wave, as shown in Figure 3. 

 

Figure 3. Corrugated air passage. 
Figure 3. Corrugated air passage.

Based on the small cross-sectional size of the microelement channel and the thickness
of the adsorbent coating, the structure and material are consistent and evenly distributed in
the single microelement DZ, as shown in Figure 4. The lumped parameter method can be
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used to analyze the heat and mass transfer process of water molecules in the microchannel,
and a one-dimensional heat and mass transfer mathematical model of the microchannel
can be established.
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Under actual working conditions, the adsorption capacity of the rotor substrate for
water is negligible compared to that of the adsorbent, and the central wall of the rotor
substrate is nearly adiabatic. For the purposes of analysis, the physical properties of dry
air and water vapor are assumed to be constant, and molecular diffusion and thermal
conductivity in the axial direction as well as the influence of the adsorbent moisture
desorption process on the thickness of the heat and mass transfer boundary layer are
ignored [13].

Based on mass and conservation of energy, the following transfer and conservation
equations can be obtained.

(1) The mass conservation equation between air and adsorbent is as follows:

∂Y
∂t

+ ν
∂Y
∂z

+
ρld

2Aρα

∂W
∂t

= 0 (1)

where Y is the moisture content of air, W is the adsorption amount of desiccant, ρld is the desiccant
mass per unit length, ρα is the dry air density, and W is the channel cross-sectional area.

(2) The mass transfer equation of adsorbent side is expressed as:

∂W
∂t

+
2Kyl
ρld

(Yw −Y) = 0 (2)

where Ky is the mass transfer coefficient, and l is the channel cross-sectional circumference.

(3) The energy conservation equation between the air and the adsorbent is:

∂θ

∂t
+ ν

∂θ

∂z
+

ρld

(
cpd + Wcpl

)
+ ρlmcpm

2Aρα

(
cpa + Ycpv

) ∂θ∗

∂t
=

KyQl
Aρα

(
cpa + Ycpv

) (Y−Yw) (3)

where θ is the cpm air temperature, θ∗ denotes the desiccant temperature, cpd is the constant
pressure specific heat of the molecular sieve, cpl is the constant pressure specific heat of
saturated water, Ycpm is the constant pressure specific heat of dry air, cpv is the constant
pressure specific heat of dry saturated water vapor, ρlm is the line mass of the substrate in a
single channel, and W is the amount of desiccant adsorption.

(4) The heat transfer equation of adsorbent side can be expressed as:

∂θ∗

∂t
+ w1(θ

∗ − θ) + w2(Yw −Y) + w3(Yw −Y)(θ − θ∗) = 0 (4)

where w1 = 2αl
ρld(cpd+Wcpl)+ρlmcpm

, w2 =
2KyQl

ρld(cpd+Wcpl)+ρlmcpm
, w3 =

2Kycpv l
ρld(cpd+Wcpl)+ρlmcpm

, and

α is the coefficient of convective heat transfer.
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Equations (1)–(4) are written as implicit upwind difference equations with backward
differences for both temporal and spatial derivatives, which are then solved by MATLAB.
The initial and boundary conditions are set as follows.

Initial conditions:
θ(z, 0) = θ0

Y(z, 0) = Y0

θ∗(z, 0) = θ∗0

W(z, 0) = W0

Yw(z, 0) = Yw0

Boundary conditions:

θ(0, t) =
{

θreg, For the regeneration process
θads, For the dehumidi f ication process

The heat of adsorption Q and the moisture content of the wet air on the desiccant surface
YW(θ*,W) involved in the above equation are determined by the following relationship.

