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Abstract: This paper addresses the problem of coexistence of synchronization and anti-synchronization
(CSAS) for a class of switched chaotic systems by adaptive control method, where the switched sys-
tem is realized by unified chaotic systems under arbitrary switching signal. Firstly, necessary and
sufficient conditions for the CSAS of the chaotic systems are proposed from two perspectives, one
is by analyzing the parity of the system expression, and the other is by decomposing the system.
Secondly, according to the obtained necessary and sufficient conditions, two algorithms are given
to search the synchronization variables and anti-synchronization variables in the chaotic systems.
Thirdly, the CSAS of the switched chaotic system can be achieved by a designed adaptive global
controller with only one input channel under the arbitrary switching signal. Finally, the numerical
simulation results verify the validity and effectiveness of the method we obtained.

Keywords: switched chaotic system; unified system; coexistence of synchronization and anti-synchronization;
adaptive control method; common Lyapunov function

1. Introduction

Switched systems are a class of hybrid systems that arise in various fields of the
real-life world. In the past two decades, increasing attention has been paid to the analysis
and synthesis of switched systems due to their significance in both theory and applications,
and many significant results have been obtained for the analysis and design of switched
systems, such as electrical system [1–3], communication networks [4,5], flight control [6],
network control systems [7–10], traffic control [11], and processes control [12,13], etc. Rel-
atively speaking, chaos control has been investigated earlier. In the year of 1990 [14], the
discovery of chaos synchronization by Pecora and Carroll greatly enhanced the research
enthusiasm for the chaos control problem, such as the complete synchronization [15–19],
anti-synchronization [20–23], phase synchronization [24–26], lag synchronization [27,28],
generalized synchronization [29,30], projective synchronization [31–33], topological syn-
chronization [34], etc. Simultaneously, lots of useful results have been obtained, and many
chaos synchronization methods have been proposed by contemporary researchers, such as
the linear feedback control [35,36], nonlinear control [37–39], active control [40,41], sliding
mode control [42,43], etc. Coexistence of synchronization and ani-synchronization of the
chaotic systems is a phenomenon that some variables in the master system synchronize
the homologous variables in the slave system, and the others in the master system anti-
synchronize the homologous variables in the slave system in the designed controller, which
is an interesting phenomenon, while there are few works about this phenomenon. In our
previous work [44], a specific necessary and sufficient conditions for the realization of
CSAS and how to choose variables that can achieve anti-synchronization are investigated,
and the adaptive control method is applied.

The chaotic system and switched system have been investigated comprehensively;
however, the combination of the two, which is called switched chaotic system, is arousing
the interest of researchers [45–50]. In [45], synchronization of the switched system is
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investigated based on the Lyapunov method, and a sufficient condition is derived to ensure
the synchronization between two switched systems. In [46], a sufficient condition for
synchronization of identical master–slave switched nonlinear chaotic systems is obtained
and is expressed in the form of bilinear matrix inequalities (BMIs). The switching control
problem of a fractional-order chaotic system is studied in [47,48]. In [47], a novel fractional-
order chaotic system which undergoes switching between integer-order and fractional-
order dynamical subsystems with the help of the synchronization scheme is proposed,
and this scheme is to enhance the level of security in chaotic communication. [48] proposes
an interesting phenomenon that four fractional-order systems display a variety of nonlinear
dynamical behavior. In [49], the problem of projective synchronization of chaotic systems
and switched chaotic systems by adaptive control methods are addressed. In [50], chaotic
heteroclinic networks with nontrivial intersections of stable and unstable manifolds as
models of switching behavior in biological systems are proposed. The switched chaotic
system is combined by the chaotic subsystems, compared with the single chaotic system,
which is more complex. At the same time, the switched chaotic system has higher practical
value, for example, in secure communication fields. The phenomenon of CSAS in the
switched chaotic systems is a very interesting problem. While, to the best of our knowledge,
such results for the CSAS of switched chaotic system does not yet exist.

