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Abstract: Automated crack detection technologies based on deep learning have been extensively
used as one of the indicators of performance degradation of concrete structures. However, there are
numerous drawbacks of existing methods in crack segmentation due to the fine and microscopic
properties of cracks. Aiming to address this issue, a crack segmentation method is proposed. First, a
pyramidal residual network based on encoder–decoder using Omni-Dimensional Dynamic Convolu-
tion is suggested to explore the network suitable for the task of crack segmentation. Additionally,
the proposed method uses the mean intersection over union as the network evaluation index to
lessen the impact of background features on the network performance in the evaluation and adopts
a multi-loss calculation of positive and negative sample imbalance to weigh the negative impact
of sample imbalance. As a final step in performance evaluation, a dataset for concrete cracks is
developed. By using our dataset, the proposed method is validated to have an accuracy of 99.05%
and an mIoU of 87.00%. The experimental results demonstrate that the concrete crack segmentation
method is superior to the well-known networks, such as SegNet, DeeplabV3+, and Swin-unet.

Keywords: concrete crack; image segmentation; omni-dimensional dynamic convolution; pyramidal
residual network; unbalanced sample

1. Introduction

Cracks in concrete are considered as a significant flaw when inspecting civil engineer-
ing projects. From an engineering perspective, fractures affect not only the stability and
longevity of engineering constructions, but also the durability of concrete [1], which may
be caused by small or massive cracks that slowly spread and cause the final collapse or
destruction of the structure. Currently, the primary approaches to detect crack-like flaws
refer to simple instrumental measurements and visual inspection. The latter, however, is
considered as an arduous operation. Moreover, there may be significant misdetection and
omission in some regions with problems [2]. Manual crack detection is not ideal for mass
detection since it frequently encounters problems such as heavy workload, complex struc-
ture, and inconsistent evaluation standards. Compared with manual inspection, machine
vision inspection shows the features of efficiency as well as safety and reliability due to its
lack of contact with the object. Traditional machine vision methods have been extensively
used to solve industrial problems, including object inspection [3], material contour measure-
ment [4], distance measurement [5], etc. For example, multi-vision measurement methods
can be used to accurately measure the surface deformation and full-field strain values
of steel pipe concrete columns [6]. The use of exponential functional density clustering
models can perform better than the clustering and deep learning (DL) methods for indoor
object extraction tasks [7]. Despite the considerable achievements, conventional vision
technologies still require expert analysis and fine-tuning for their application, making them
inappropriate for complex problems. Due to the continuous innovation and development
of digital images, the combination of digital image processing methods and DL in the

Processes 2023, 11, 546. https://doi.org/10.3390/pr11020546 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11020546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-9003-2812
https://doi.org/10.3390/pr11020546
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11020546?type=check_update&version=1


Processes 2023, 11, 546 2 of 17

engineering structural defect detection industry is a new research direction in crack inspec-
tion technology in recent years. Then, the DL algorithms for autonomous detection are
used to identify the target defects on the surface of the engineering structure rather than
identifying them based on the artificial experience of using an unmanned aerial vehicle [8]
or a wall-climbing robot [9] carrying relevant equipment to capture a significant amount of
image data on the surface of engineering structures. In recent years, DL algorithms have
made significant strides in the field of computer vision [10]. According to recent research,
convolutional neural networks (CNN) can be utilized for tasks including classification [11],
localization [12], and segmentation [13] in crack detection tasks. For example, researchers
can augment digital image data with Generative adversarial networks (GAN) and combine
them with improved visual geometry group (VGG) networks to achieve crack classifica-
tion [14]. In terms of crack width measurement, a new crack width measurement method
based on backbone dual-scale features can improve detection automation [15]. These stud-
ies are increasingly concentrated on employing new DL methods with successful outcomes.
In certain studies on new cement repair materials, fracture segmentation algorithms based
on DL have even been employed to evaluate the material performance [16].