The heat of adsorption Q equation is:

Q = Lv[1.0 + 0.2843 exp(−10.28W)]

where Lv is the latent heat of evaporation of saturated water (J·kg−1).
The saturation sorption equation is expressed as:

ϕw = 0.0078− 0.05759W + 24.16554W2 − 124.78W3 + 204.226W4

Anthony’s saturated water vapor pressure equation is:

Pws = exp
(

23.196− 3816.44
θ∗ − 46.13

)
The conversion relationship between the moisture content of wet air and the relative

humidity is:

Yw =
0.622pw

patm − pw
=

0.622ϕw

patm/pws − ϕw

In addition, the heat and mass transfer coefficients for the treatment and regeneration
processes are determined by the following three equations, respectively:

Nuz = Shz

α =
Nu2λl

4A

Ky = ρα
ShzDl

4A
In this study, a highly efficient composite adsorbent material with high stability

and outstanding moisture absorption/desorption performance, that is, a 13X molecular
sieve (Na2O·Al2O3·2.45SiO2·6.0H2O), was chosen as the adsorbent material. The initial
parameters used for the calculation of the heat and mass transfer mathematical model of
the rotor are shown in Table 1.



Processes 2023, 11, 555 6 of 17

Table 1. Initial parameters for the calculation of the mathematical model of heat and mass transfer of
the rotor.

Name Numerical Value

Regeneration air inlet temperature
θreg (◦C) 130

Treated air inlet temperature
θads (◦C) 25

Treated air inlet humidity
øads (%) 29.14

Reclaimed air flow rate
Vreg (m·s−1) 1.5

Treatment air flow rate
Vreg (m·s−1) 2.0

Specific constant pressure heat capacity of molecular sieve
cpd (J·kg−1·K−1) 0.92 × 103

Specific heat at constant pressure of the base material
cpm (J·kg−1·K−1) 0.9 × 103

Line mass ρId of desiccant on in a single channel
ρId (kg ·m−1) 5 × 10−3

Line mass ρIm (kg·m−1) of the base material in a single channel
ρIm (kg·m−1) 3 × 10−3

Channel half-height
h (m) 1.5 × 10−3

Channel half-width
b (m) 1.5 × 10−3

Aspect ratio
γ = 2h/b 2

Nusser number
Nuz

2.45

Sherwood number
Shz

2.45

Runner thickness
δ (m) 0.2

Rotor radius
r (m) 0.6

Rotational speed
n (r·min−1) 0.25

Thermal conductivity of dry air at 100 ◦C
λ (w·m−1·K−1) 3.21 × 10−2

Constant pressure specific heat of dry air at 100 ◦C
cpm (J·kg−1·K−1) 1.01 × 103

Constant-pressure specific heat of dry saturated water vapor at
100 ◦C

cpv (J·kg−1·K−1)
2.03 × 103

Constant pressure specific heat of saturated water at 60 ◦C
cpl (J·kg−1·K−1) 4.18 × 103

Latent heat of evaporation of saturated water at 60 ◦C
Lv (J·kg−1) 2.36 × 106

3. Simulation Analysis of the Parameters Influencing the Water Extraction
Characteristics of Emergency Drinking Water Extraction Vehicles
3.1. Analysis of Rotor Moisture Absorption/Desorption Performance Parameters

The working state of the water extraction rotor is described by analyzing the change
in air temperature, humidity and sorbent temperature in one micro-element channel, and
the start of the regeneration process is taken as the starting point of the model calculation.
The curves for 20 s, 40 s and 60 s are within the regeneration zone; the curves for 80 s, 120 s,
180 s and 240 s are within the treatment zone.

As shown in Figure 5, at any point in the regeneration zone, the air temperature tends
to decrease along the thickness of the rotor, and the air temperature increases over time at
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any point in the micro-element channel; the air temperature in the treatment zone changes
in the opposite direction.
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As shown in Figure 6, the adsorbent temperature tends to increase along the thickness
of the rotor in the treatment zone, and the air temperature decreases with time at any point
in the micro-element channel; the opposite trend is observed in the regeneration zone.
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As shown in Figure 7, the humidity of the regenerated air increases at the beginning
of the regeneration zone (20 s, for example), reaches a certain maximum value and then
gradually decreases, and the maximum value of the regenerated air humidity gradually
moves from the inlet to the outlet over time, finally reaching a maximum at the outlet,
rather than reaching a maximum at the outlet at any one time.