Motivated by the above reasons, we investigate the CSAS for a class of switched
chaotic systems. Necessary and sufficient conditions for the CSAS of the chaotic systems
are proposed from two perspectives, one is by analyzing the parity of the system expression,
the other is by decomposing the system. According to the obtained necessary and sufficient
conditions, two algorithms are given to search the synchronization variables and anti-
synchronization variables in the chaotic systems. Furthermore, the CSAS of the switched
chaotic system can be achieved by a designed adaptive global controller with only one
input channel under the arbitrary switching signal.

The contributions of this paper are mainly:

• Two necessary and sufficient conditions for the CSAS of the chaotic systems under a
simple adaptive linear feedback controller are proposed.

• Based on the results above, two new algorithms are derived from searching the
synchronization variables and anti-synchronization variables in chaotic systems.

• According to the results of the CSAS for chaotic systems, the problem of CSAS for the
switched chaotic systems composed by the unified chaotic systems is investigated,
and an adaptive global linear feedback controller with only one input channel is
designed which can realize CSAS of the switched chaotic systems under the arbitrary
switching law.

The rest of the paper is organized as follows. Section 2 presents the problem formula-
tion. Some conceptions include synchronization, anti-synchronization, CSAS, and switched
chaotic systems. Section 3 is divided into two subsections, for Section 3.1, the CSAS of
a unified chaotic system is studied; for Section 3.2, we investigate the CSAS of switched
chaotic system with arbitrary switching signal. In the end of every section, the numerical
simulation is given to illustrate the effectiveness and correctness of the results we obtained.
Section 4 is the conclusion of this paper and future works.

2. Preliminaries

Consider the following chaotic system described as

ẋ = f (x) (1)

where x ∈ Rn is the state vector, f (x) is smooth nonlinear function.

Assumption 1. xe = 0 is the equilibrium of the System (1), i.e., f (xe) = 0.
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Remark 1. This assumption is a basic assumption in the system control theory. If xe 6= 0 is the
equilibrium of the System (1), we can make a transformation xt = x− xe, then for the new system
ẋt = f (xt + xe), xte = 0 is also the equilibrium of the new system.

Consider System (1) to be the master system, then the slave system can be drawn as:

ẏ = f (y) + u (2)

where y ∈ Rn is the state vector, u is the controller to be designed.
Let e = y− x be the synchronization error of the master and slave chaotic systems,

and the synchronization error system is described as

ė = f (y)− f (x) + u = F(x, e) + u (3)

Similarly, let E = y + x be the anti-synchronization error of the master and slave
chaotic systems, and the anti-synchronization error system is described as

Ė = f (y) + f (x) + u = G(x, e) + u (4)

Definition 1 ([31]). Considering the chaotic master System (1) and the slave System (2), define
the synchronization error e = y− x and the anti-synchronization error E = y + x. If and only if
there exist a controller u simultaneously satisfies

lim
t→∞
‖ei(t)‖ = 0,

and
lim
t→∞
‖Ej(t)‖ = 0.

where ei denotes the synchronization error of the i− th variables in Systems (1) and (2), similarly,
Ej denotes the anti-synchronization error of the j − th variables in system (1) and system (2),
i, j ∈ 1, 2, · · · , n and i 6= j.

Then we say the master System (1) and the salve System (2) realize the coexistence of synchro-
nization and anti-synchronization. That is to say, some variables in Systems (1) and (2) realize
synchronization, and the other variables realize the anti-synchronization.

A switched chaotic system can be drawn as

ẋ = fσ(t)(x) (5)

where σ(t) : [t0, ∞)→ Λ = 1, 2, · · · , m, · · · , N is a piecewise right-continuous function, called
the switching law. σ(t) = m means the m− th system is active. If ẋ = fm(x), ∀m ∈ Λ denotes a
chaotic system, then the System (5) is called switched chaotic system.