Grey-scale segmentation, conditional random fields, and other more conventional
methods constitute the majority of early segmentation algorithms, although it is very
challenging to describe complicated classes using only grey-level information. With the
introduction of the first semantic segmentation model based on DL, it has gained popularity
in semantic segmentation tasks, that is, FCN [17], which extends end-to-end convolutional
networks to semantic segmentation. To increase the efficiency of training detection with
minimal datasets, an image segmentation algorithm U-Net [18] for medical image segmen-
tation is proposed. The concept of encoder–decoder proposed by SegNet [19] is crucial to
modern segmentation algorithms. Two primary optimization techniques focus on using
atrous convolution and amplified convolution kernel size to successfully expand the per-
ceptual range of feature extraction. The first is to give the network a null convolution [20].
Deeplab v1 [21], Deeplab v2 [22], DeepLab v3 [23], DeepLab v3+ [24], and DenseASPP [25]
are more algorithms based on this concept. The second is to expand the convolution’s ker-
nel size to create a wider effective receptive field [26]. Additionally, other technologies [27]
make use of this concept to optimize feature extraction, and employ huge kernel pooling
layers to gather these data and record the entire image. In recent years, a self-attentive
semantic segmentation model [28] that employs a local-to-global approach is proposed
for medical image segmentation. The success of Swin transformer in the field of image
recognition shows the application potential of the transformer in vision. The main goal
of these algorithms is to give the network a wider perceptual area, so as to facilitate the
network to gather more global data. However, not all segmentation domains, such as crack
segmentation, need global data.

The existing crack segmentation technologies can be divided into two primary groups:
one is the technology of using semantic segmentation models in other domains and the other
is the technology of mixing multiple networks to create a dual network for crack detection.
For a crack dataset with a small amount of data, Carr et al. [29] proposed a structure with a
feature pyramid core and an underlying feedforward ResNet. Yang et al. [30] proposed a
pyramid and hierarchical improvement network for pavement crack detection, while Jiang
et al. [31] suggested a DL-based hybrid extended convolutional block network for crack
detection at the pixel level. Other effective segmentation technologies [32–38] likewise
mostly rely on the concepts of SegNet and U-Net concepts to complete the task. Despite
the excellent performance of these crack segmentation models, no studies show how the
parameters of these networks affect the outcomes, for example, how much local information
is collected by the network when the crack image is subjected to feature extraction, where
the Skip Connection in the coding and decoding structure is located, and how many image
channels are used in the feature transfer.

A pixel-level crack segmentation network (CCSN) is proposed as a solution to this issue
and as a means to identify a network structure appropriate for crack segmentation. The
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network uses a residual network built on a feature pyramid to realize Omni-Dimensional
Dynamic Convolution in the network’s fundamental block using a residual network built
on a feature pyramid. The loss calculation employs a mix of the dice coefficient [39] and
focal loss [40] to handle the issue of sample imbalance. The created dataset supports
the claim that CCSN performs better than networks such as SegNet, DeeplabV3+, and
Swin-unet. The performance of these networks is shown in Figure 1.
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The main contributions of this research are summarized as follows:

1) First, a CNN structure for crack segmentation is proposed by combining residual
networks and Omni-Dimensional Dynamic Convolution. Its performance under
various convolution kernels, channel numbers, connection schemes, and loss functions
is thoroughly investigated to find a relatively stable and high-quality structure.

2) Then, mIoU, mPA, and accuracy are used as the primary evaluation metrics and
various loss functions are used to target binary classification and sample imbalance.

3) Finally, a dataset for concrete cracks with distinct environments and different orienta-
tions is created and utilized for training and validation.

The remainder of this study is arranged as follows. Section 2 focuses on the work
related to the method. Section 3 describes the proposed crack segmentation method in
detail. Section 4 analyzes the performance of the method under different datasets. Finally,
Section 5 draws the conclusion of this paper.