3.2. Analysis of the Influence of Runner Structure Parameters on Water Intake Performance
3.2.1. Thickness

As shown in Figure 9, with the increase in the runner’s thickness, the average value
of air humidity at the regeneration side outlet increases, and the average value of air
humidity at the treatment side outlet decreases. However, when the thickness increases to a
certain extent, the runner’s dehumidification effect is not significantly improved, but it will
increase the runner’s mass and energy consumption. For the convenience of calculation,
the thickness of the runner is 20 cm.
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As shown in Figure 8, the water adsorption rate of the adsorbent at any point in the
regeneration zone gradually increases from entry to exit, and the adsorption rate of the
adsorbent at any point in the micro-element channel gradually decreases with time; the
rule of variation is the opposite in the treatment zone.
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3.2.2. Speed

The adsorption performance of the runners of different thicknesses at different speeds
(regeneration angle of 90◦) is reflected by the simulation solution, as shown in Figure 10. It
can be seen from the graph that the runner with different thicknesses corresponds to an
optimal speed. When the wheel thickness is in the range of 0.15~0.30 m, the optimal speed
of 15 r/h is reached.
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3.2.3. Regeneration Angle

The regeneration angle of the runner directly affects the hygroscopic/desorption time
of the channel. As can be seen from Figure 11, for a certain thickness of the runner, there
are the same optimal rotational speed values under different regenerative angles, that is,
the optimal rotational speed of the runner is independent of the regenerative angle and
only depends on its thickness. For a 20 cm-thick wheel, the rotating speed of 15 r/h is a
cut-off point, so for the 20 cm-thick wheel, the fan angle of the regeneration zone is chosen
to be 90◦, leaving enough space for the treatment zone.
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3.3. Analysis of Influence of Air Parameters on Water Intake Characteristics

The heat and mass transfer process of a rotor is simultaneous and mutually coupled.
For a given basic size and parameter of the rotor, the moisture absorption/desorption
capacity is in turn related to numerous factors, such as the air temperature and moisture
content at the inlet of the regeneration zone, the air temperature and moisture content
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at the inlet of the treatment zone and the regeneration and treatment air velocity. An
enthalpy-moisture analysis of the air inlet and outlet of the rotor therefore allows for a
quantitative description of this coupled thermal mass transfer process and an analysis of
the influence of the air inlet and outlet parameters on the dehumidification performance of
the rotor.

The state of the air at the inlet of the rotor can be described by an enthalpy-moisture
diagram (Figure 12). In the diagram, p1, p2, rl and r2 indicate the air state points at the
inlet and outlet of the treatment and regeneration zones, respectively. p2* is the intersection
of the enthalpy line of the air inlet to the treatment zone and the line of equal relative
humidity of the air inlet to the regeneration zone, and r2* is the intersection of the enthalpy
line of the air inlet to the regeneration zone and the line of equal relative humidity of the
air inlet to the treatment zone. If the adsorbent in the rotor is collectively treated, and it is
assumed that its moisture absorption is only related to the relative humidity of the treated
air, then the iso-relative humidity line can be considered as such, and therefore, the state
points p2 and r2 of the air exiting the treatment and regeneration zones should fall into the
area enclosed by p1→p2*→r1→r2*→p1.
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The air states at the inlet and outlet should satisfy the following energy and mass
conservation relationships:

Yp1 −Yp2

Yr2 −Yr1
=

θrVr

θpVp
=

hp2 − hp1

hr1 − hr2

where θp and θr are the angle of the treatment zone and the angle of the regeneration zone,
respectively, and Vp and Vr are the head-on wind speeds in the treatment zone and the
regeneration zone, respectively. From the above equation, it can be seen that p1p2 and
r1r2 should be parallel, and that the line segments p1 p2 and r1r2 simultaneously satisfy the
following equation:

p1 p2

r1r2
=

θrVr

θpVp

According to the above equation, as long as three of the state points are known, then
the other one can be found on the enthalpy-wet diagram. For a high-performance rotor,
r1r2 should be as close as possible to r1r2*, and p1p2 should be as close as possible to p1p2*,
which is the overall goal and direction of the rotor’s optimization. For this purpose, the
dehumidification coefficient of performance, DCOP, is introduced:

DCOP =

•
mpL(Yp1 −Yp2)
•

mr(hr1 − hr2)
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where
•

mp and
•

mr are the flow rates of the air in the treatment and regeneration zones,
respectively (kg/s); L is the latent heat of evaporation of water vapor (J/kg); Yp1 and Yp2
are the moisture content of the air in and out of the treatment zone, respectively (kg/kg);
and hr1 and hr2 are the specific enthalpy of the air in and out of the regeneration zone,
respectively (J/kg). The dehumidification coefficient of performance, DCOP, provides a
comprehensive picture of the dehumidification performance and energy efficiency of the
rotor by describing the variation in the air parameters at the inlet and outlet of the rotor.
In fact, as shown in Figures 3–15, a higher DCOP means that r1r2 is closer to r1r2*, and
p1p2 is also closer to p1p2*. For the ideal equal enthalpy dehumidification process, the
DCOP tends to infinity; for the actual dehumidification process, 0 < DCOP < ∞. Under
given conditions, when the dehumidification quantity is certain, the larger the DCOP, the
higher the energy utilization of the rotor and the better the dehumidification performance
of the rotor. Therefore, when evaluating the dehumidification performance of a rotor, both
the dehumidification capacity and the DCOP should be taken into account, and a high-
performance dehumidification rotor should have both a high dehumidification capacity
and a high DCOP.
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3.3.1. Handle Air Inlet Temperature

As shown in Figure 13, when the moisture content of the inlet air of the treatment
area remains constant, with the increase in the inlet temperature of the treatment air, the
moisture absorption D and DCOP of the runner decrease at the same time. The calculations
show that the progressive increase in the inlet air temperature of the treatment zone reduces
the adsorption capacity of the adsorbent, resulting in a reduction in the amount of moisture
absorbed by the rotor; the DCOP also decreases with the increase in the inlet air temperature
of the treatment zone, and the energy utilization of the rotor decreases. Under standard
ambient conditions, the dehumidification performance of the rotor deteriorates when the
inlet temperature of the treated air increases.

3.3.2. The Moisture Content of the Air Inlet

According to Figure 14, when other parameters are kept constant, with the increase
in the moisture content of the treated air inlet, the moisture absorption capacity D of the
runner increases, and the higher the moisture content of the treated air inlet, the more
obvious the improvement of the moisture absorption performance of the runner. The
degression value of the hygroscopicity coefficient DCOP is less than 0.06, and its influence
can be neglected. Under given conditions, when the dehumidification quantity is certain,
the larger the DCOP, the higher the energy utilization of the rotor and the better the
dehumidification performance of the rotor. Under high humidity conditions, the runner
has a higher dehumidification capacity and DCOP value, and the performance is expected
to be optimal and more economical to operate.

3.3.3. Inlet Temperature of Regenerated Air

When other parameters remain unchanged, for the change in the range of the moisture
absorption runner for simulation calculations, the results shown in Figure 15. It can be
seen from the graph that the moisture absorption of the rotor increases with the increase
in regeneration temperature when the inlet temperature of regeneration air varies from
60 ◦C to 180 ◦C, but the relationship between the DCOP and the regeneration temperature
is nonlinear, i.e., there is an optimized regeneration temperature that pushes the DCOP to
the maximum. In other words, a high dehumidification capacity can be achieved simply by
increasing the regeneration temperature, but when it is higher than a certain optimized
value, the gains will not be worth the losses in terms of energy utilization. Therefore,
the regeneration temperature should not be increased blindly; otherwise, the system will
consume too much energy. There is an optimal range of 110~140 ◦C for the regenerative air
temperature of the rotor in this project. The optimum regeneration temperature range for
this paper was calculated to be 130 ◦C.
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3.3.4. Moisture Content of Regenerated Air Inlet

As can be seen from Figure 16, when the inlet moisture content of the regenerated air
increases from 14 g/kg dry air to 23 g/kg dry air, the difference in the moisture absorption
of the runner is only 0.27 g/kg dry air, and the desiccant performance coefficient DCOP
of the runner only decreases by 0.53. It can be concluded that although the increase in the
moisture content of the regenerated air inlet will reduce the wettability of the runner, the
impact is small, and the inlet can be directly heated with natural air for regenerated air.
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4. Test and Verification of Water Intake Characteristics of Emergency Drinking Water
Extraction Vehicle

According to the results of the simulation analysis, the basic parameters of the emer-
gency drinking water vehicle are determined, as shown in Table 2.