Remark 2. Throughout this paper, it is assumed that there are no jumps in the states at the
switching instants, and that a finite number of switches occur on every bounded time interval. Let
x(t) denote the trajectory of the System (5) starting from x0 = x(t0). In this paper, without any
special instruction, the switching law σ(t) is only related to the time t. In adddition, the master and
slave systems simultaneously switch from one chaotic system to the other. The switching law is not
predefined and is assumed to be arbitrary.

Let System (5) be the master switched chaotic system, the corresponding slave switched
chaotic system is given by

ẏ = fσ(t)(y) + uc. (6)

where, the parameters are as the same as System (5) and uc is the controller to be designed.
Similar to Definition 1, the definition of CSAS for the switched chaotic systems is given.
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Definition 2. Considering the switched chaotic master System (5) and the switched chaotic slave
System (6), define the synchronization error eσ(t) = yσ(t) − xσ(t), and the anti-synchronization
error Eσ(t) = yσ(t) + xσ(t). If and only if there exist a controller uc simultaneously satisfies

lim
t→∞
‖eiσ(t)‖ = 0,

and
lim
t→∞
‖Ejσ(t)‖ = 0.

where eiσ(t) denotes the synchronization error of the i− th variables in switched Systems (5) and (6),
similarly, Ejσ(t) denotes the anti-synchronization error of the j-th variables in switched Systems (5)
and (6), i, j ∈ 1, 2, · · · , n and i 6= j.

Then we say the master System (5) and the slave System (6) realize the coexistence of synchro-
nization and anti-synchronization.

Remark 3. The difference between Definition 1 and Definition 2 is that the investigated object of
Definition 1 is the chaotic systems, while the Definition 2 studies the CSAS of the switched chaotic
systems under the switching law σ(t). Obviously, the problem of CSAS for the switched chaotic
systems is much more complicated than that of the chaotic systems.

Lemma 1 ([15]). For the chaotic System (1), if there exists a nonsingular coordinate transformation
z = Tx which can transfer the System (1) into{

ṗ1 = J1(p1, p2),
ṗ2 = J2(p1, p2).

(7)

where p1 = (z1, z2, · · · , zk)
T , k ≥ 1, p2 = (zk+1, zk+2, · · · , zn)T , and the following sub-system

ṗ2 = J2(0, p2). (8)

is asymptotically stable, then the stabilizing controller is designed as follows

u = (u1, u2)
T = (k1 p1, 0)T . (9)

where the feedback gain k1 is updated by the following law

k̇1 = −γpT
1 p1 = −γ‖p1‖2. (10)

and γ is an arbitrary positive number. In other words, the following controlled system{
ṗ1 = J1(p1, p2) + k1 p1,
ṗ2 = J2(p1, p2).

(11)

is asymptotically stable, i.e., the System (11) is stabilized by the adaptive controller (9) with the
adaptive gain (10).

Lemma 2 ([51]). If the family of systems (5) has a common Lyapunov function (i.e., a positive
definite radially unbounded smooth function V such that ∇V(X) fσ(t)(x) < 0 for all x 6= 0 and all
σ(t) ∈ Λ), then the switched System (5) is asymptotically stable for any switching law σ(t).

3. Main Results

In this section, two subsections will be introduced to investigate the problem of the
coexistence of synchronization and anti-synchronization (CSAS). Section 3.1 is the CSAS
for the chaotic systems. Section 3.2 is the CSAS for the switched chaotic system under the
arbitrary switching signal.
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3.1. Coexistence of Synchronization and Anti-Synchronization for Chaotic Systems

In this subsection, necessary and sufficient conditions for the CSAS of chaotic systems
are proposed from two perspectives. Theorem 1 is obtained by analyzing the parity of the
system expression, and Theorem 2 is obtained by decomposing the system. Then according
to the given two theorems, two algorithms are proposed to search the synchronization and
anti-synchronization variables in the chaotic systems.

Theorem 1. The master chaotic System (1) and slave chaotic System (2) realize CSAS if and only
if f (−x) = − f (x). i.e., f (x) is the odd function.