2. Related Work
2.1. Residual Block with ODConv

In the proposed CCSN method, the idea of Skip Connections of the residual net-
work [41] hops is used for reference, and the Omni-Dimensional Dynamic Convolution
(ODConv) [42] incorporating multi-headed attention is used.
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2.1.1. Residual Network

With the increase in model layers, the problem of gradient disappearance or expan-
sion is addressed by residual networks. Traditional neural networks frequently employ
numerous convolutional layers, pooling layers, etc., especially in image processing. Since
each layer takes features from the one before it, it is more likely to have problems (e.g.,
deterioration) as the number of layers rises. To overcome various issues of the deep neural
network, the residual network adopts a Skip Connection strategy. The residual structure
can be simply written in the following form:

xl+1 = xl + F(xl , Wl) (1)

where xl is the input feature, F(xl , Wl) can be two or three convolution blocks, and xl+1 is
the output feature. Skip Connection is the direct output of layer input xl without processing
plus F(xl , Wl), i.e., the layer output contains the complete input information.

2.1.2. ODConv

ODConv introduces a multi-dimensional attention mechanism with a parallel strategy
to learn diverse attention of convolutional kernels along all four dimensions of kernel
space.

ODConv uses an Squeeze Excitation [43] style attention module but makes it have
multiple heads to compute multiple types of attention. The overall structure is shown
in Figure 2. Specifically, for input, it is first shrunk by GAP to a feature vector of length
and then FC is used with four heads to generate different types of attention values. Four
attentional dimensions focusing on location, channel, filter, and nucleus will capture
richer contextual information. ODConv leverages a novel multi-dimensional attention
mechanism to compute four types of attentions αsi, αci, α f i, and αwi for Wi, along with all
four dimensions of the kernel space in a parallel manner. The formula is as follows:

y =
(

αw1 � α f 1 � αc1 � αs1 �W1 + · · ·+ αwn � α f n � αcn � αsn �Wn

)
∗ x (2)

where ∗ denotes the convolution operation and αwi ∈ R denotes the attention scalar for
the convolutional kernel Wi; αsi ∈ Rk×k, αci ∈ Rcin , and α f i ∈ Rcout denote three newly
introduced attentions, which are computed along the spatial dimension, input channel
dimension, and the output channel dimension of kernel space for the convolutional kernel
Wi, respectively; and � denotes the multiplication operations along different dimensions
of the kernel space. Here, αsi, αci, α f i, and αwi are computed with a multi-head attention
module πi(x).
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2.2. Pyramid Network

The pyramid network in our method has two levels: image pyramids [44] and feature
pyramids [45]. Image pyramids are created to address the issue of multi-scale variation
enhancement, where the inherent pixel information of small objects is readily lost during
the process of downsampling. The multi-scale variation problem in object detection can
be handled through the feature pyramids, with only a slight increase in processing effort.
The feature pyramids primarily solve the weaknesses of target detection in dealing with
multi-scale variation difficulties.

2.3. Loss Function

A pixel-level cross entropy (CE) loss, which analyzes each pixel separately and com-
pares the predictions of each pixel class with our coded label vector, is the most popular
loss function used for image semantic segmentation tasks. The matching loss function of
each pixel is as follows:

CE_Loss = −
M

∑
c=1

yc log(pc) (3)

where M represents the number of categories, yc is a one-hot vector with elements taking
only 0 and 1 values, and pc denotes the probability that the predicted sample belongs to
class c. When there are only two categories, the binary cross entropy (BCE) loss can be
written as follows:

BCE_Loss = −
N

∑
c=1

(tc log pc + (1− tc) log(1− pc)) (4)

where pc is the model input and tc is the true label. Binary cross entropy with logits (BCEL)
loss combines a sigmoid layer and BCE loss into a single class. For the problem of positive
and negative sample imbalance, Shrivastava et al. [46] proposed an algorithm for online
hard example mining (Ohem). OhemCE loss is to calculate the cross entropy, then select
hard samples according to the loss and apply higher weights to them in the subsequent
training process.