Table 2. Basic parameters of drinking water emergency extraction vehicle.

Name (Unit) Numerical Value

Runner diameter (m) 1.2
Rotation speed (r/h) 15

Adsorbent thickness (cm) 20
Regenerative angle (◦) 90

Regeneration temperature (◦C) 130
Processing air volume (m3/h) 12,000

Renewable wind volume (m3/h) 4000

In order to verify the water intake characteristics of the wheel in different temperature
and humidity environments, the emergency potable water vehicle was tested in an island
environment with high air humidity and in a desert environment with very low air humid-
ity. Experimental data at 15 ◦C, 11% relative humidity and 2 g/m3 air moisture content
in the desert area and 25 ◦C, 97% relative humidity and 18 g/m3 air moisture content
in the island environment are analyzed in comparison with data calculated based on a
mathematical model.

4.1. Comparison of Moisture Content of Treated Air Outlet

As shown in Figure 17, the calculated and experimental value curves agree very well in
both high and dry areas, with the two curves largely overlapping with even less deviation
in the case of a high moisture content. By comparing the data, we found a maximum
deviation of 4.14% between the theoretically calculated and experimentally obtained data
for the moisture content of the treated air outlet.
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4.2. Comparison of Outlet Temperature of Treated Air

In the processing area, as the temperature of the rotor adsorbent leaving the regenera-
tion area is higher than the inlet temperature of the processing air, the heat transfer effect
and the adsorption heat released when the water vapor is adsorbed make the temperature
of the adsorbent continue to decrease and the outlet temperature of the processing air
continue to increase. The increase in the moisture content of the inlet air will accelerate the
adsorption rate, and the release of the adsorption heat causes the outlet air temperature to
increase. From the data in Figure 18, the deviation between the calculated value and the
experimental value of the outlet air temperature is 3.03%.
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4.3. Comparison of Water Intake

By comparing the adsorption amount of desiccant calculated by a simulation with the
actual water intake in the experiment, it can be seen from the data in Figure 19 that when
the inlet air moisture content is 2 g/kg, the deviation between the calculated value and the
experimental value is 8.23%.

In summary, the agreement between the theoretical calculation data and the experi-
mentally obtained data is good, indicating that the mathematical model of dehumidification
of the rotor established in this paper is correct, and the parameter optimization method
is effective.
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5. Discussion

The optimized product can achieve a maximum water intake of 15.8 Kg/h at an
average humidity of 1.3 g/Kg and 75 Kg/h at an average relative humidity of 96%. The
following conclusions can be drawn from the study of this project:

1. Increasing the thickness of the runner is beneficial to improving its hygroscopic-
ity/desorption capacity, and the thickness of the runner determines the optimal speed
and regeneration angle;

2. The temperature of regenerated air has an important effect on the desorption effi-
ciency and the DCOP, and the humidity of the regenerated air has little effect on the
wettability of the runner;

3. The moisture absorption D and DCOP of the runner are inversely proportional to the
temperature of the treated air and directly proportional to the humidity;

4. The system design and the control of rotor parameters and air parameters can effec-
tively increase water extraction.

6. Conclusions

In order to improve the efficiency of air water intake, in addition to the improvement
of the performance of the adsorbent material, subsequent research is required in the
following areas:

(1) The study of the partition ratio of the processing area and the regeneration area of
the rotor. If the ratio of the processing area is too large, the moisture adsorbed by
the absorbent cannot be fully carried away by the regeneration air. If the ratio of the
processing area is too small, the moisture adsorbed by the absorbent is not enough to
become saturated wet air, both of which reduce the utilization rate of the rotor.

(2) Regeneration heating temperature determination. If the regeneration temperature is
too high, it will lead to the increased energy consumption of the entire system; if the
regeneration temperature is too low, this will lead to desorption not being complete.
The regeneration temperature is determined by and directly related to the division of
the rotor area, the moisture absorption material selection, etc., and any change in the
regeneration temperature will need to change correspondingly.
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At the same time, the energy integration design of vehicle and water intake equipment
is also one of the important research directions to improve water intake efficiency.
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