Proof of Theorem 1. The following is proof of sufficiency.
Since f (−x) = − f (x), obviously, e = 0 and E = 0 are the equilibria of an unforced

synchronization error system (3) and anti-synchronization error System (4), that is, u = 0,
respectively.Then, if the controller u = K(e) can stabilize synchronization error System (3),
anti-synchronization error System (4) can be stabilized by the controller u = K(E).

The following is proof of necessity.
If there exist the controllers u = K(e) and u = K(E) stabilizing error Systems (3)

and (4), respectively, we can obtain that e = 0 and E = 0 are the equilibria of unforced
synchronization error System (3) and anti-synchronization error System (4), respectively.
Then, f (−x) = − f (x).

That completes the proof.

According to Theorem 1, we give the following Algorithm 1 to find the synchronous
and anti-synchronous variables in the chaotic system.

Algorithm 1: Distinguish the synchronous and anti-synchronous variables by
analyzing the parity of the system expression.

Step 1: Without loss of generality, we first select the variable x1. If f1(x) = f11(x1)
+ f12(x2; · · · ; xn) is an odd function, or f11(x1) = θ1x1, we can set E1 = x1 + y1, where
θ1 is a real number;
Step 2: If f2(x2; · · · ; xn) = θ2x2 + f13(x3; · · · ; xn), we should set E2 = x2 + y2, where θ2
is a real number. Else, if f2(x) = f21(x2) + f22(x1; x3; · · · ; xn) is an odd function,
or f21(x2) = θ3x2, we can set E2 = x2 + y2, where θ3 is a real number. Then, we
determine whether E2 = x2 + y2 is suitable or not according to the condition that the
origin is an equilibrium point of the anti-synchronization error system;
Step 3: When i ≤ n, we can set Ei = yi + xi or ei = yi − xi by the similar procedure in
Step 2.

Theorem 2. Considering the master chaotic System (1) and slave chaotic System (2), let x =
(wm, zm)T ∈ Rn, wm ∈ Rr, zm ∈ Rn−r. System (1) is described as(

ẇm
żm

)
=

(
M(zm)wm
N(wm, zm)

)
. (12)

Accordingly, the slave chaotic System (2) can be described as(
ẇs
żs

)
=

(
M(zs)ws
N(ws, zs)

)
+ u. (13)

where y = (ws, zs)T ∈ Rn, ws ∈ Rr, zs ∈ Rn−r, u = (um, uz)T is the controller to be designed.
If N(−w, z) = N(w, z) is satisfied, then the master and slave system can be realized CSAS under
the controller.
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Proof of Theorem 2. Let E = wm + ws, e = zs − zm, then

Ė = ẇm + ẇs = M(zm)wm + M(zs)ws + uw. (14)

ė = żs − żm = N(ws, zm)− N(wm, zm) + uz. (15)

Due to N(−w, z) = N(w, z), obviously, e = 0, E = 0 are the equilibrium of the
uncontrolled master System (14) and the slave System (15) (i.e., u = 0), which satisfy
Assumption1. According to the nonlinear system control theory, there exists controller u,
which can make sure the coexistence of synchronization and anti-synchronization for the
master chaotic System (1) and slave chaotic System (2).

That completes the proof.

Consider master System (1) and slave System (2), and let

e = y− βx. (16)

where x, y and e ∈ Rn and β = Diag(β1, β2, β3, · · · , βn),|βi| = 1, i ∈ Λ is a positive integer.
Obviously, if βi = 1 and ei = 0 means the i− th variable of master System (1) and slave
System (2) realize synchronization. Similarly, if βi = −1 and ei = 0 means the i-th variable
of master System (1) and slave System (2) realize anti-synchronization. So the error system
is described as

ė = f (e + βx)− f (x) + u. (17)

For the unforced error System (17), that is, u = 0. Solve the equation

f (βx)− β f (x) = 0, (18)

we can get the solution βi.
Firstly, we define two sets, for the first one:

β(i) = {β | There are exactly i elements o f matrix β equal to 1}.