Intersection over union (IoU) reflects the ratio of the intersection and merge of the true
and predicted values and is commonly used as a loss function in semantic segmentation.
The IoU loss expression is as follows:

IoU_Loss = 1− A ∩ B
A ∪ B

(5)

A loss function known as the focal loss (FL) is used to deal with the uneven clas-
sification of samples. The emphasis is to increase the weight for the loss related to the
samples based on the ease of sample differentiation, which is to add smaller weights to the
samples that are easy to distinguish, and to add larger weights to those that are difficult to
differentiate. The expression for the loss function can then be written as

Focal_Loss = −
M

∑
c=1

(1− pc)
γyc log pc (6)

FL is the addition of a weighting coefficient (1− pc)
γ before the standard cross entropy.

Dice loss is named after the dice coefficient [47], which is a measure function used to assess
the similarity of two samples. The larger value means the similarity of the two samples.
The mathematical expression of the dice coefficient is as follows:

Dice_Loss = 1− 2|X ∩Y|
|X|+ |Y| (7)
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where X represents the pixel label of the real segmented image and Y represents the pixel
class of the model-predicted segmented image.

3. Methodology

The proposed method achieves the end-to-end crack detection function with a smaller
network model and higher segmentation accuracy. To evaluate the effectiveness of the
suggested strategy, a concrete crack dataset (CCD) was developed. The process of estab-
lishing the CCD is shown in Figure 3. The dataset attempts to encompass all orientations
and widths including fractures with simple backgrounds and cracks with complicated
backgrounds. The image capture task is carried out using a smartphone. The camera sensor
is the IMX600, which is a diagonal 9.2 mm (Type 1/1.7) 40 Mega-pixel CMOS active pixel
type stacked image sensor with a square pixel array. The original image is obtained at a
resolution of 3648 × 2763, and evenly cropped to 912 × 912. The resolution is reduced
to 256 × 256. Image resizing facilitates quick processing. Considering the performance
bottleneck of hardware (GPU), 2000 images are carefully selected and labelImgPlus is
utilized to make the masks. The network is then trained and validated using the masks
and processed images, and the trained network is then used to segment the test images.
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3.1. Network

As shown in Figure 4, a pixel-level concrete crack segmentation using pyramidal
residual network with Omni-Dimensional Dynamic Convolution is proposed, where the
first parameter in the block indicates the block name and the second parameter indicates
the number of output filters. The input is an image with a size of 256 × 256 and 3 channels
of RGB, and after network calculation the output is a feature map of size 256 × 256
with 2 channels to achieve pixel-level segmentation. These 2 channels correspond to the
two classes of crack and background. The network consists of an encoder–decoder. The
encoder descending through Conv consist of three parts: convolutional operations, batch
normalization (BN), and GELU [48] activation function. The decoder ascending through
TConv consists of convolutional operations, BN, and GELU activation function. The block
is made of two ODConvs, including three parts: transpose convolutional operations, BN,
and GELU activation function. These two blocks are sequentially connected to deepen the
network, but they are also Skip Connected to prevent gradients from fading. The feature
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fusion of the encoder–decoder part is channel concatenating (Concat), and the connection
strategy is mentioned later. Network details are tabulated in Table 1.
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Table 1. Detailed parameters in CCSN.

Layer Name Filter Size Stride Output Size Operational Layers

Input image - - 256 × 256 × 3 -
Conv 5 × 5 2 128 × 128 × 16 BN, GELU

ODConv 3 × 3 1 128 × 128 × 8 BN, GELU
ODConv 5 × 5 1 128 × 128 × 16 BN, GELU

ADD - - 128 × 128 × 16 -
Conv 5 × 5 2 64 × 64 × 32 BN, GELU

ODConv 3 × 3 1 64 × 64 × 16 BN, GELU
ODConv 5 × 5 1 64 × 64 × 32 BN, GELU

ADD - - 64 × 64 × 32 -
Conv 5 × 5 2 32 × 32 × 64 BN, GELU

ODConv 3 × 3 1 32 × 32 × 32 BN, GELU
ODConv 5 × 5 1 32 × 32 × 64 BN, GELU

ADD - - 32 × 32 × 64 -
Conv 5 × 5 2 16 × 16 × 128 BN, GELU

ODConv 3 × 3 1 16 × 16 × 64 BN, GELU
ODConv 5 × 5 1 16 × 16 × 128 BN, GELU

ADD - - 16 × 16 × 128 -
TConv 4 × 4 2 32 × 32 × 128 BN, GELU

Connecting - - 32 × 32 × 192 Concatenation
ODConv 3 × 3 1 32 × 32 × 96 BN, GELU
ODConv 5 × 5 1 32 × 32 × 192 BN, GELU