where 1 ≤ i ≤ n− 2. For example,

β = diag[1,−1, · · · ,−1] ∈ β(1);

β = diag[−1, 1, 1,−1, · · · ,−1] ∈ β(2).

for the second one:

Q(j) = {There are exactly j equations o f (18)}.

where 2 ≤ j ≤ n− 1, j = n− i. For example,

f2(βx)− β2 f2(x) = 0 and f5(βx)− β5 f5(x) = 0.

which means there are two equations satisfy (18).
According to Theorem 2, we give the following Algorithm .
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Algorithm 2: Distinguish the synchronous and anti-synchronous variables by
decomposing the system.

Step 1: i = 1.
Check all elements of β(i) are the solutions of Q(j) or not, 2 ≤ j ≤ n− 1. If one is

yes, such as β = diag[−1, 1, · · · ,−1] is a solution of Q(j), i.e., Q(j) = 0, then set wm =
[x1, x3, · · · , xn]T , z = x2, thus the master system (1) is divided into the following two
subsystems

ẋ = f (x) =
(

ẇm
ż

)
=

(
M(z)wm
N(wm, z)

)
.

where wm ∈ Rn−1, z ∈ R1, N(wm, z) is a nonlinear smooth function;
Step 2: i = 2.

Check all elements of β(i) are the solutions of Q(j) or not, 2 ≤ j ≤ n− 1. If one is
yes, such as β = diag[−1, 1, 1,−1, · · · ,−1] is a solution of Q(j), i.e., Q(j) = 0, then set
wm = [x1, x4, · · · , xn]T , z = [x2, x3]

T , thus the master system (1) is divided into the
following two subsystems

ẋ = f (x) =
(

ẇm
ż

)
=

(
M(z)wm
N(wm, z)

)
.

where wm ∈ Rn−2, z ∈ R2, N(wm, z) is a nonlinear smooth function;
Step 3: This procedure goes on until i = n− 2.

Next, the CSAS of unified chaotic system is investigated according to Theorem 1,
Algorithm 1 and Theorem 2, Algorithm 2, respectively.

The unified chaotic system [46] is given by
ẋ1 = f1(x) = (25α + 10)(x2 − x1),
ẋ2 = f2(x) = (28− 35α)x1 + (29α− 1)x2 − x1x3,

ẋ3 = f3(x) = −1
3
(8 + α)x3 + x1x2.

(19)

where, the System (19) is chaotic for all values of the parameter α ∈ [0, 1]. When α = 0,
the System (19) is the famous Lorenz system; when α ∈ (0, 0.8), the system is the general
family of Lorenz systems; when α = 0.8, it is called Lü system; when α ∈ (0.8, 1), the system
is called general family of Chen system and when α = 1, it is called Chen system.

Let System (19) be the master system, then the slave system is described as
ẏ1 = f1(y) = (25α + 10)(y2 − y1) + u1,
ẏ2 = f2(y) = (28− 35α)y1 + (29α− 1)y2 − y1y3 + u2,

ẏ3 = f3(y) = −
1
3
(8 + α)y3 + y1y2 + u3.

(20)

Now, the anti-synchronization variables will be found by Theorem 1 and Algo-
rithm 1. According to Algorithm 1, considering the unforced slave System (20), we can
set E1 = y1 + x1 since f1(x) = (25α + 10)(x2 − x1), and then we should set E2 = y2 + x2.
If we set E3 = y3 + x3, then

Ė3 = −1
3
(8 + α)E3 + x1x2 + y1y2 (21)

= −1
3
(8 + α)E3 + x1x2 + (E1 − x1)(E2 − x2)

= −1
3
(8 + α)E3 + E1E2 − x1E2 − x2E1 + 2x1x2.
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It is clear that E = 0 is not an equilibrium point of the error System (21). In fact, the left
hand side of the error System (21) equals zero. However, the right hand side of the error
System (21) is not equal to zero, but equals to 2x1x2. Therefore, we should set e3 = y3 + x3,
and obtain the error system given as (22).