ADD - - 32 × 32 × 192 -
TConv 4 × 4 2 64 × 64 × 96 BN, GELU

Connecting - - 64 × 64 × 128 Concatenation
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Table 1. Cont.

Layer Name Filter Size Stride Output Size Operational Layers

ODConv 3 × 3 1 64 × 64 × 64 BN, GELU
ODConv 5 × 5 1 64 × 64 × 128 BN, GELU

ADD - - 64 × 64 × 128 -
TConv 4 × 4 2 128 × 128 × 64 BN, GELU

Connecting - - 128 × 128 × 80 Concatenation
ODConv 3 × 3 1 128 × 128 × 40 BN, GELU
ODConv 5 × 5 1 128 × 128 × 80 BN, GELU

ADD - - 128 × 128 × 80 -
TConv 4 × 4 2 256 × 256 × 40 BN, GELU

Connecting - - 256 × 256 × 43 Concatenation
ODConv 3 × 3 1 256 × 256 × 21 BN, GELU
ODConv 5 × 5 1 256 × 256 × 43 BN, GELU

ADD - - 256 × 256 × 43 -
Conv 1 × 1 1 256 × 256 × 2 -

Classification - - 256 × 256 × 2 Loss function

3.1.1. Conv and TConv Layers

In the method proposed in this paper, Conv is mainly used for reducing the dimen-
sionality of the feature map and changing the number of filters. The kernel size for the
convolution operation in Conv is 5 × 5, the stride is set to 2 × 2, and the padding is
set to ensure that the size of the resulting feature map is 2n. TConv is used to raise the
dimensionality and change the number of filters, and the kernel size in TConv is 4 × 4,
with other parameters remaining the same as in Conv.

3.1.2. Block

As shown in Figure 5, to solve the degradation problem of deep networks, the block
used in this paper adopts the idea of residual blocks. Each block has two convolution
operations with different numbers of filters, which can significantly extract two different
levels of features in the residual block and accelerate the training process. To find a sense
field suitable for crack segmentation and inspired by ConvNeXt [49], the block in this paper
attempts to increase the kernel size to improve network performance, which is actually
demonstrated by Conv and TConv. However, too large of a kernel size in convolutional
operation would entail a huge amount of computation, leading to a trade-off between
accuracy and speed. The reasons for choosing convolutional kernel sizes of 3 × 3 and 5 × 5
will be given in the subsequent experimental section.
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In Figure 5, c is the number of filters. Assume that the number of filters in the input
block is c, and the number of filters will be halved (c/2) before the features are restored after
entering the block. This method has the advantage of reducing the computation amount
and somewhat alleviating the computational load caused by large convolutional kernels.

3.1.3. Connect Strategy

In this study, the feature connection sites during the feature fusion phase are analyzed
in depth to further optimize network performance. Under the same assured feature dimen-
sionality, four connection options are experimentally validated, and precise performance is
provided in the following experimental section.

3.2. Loss

The cracked dataset is a typical example of an unbalanced class problem; the image
contains a disproportionate number of non-cracked pixels and a small number of cracked
pixels. To solve this problem, this paper combines focal loss and dice loss, and the loss
function can be written in the following form:

Loss = 1−
M

∑
c=1

(1− pc)
γyc log pc −

2I + ε

U + ε
(8)

where the first half is the addition of a weighting coefficient (1− pt)
γ before the standard

cross entropy, and the second half is the dice coefficient. The ε is an artificially set smooth-
ness coefficient, I denotes the intersection of positive examples, and the U denotes the
union of examples.

4. Experiments and Results

This section presents the experimental results of the proposed method, including its
performance under different network parameters, connection strategies, and losses. At the
same time, this network is compared with other networks of the same type. In this paper,
to verify the effectiveness of the method, the public crack dataset is selected for further
validation.

4.1. Training Configuration

The experiments were conducted using AMD Ryzen7 5800H Processor with 16 GB
RAM, and NVIDIA GeForce RTX 3060 Laptop with 6 GB RAM GPU. The DL framework is
pytorch, and Adam with a momentum of 0.9 was chosen as the optimizer during training.
The initial learning rate and minimum learning rate were set to 10−4 and 10−6, respectively,
and the learning rate descent formula is cos. Due to memory constraints, the number
of multithreads and batch size were set to 4, and 50 epochs were used for training. The
training process was analyzed using different sets of hyperparameters to select the optimal
validated model configuration. The dataset was portioned into 80% (1600 images) for
training, 10% (200 images) for validation, and 10% (200 images) for testing. All images
used in the experiment were set to 256 × 256.

4.2. Evaluation Metric

To evaluate this crack segmentation network, the images were trained with a variety
of different parameters, losses, architectures, and networks. Since the crack dataset is a
class-imbalanced dataset, if the mean accuracy is simply used as an evaluation metric, the
accuracy of the crack pixels will be masked by the accuracy of background pixels and the
results will not be well observed. The mIoU is used as the main evaluation metric to assess
the performance of the method, and the metrics such as precision (P), recall (R), F1-score,
accuracy, and mPA (mean pixel accuracy) are compared. These evaluation metrics can be
derived from a confusion matrix. The confusion matrix is shown in Table 2.
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Table 2. The confusion matrix for evaluation.

Pixel
Mask

Positive Negative

Predict
Positive TP FP

Negative FN TN

The evaluation metrics for single class are shown as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1− score =
2PR

P + R
(11)

IoU =
TP

TP + FP + FN
(12)

Accuracy =
TP + TN

TP + FP + FN + TN
(13)

The precision indicates the percentage of correctly predicted pixels out of all pixels
predicted by the model as positive examples. Recall indicates the percentage of all samples
with positive true pixels predicted. mPA indicates the average value of the sum of the
precision of all classes. Accuracy indicates the number of correctly predicted pixels as a
percentage of all pixels. Moreover, mIoU indicates the summed re-average of all classes of
IoU.

4.3. Network Results
4.3.1. Block

For cracked pixels, it has not been investigated how large a window should be used in
the feature extraction process to obtain the connection with the surrounding pixels. To find
the corresponding parameters suitable for crack segmentation, similar to ConvNeXt with a
guaranteed number of parameters, this paper explores the different kernel sizes of the two
ODConvs in the block.

The structure of the block is shown in Figure 6, with the kernel sizes k1 and k2 set in
the order of network connections. To verify the advantages of ODConv and compare the
results with the block using normal convolutional operations, the comparison results are
shown in Table 3. It is obvious that k1 and k2 have better performance when set to 3 and 5,
respectively.
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Table 3. Results of different kernel size in block.

k1 k2 ODConv Accuracy F1-Score mIoU mPA

1 3 0.9897 0.9184 0.8583 0.9143
1 3

√
0.9903 0.9244 0.8675 0.9281

3 5 0.9900 0.9212 0.8626 0.9217
3 5

√
0.9905 0.9261 0.8700 0.9300

5 7 0.9902 0.9229 0.8651 0.9218
5 7

√
0.9904 0.9249 0.8681 0.9294

To verify the superiority of the method, the blocks in this paper are also compared
with ResBlock, MobileNetV3 [50], and ConvNeXt. The experiments were performed in
the same environment, but the difference is to replace the blocks with the corresponding
methods. The experimental results are shown in Table 4. The method proposed in this
paper is notably superior to the alternatives.