Let Ei = yi + xi(i = 1, 2), and e3 = y3 − x3, so that the error system is obtained as
Ė1 = f1(x, y, e3, E) = (25α + 10)(E2 − E1),
Ė2 = f2(x, y, e3, E) = (28− 35α)E1 + (29α− 1)E2 − E1e3 − x3E1 + x1e3,

ė3 = f3(x, y, e3, E) = E1E2 − x2E1 − x1E2 −
1
3
(8 + α)e3.

(22)

where E = (E1, E2)
T .

Then, the anti-synchronization variables will be found by Theorem 2 and Algorithm 2.
According to Equation (18), we obtain

f1(βx)− β1 f1(x) = (25α + 10)(β2 − β1)x2 = 0,

f2(βx)− β2 f2(x) = (28− 35α)(β2 − β1)x1 + (β2 − β1β3)x1x3 = 0,

f3(βx)− β3 f3(x) = (β1β2 − β3)x1x2 = 0.

i.e.,
β2 = β1, (23)

β2 = β1 and β2 = β1β3, (24)

β1β2 = β3, (25)

Noticing n = 3, according to Algorithm 2, we need only check β(1) are the solutions
of Q(2) or not. In fact, there are exactly three elements of β(1). β = diag(1,−1,−1),
β = diag(−1, 1,−1), β = diag(−1,−1, 1). Obviously, β = diag(−1,−1, 1) is a solution of
Q(2), i.e., β = diag(−1,−1, 1) is a solution of the Equations (23) and (24). In addition, there
are no other elements of β(1) which are the solutions of Q(2). So there is only one solution
of the CSAS for the unified system.

So set wm = (x1, x2)
T , z = x3, ws = (y1, y2)

T , then according to Theorem 2, the unified
chaotic master System (19) and slave System (20) can be transformed into

ẇm =M(z)wm =

(
−(25α + 10) 25α + 10
28− 35α− z 29α− 1

)
wm,

ż =N(wm, z) = −1
3
(8 + α)z + h(wm), (26)

ẇs =M(z)ws =

(
−(25α + 10) 25α + 10
28− 35α− z 29α− 1

)
ws + u.

where h(wm) = x1x2 , z is the coupling state vector.
The state vector wm and ws realize anti-synchronization, x3 and y3 realize synchroniza-

tion under the controller u = K(·) and K(0) = 0.
Through the above analysis, we can see that the synchronization and anti-synchronization

variables of the unified chaotic system found by Algorithm 1 and Algorithm 2 are consistent.
Next, the adaptive linear feedback controller will be designed.
Obviously, for the error System (22), if E2 = 0, the sub-error system of (22) is Ė1 = −(25α + 10)E1,

ė3 = −x2E1 − x1E2 −
1
3
(8 + α)e3.

(27)
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is asymptotically stable regardless of the value of α. So according to Lemma 1, the controller
is designed as u = (0, k1E2, 0)T , where the feedback gain k1 is updated as

k̇1 = −γE2
2 = −γ(y2 + x2)

2. (28)

and γ > 0 is an arbitrary number.

Theorem 3. Considering the master unified chaotic System (19), if the controller u = (0, k1E2, 0)T

is added into the slave chaotic System (20), where the feedback gain k1 is updated as (28), then the
error System (22) is asymptotically stable, i.e., the master unified chaotic System (19), and the slave
chaotic System (20) can realize CSAS.

Proof of Theorem 3. For the error System (22) with the controller u = (0, k1E2, 0)T , we
introduce the following positive definite Lyapunov function

V(E, e3, k1) =
1
2
(e2

3 + ETE) +
1

2γ
(k1 + L1)

2. (29)

where

L1 > M sup
E2 6=0

e2
3 + ETE

E2
2

,

and
M =

3
max
i=1

fi(x, y, e3, E).