Table 4. Results of different blocks.

Block Accuracy F1-Score mIoU mPA

ResBlock 0.9900 0.9216 0.8632 0.9254
MobileNetV3 0.9900 0.9199 0.8606 0.9160

ConvNeXt 0.9893 0.9170 0.8561 0.9245
Ours 0.9905 0.9261 0.8700 0.9300

4.3.2. Connection Strategy

The feature fusion at different scales of the network is based on the feature pyramid
networks. Even for the same network structure, different connection modes may not
increase the number of parameters, but they will cause different results. In this paper,
four different feature fusion patterns are investigated, as shown in Figure 7. The results in
Table 5 show that (a) type of connectivity achieves better results in this method.
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Table 5. Results of different connection mode.

Mode Accuracy F1-Score mIoU mPA

b2c 0.9905 0.9261 0.8700 0.9300
b2b 0.9903 0.9241 0.8670 0.9273
c2c 0.9905 0.9259 0.8697 0.9291
c2b 0.9904 0.9247 0.8679 0.9270

4.3.3. Pyramid Structure

The width (channels) of the feature map in the decoder is shown in Figure 8, where
the numbers indicate the number of channels. A total of 128 channels were input to the
decoder section, and 64, 32, 16, and 3 channels were incorporated into the feature fusion
phase from the encoder section when the feature dimension was transformed. The whole
network constitutes a feature pyramid. This part obtains the feature pyramid suitable for
this network by studying the changing trend of the feature pyramid.
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In this paper, the trends of the four feature widths are compared and validated, as
shown in Table 6, where width indicates the number of channels per TConv output since
the features are transmitted along in the direction. The results show that widths of 128, 96,
64, and 40 perform best in this order.

Table 6. Results of different filters.

Width Accuracy F1-Score mIoU mPA

128, 128, 64, 64 0.9905 0.9251 0.8685 0.9253
128, 64, 32, 16 0.9903 0.9248 0.8680 0.9299

64, 32, 16, 8 0.9901 0.9230 0.8652 0.9287
128, 96, 64, 40 0.9905 0.9261 0.8700 0.9300

4.4. Loss Results

The loss functions are described in detail in the previous sections. This section ex-
amines the performance of different loss functions on our network, as shown in Table 7.
The results show that this method, which uses focal loss and takes into account the dice
coefficient, outperforms other loss functions.
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Table 7. Results of different loss functions.

Mode Accuracy F1-Score mIoU mPA

CE 0.9905 0.9232 0.8652 0.9101
BCE 0.9905 0.9236 0.8660 0.9143

BCEL 0.9905 0.9231 0.8653 0.9130
IoU 0.9904 0.9224 0.8642 0.9123
Dice 0.9903 0.9246 0.8677 0.9285
FL 0.9904 0.9228 0.8647 0.9111

OhemCE 0.9905 0.9234 0.8657 0.9123
Ours 0.9905 0.9261 0.8700 0.9300

4.5. Other Network Results
4.5.1. Results on CCD

To validate the effectiveness of the proposed method, the method in this paper is
compared with other methods, including classical algorithms FCN, SegNet, Unet, and
Deeplabv3+. In addition, the method is compared with Swin-unet using pure transformer,
which further demonstrates its advantages in crack segmentation task.

The experimental results are shown in Table 8, where the U-shaped network and
the coder–decoder structure crack segmentation task exhibit better performances, while
algorithms such as Deeplabv3+ and Swin-unet show disappointing performances. The
method proposed in this paper outperforms other methods in terms of accuracy, F1-score,
mIoU, and mPA. Samples of crack detection using different networks are shown in Figure 9.
In the second test sample, for example, fine (only one pixel wide) and blurred cracks pose a
challenge to detection, but our method is able to detect the whole crack more completely
and comes closest to the truth image of the ground.
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Table 8. Results of different networks by CCD.

Mode Accuracy F1-Score mIoU mPA

FCN 0.9894 0.9137 0.8508 0.8977
SegNet 0.9895 0.9137 0.8506 0.8951

Deeplabv3+ 0.9861 0.8827 0.8052 0.8511
Unet 0.9898 0.9169 0.8556 0.9025

Unet++ 0.9901 0.9203 0.8609 0.9092
Swin-unet 0.9860 0.8907 0.8184 0.8944

CCSN (Ours) 0.9905 0.9261 0.8700 0.9300

4.5.2. Results on BCL Dataset

To enhance the persuasiveness of the methods in this paper, the Bridge Crack Library
(BCL) [51] dataset published on Harvard Dataverse in 2020 was used to validate the
mentioned network, as shown in Table 9. In a random sample of 2000 images from the BCL
dataset, 80% of them were used for training, 10% for validation, and 10% for testing, so
as to ensure that the same environment as the CCD is used to start the experiments. The
experimental results show that the proposed method in this paper achieves an accuracy
of 98.89%, mIoU of 82.9%, and mPA of 90.47% on the BCL dataset, which are higher than
other networks.

Table 9. Results of different networks by BCL.

Mode Accuracy F1-Score mIoU mPA

FCN 0.9875 0.8697 0.7902 0.8517
SegNet 0.9884 0.8802 0.8042 0.8659

Deeplabv3+ 0.9875 0.8721 0.7938 0.8616
Unet 0.9884 0.8822 0.8072 0.8743

Unet++ 0.9874 0.8617 0.7766 0.8193
Swin-unet 0.9853 0.8590 0.7767 0.8736

CCSN (Ours) 0.9889 0.8925 0.8209 0.9047

4.6. Computational Comparison

The computational complexity of the proposed CCSN network was evaluated against
other networks (FCN, SegNet, DeepLabv3+, Unet, Unet++, Swin-unet). The actual perfor-
mance of this method was evaluated by comparing the number of parameters, floating point
operations (FLOPs), memory storage, and FPS comparisons of these networks. The compu-
tational complexity is shown in Table 10. For all networks including training datasets, test
datasets, and hyperparameters, the network training criteria were set identically. The pro-
posed CCSN network consists of 4.28 million learnable parameters, with only 7.17 GFLOPs
and 9.61 MB storage, all of which are much lower than other networks. In addition, the
training time of this method in the experiment is 65.67 min, which is shorter among all
methods. In terms of FPS, the proposed network in this paper outperforms DeepLabv3+
and Unet++, and is slightly lower than SegNet, Unet, and Swin-unet. However, its overall
evaluation metrics are still greatly dominated.

Table 10. Computational comparison of CCSN and other networks.

Mode Param (M) FLOPs (G) Storage (MB) Training Time (min) FPS

FCN 120.48 806.55 114 382.33 9.37
SegNet 117.78 40.08 112 68.12 65.53

Deeplabv3+ 208.43 20.66 208 78.05 40.43
Unet 128.36 50.70 122 89.50 50.90

Unet++ 188.78 200.11 180 214.95 17.17
Swin-unet 108.58 76.90 105 54.88 48.68

CCSN(Ours) 4.28 7.17 9.61 65.67 43.04
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5. Conclusions

In this study, a crack segmentation network for automatic pixel-level crack detection is
designed and implemented. Firstly, the network parameters and structure are investigated
in detail so as to discover an appropriate network window size, feature connection strategy,
and dimensional transformation method for crack segmentation. Then, to solve the class
imbalance problem, focal loss is integrated with the dice coefficient to improve the overall
accuracy of the method. To evaluate the performance, a new crack dataset (CCD) is used for
training and validation. The training process is examined on the validation images, with
an average accuracy of 99.05%, mIoU of 87.00%, and mPA of 93.00%. In addition, training
and validation on the public dataset (BCL) also outperformed the other networks in terms
of overall performance. This work provides not only further prospects for improving the
accuracy of crack segmentation but also a reference for subsequent related research. The
next step is to deploy the method to a wall-climbing robot or UAV for further validation
and fine-tuning to adapt to the actual inspection environment.
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