Differentiating the Lyapunov function V along the trajectories of the augment system,
we obtain

V̇ = E1Ė1 + E2Ė2 + e3 ė3 +
1
γ
(k1 + L1)k̇1

= E1 f1(x, y, e3, E) + E2( f2(x, y, e3, E) + k1E2) + e3 f3(x, y, e3, E)− (k1 + L1)E2
2

= E1 f1(x, y, e3, E) + E2 f2(x, y, e3, E) + e3 f3(x, y, e3, E)− L1E2
2

= ∑3
i=1 Ei fi(x, y, e3, E)− L1E2

2
≤ M(E2

1 + E2
2 + e2

3)− L1E2
2 < 0.

According to the Lyapunov stability theory, the error Systems (22) is asymptotically
stable. That is to say, the master System (19) and the slave System (20) realize CSAS with
the designed controller, which has only one input channel. That completes the proof.

Remark 4. From Theorem 3, we can see that, no matter what is the switching law σ(t),
the designed controller keeps the same, i.e., the controller structure does not need to be
changed whenever the chaotic systems switch. Moreover, the designed controller has only
one input channel.
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Figure 1. States of CSAS for the unified chaotic systems (α = rand).

Next, we give numerical simulations to illustrate the efficiency of the designed controller.
The initial values are given as x(0) = (2,−2, 3)T, y(0) = (−4, 5,−6)T, and k1(0) = −1.
The simulation results are shown from Figures 1–5.

In Figures 1 and 2, α = rand, which denotes α is random and α ∈ [0, 1]. Figure 1 shows
that the state variables x1 and x2 of the master system are anti-synchronized with y1 and y2
of the slave system, respectively. Figure 2 shows that the CSAS error system is asymptoti-
cally stable, and the adaptive feedback constant k1 converges to a fixed negative constant.

Especially, the simulation results are also given to illustrate the efficiency of the de-
signed controller when α is given a certain value. Figures 3–5 show the CSAS phenomenon
when α = 0 (Lorenz system), α = 0.8 (Lü system) and α = 1.0 (Chen system). The simu-
lation results show that even if the valve of α is changed, the designed controller is also
effective. It further shows that the controller we designed is a global controller.
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Figure 2. CSAS error for the unified chaotic systems and adaptive law of k1.
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Figure 3. States of CSAS for the unified chaotic systems (α = 0).
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Figure 4. States of CSAS for the unified chaotic systems (α = 0.8).
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Figure 5. States of CSAS for the unified chaotic systems (α = 1.0).

3.2. Coexistence of Synchronization and Anti-Synchronization for Switched Chaotic Systems

If sudden switching in the parameter α is considered in the unified chaotic System (19),
the obtained system can be viewed as a switched chaotic system [46]. Figure 6 shows the
switching instants of the parameter α, so that the unified chaotic system switches among the
Lorenz–Chen-Lü family. In fact, these three subsystems in the unified chaotic system can
be switched in different combinations to produce different switched chaotic systems. In the
contemporary literature, synchronization and control performance are studied among
various classes of chaotic and hyperchaotic systems [45,52]. To our best knowledge, there is
no work about designing a global controller to guarantee CSAS among arbitrary switching
laws of the unified chaotic system family. Motivated by Pan et al. [46], Figure 6 shows that
the piecewise continuous switching law σ(t) changes the value of α in the unified chaotic
system model of (19) thereby switching between different chaotic models. Thus, α ∈ [0, 1],
which is the range where α can vary in the unified chaotic System (19). For example,
the system behaves like either of the Lorenz–Lü-Chen system, or the system evolves as a
different chaotic system: Lorenz–Chen-Lü system. In fact, there are six switching orders.
Such a configuration makes the whole switched chaotic system a combination of three
chaotic subsystems, which is more complex than the usual ones. In this paper, the master
and slave systems are assumed to be driven by the same switching law.
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Figure 6. Switching law for the switched chaotic systems.

Consider the unified chaotic System (19), when α = 0, it is called Lorenz system; when
α = 0.8, it is called Lü system; when α = 1, it is called the Chen system. In this part,
the switched chaotic System (5) is comprised of these three chaotic systems, i.e., N = 3.
i = 1 denotes the Lorenz system; i = 2 denotes the Lü system; i = 3 denotes the Chen
system. If σ(t) = 1, it means Lorenz system is active; if σ(t) = 2, it means Lü system is
active; if σ(t) = 3, it means Chen system is active.

Theorem 4. Consider the switched chaotic master System (5) and switched chaotic slave System (6),
where the switching law is chosen as σ(t) = 1, 2, 3, the chaotic system ’1’ is Lorenz system, ’2’ is
Lü system, ’3’ is Chen system, if a global adaptive controller is designed as

uc = (0, k1E2, 0)T = (0, k1(x2 + y2), 0)T , (30)

where the feedback gain k1 is updated as

k̇1 = −γE2
2 = −γ(y2 + x2)

2. (31)

and γ > 0 is an arbitrary number.
Then the state variables (x1, y1) and (x2, y2) of the switched chaotic system realize syn-

chronization respectively; simultaneously, x3 and y3 realize anti-synchronization under arbitrary
switching law σ(t).

Proof of Theorem 4. According to Theorem 3, Lyapunov function (29) is suited to the
unified chaotic systems for α ∈ [0, 1], so Lorenz system (α = 0), Lü system (α = 0.8) and
Chen system ( α = 1) are three chaotic systems among them. That is to say, the Lyapunov
function (29) is a common Lyapunov function for the Lorenz system, Lü system and Chen
system. According to Lemma 2, Lorenz system, Lü system, and Chen system can be
asymptotically stable for any switching law σ(t).

That completes the proof.

To illustrate the efficiency of the proposed adaptive controller for the switched chaotic
systems, a numerical examples will be given.
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Switched chaotic system is comprised by Lorenz system, Lü system and Chen system,
and the switching law is chosen as

σ(t) =


1, t ∈ [t3m, t3m+1), t3m+1 − t3m = rand
3, t ∈ [t3m+1, t3m+2), t3m+2 − t3m+1 = rand
2, t ∈ [t3m+2, t3m+3), t3m+3 − t3m+2 = rand

(32)

where, m = 0, 1, 2, · · · , is a non-negative integer, ’1’ denotes the Lorenz system; ’2’ denotes
the Lü system; ’3’ denotes the Chen system. ’rand’ denotes the active time of every
subsystem being arbitrary.

According to the switching law (32), the initial values are given as α = 0, denotes the
first active subsystem is Lorenz chaotic system, x(0) = (2,−2, 3)T , y(0) = (−4, 5,−6)T ,
and k1(0) = −1. The simulation results are shown in Figures 7 and 8.

Figure 7 shows that the state variables x1 and x2 of the master system are anti-
synchronized with y1 and y2 of the slave system, respectively. Figure 8 shows that the
CSAS error system is asymptotically stable under the designed controller with the ar-
bitrary switching law σ(t) and the adaptive feedback constant k1 converges to a fixed
negative constant.
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Figure 7. States of CSAS for the switched chaotic systems.
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4. Conclusions and Future Works

In conclusion, this paper investigated the problem of coexistence of synchronization
and anti-synchronization for chaotic systems and switched chaotic systems by adaptive
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control method, which is a more complicated phenomenon than synchronization. Neces-
sary and sufficient conditions are given to judge whether the chaotic system can realize
CSAS. Moreover, two algorithms were proposed to look for the variables in the chaotic
system which can achieve anti-synchronization, and the others realize synchronization.
Then, we studied the CSAS of the switched chaotic system under the designed adaptive
controller with the arbitrary and the switching signal, where the switched system was
comprised of a unified chaotic system. It is important to note that the adaptive global
controller has only one input channel, which is easily realized in fact.

As can be seen, the switching signals are related only with time, so in future work,
some different types of switching signals can be investigated. Moreover, the CSAS of the
switched chaotic system is realized in theory and simulation, and circuit implementation
and secret communication may be valuable study directions.
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