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Abstract: The effects of contact conditions at the wire–die interface on the temperature distribution
of the specimen and die are investigated to understand the wire drawing process. Finite element
analysis and experiments are performed to analyze the temperature distribution of a drawn wire and
die based on different contact conditions using a low-carbon steel wire. The maximum temperature
(Tmax) of the die decreases as the contact heat transfer coefficient at the wire–die interface increases,
whereas that of the wire increases with the contact heat transfer coefficient. The Tmax of the die
and wire decreases with the thermal conductivity of the die. As the thermal conductivity of the die
increases, the heat generated by friction is rapidly absorbed into the die, and the Tmax of the die
decreases, thus resulting in a decrease in the surface temperature of the wire. The Tmax of both the die
and wire linearly increases with the friction factor. In particular, the Tmax of the die more sensitively
changes with the friction factor compared with that of the wire. The Tmax of the die linearly increases
with the drawing velocity, whereas that of the wire parabolically increases with the drawing velocity.
The influence of bearing length on the temperature increase in both the wire and die is insignificant.

Keywords: wire drawing; contact conditions; temperature increase; contact heat transfer

1. Introduction

Wire drawing is a simple cold metal forming process involving wire, rod, and bar
products, such as cables, electrical wires, springs, musical instruments, tire cords, saw wire,
wire rope, and so on [1]. During wire drawing, metals show various deformation behaviors
depending on the processing temperature because the underlying mechanism of strength-
ening and ductility of metals is different based on temperature [2–8]. In the wire drawing
industries, the temperature increase of both the specimen and die is a significant issue
because an excessive increase in temperature during the drawing process deteriorates the
product quality, drawability, and die life, particularly in pearlitic steels [9–13]. For example,
the temperature increase deteriorated the lubrication property during the process [14],
leading to the surface delamination or cracks of the specimen, resulting in the reduction of
the drawability of the specimen. In addition, as the strength of the specimen increases with
the drawing pass owing to the strain-hardening effect of metals, the deformation resistance
of the specimen increases, generating more heat [11]. Furthermore, excessive temperature
increase followed by fast cooling sometimes leads to the local surface hardening of the
specimen due to the generation of martensite structures. Therefore, the drawing velocity or
productivity of the wire, rod, and bar products can increase to a certain extent owing to the
temperature rise during wire drawing.

During wire drawing, heat is generated and transferred via several mechanisms, as
shown in Figure 1a. The temperature of the specimen is increased by the heat generated
by plastic deformation and the heat caused by sliding friction at the wire–die interface. By
contrast, the heat of the wire is dissipated via convection and radiation. For example, the
heat of the wire is lost to the environment, tools, dies, lubricants, and coolants during wire
drawing. The high-pressure contact sliding between the wire and die results in intense
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conduction heat transfer; therefore, the surface region of the specimen experiences a rapid
temperature change during the drawing process. The temperature increase of a drawn
wire can be determined by the process conditions, such as the drawing velocity (Vd),
reduction in area per pass (Rp), and semi-die angle (α), as well as material properties, such
as the thermal conductivity, heat capacity (Cp), density (ρ), strain hardening coefficient (K),
and strain hardening exponent (n) of a specimen. In addition, the thermal behavior of the
specimen depends on the contact conditions of the wire and die, such as contact heat transfer
coefficient (hc), friction factor between the specimen and die (m), contact length of the wire
and die (Lc), bearing length (Lb), and the ratio of thermal conductivity between die (kd) and
wire (kw) as shown in Figure 1b. The influences of process conditions on the temperature
increase of materials have been investigated in recent decades [15–25]. Most of the studies
reported that an increase in Vd, Rp, Lb, and m increased the temperature of a specimen. In
the case of α, an optimum value of α resulted in a minimal temperature increase.
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Figure 1. Schematic illustration showing (a) heat transfer mechanisms in wire drawing process and
(b) general parameters affecting temperature distribution of specimen and die during wire drawing.

To the best of the author’s knowledge, studies regarding the effects of contact condi-
tions on the temperature increase of a material during wire drawing are insufficient. In
particular, studies regarding the effects of contact conditions at the wire–die interface, such
as hc, kd/kw, Lc, and Lb on the temperature rise of a specimen are rarely performed. Hence,
in this study, the effects of contact conditions on temperature increase are investigated
using a low-carbon steel wire to understand the thermal behavior of drawn wire and to
improve the wire drawing process from a thermal management standpoint. Finite element
analysis (FEA) and experiments are performed to evaluate the temperature increase of
deformed specimens and dies based on six contact parameters, i.e., hc, kd, Lc, Lb, Vd, and m.

2. Experiment and Numerical Simulation
2.1. Experiment

A low-carbon steel was selected as the test material because this study is primarily
interested in the temperature distribution of both the specimen and die depending on the
contact conditions rather than the mechanical properties or drawability of the wire with
drawing conditions. The low-carbon steel wire rod (13 mm diameter) with a chemical
composition of Fe–0.1C–0.4Mn–0.1Si (wt.%) was obtained from POSCO, a steel-making
company in Pohang, South Korea. This wire rod steel was fabricated by heating a billet
at approximately 1150 ◦C, performing hot shape rolling at approximately 1000 ◦C, and
conducting air cooling at a cooling rate of 3 ◦C/s. The microstructure and true stress–strain
curve of the hot-rolled wire rod are shown in Figure 2b,c, respectively. The microstructure
was characterized via scanning electron microscopy using secondary electrons at 15 kV. To
perform a tensile test, the hot-rolled wire rod with a diameter of 13 mm was machined into
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a tensile specimen with a gage length of 25 mm and a diameter of 5 mm; subsequently, it
was strained at a strain rate of 10−3 s−1 using Instron equipment at 26 ◦C.
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Figure 2. (a) Photograph of obtained hot-rolled wire rod steel, (b) its microstructure, and (c) true
stress–strain curve in tensile test.

The wire rod 13 mm in diameter was drawn to a wire measuring 11.63 mm in diameter
at a Vd of 0.07 m/s using a single-pass draw bench machine at 26 ◦C, as shown in Figure 2a.
Prior to the drawing, chemical pickling was applied to the wire rod to remove oxidation
scales. Subsequently, spray-type molybdenum disulfide (MoS2) solid lubricant was applied
to the specimen owing to its low friction coefficient and good anti-seizure ability originating
from the easy cleavage and excellent adhesion to the surface of metals. [26–28]. The α was
6◦ and the Rp was approximately 20%. The Rp was calculated as follows:

Rp =
d2

0 − d2
f

d2
0

× 100 (%) (1)

where d0 and df are the initial and final wire diameters, respectively.
The core temperature of the specimen was measured using a K-type thermocouple

measuring 1.0 mm in diameter. To prevent temperature disturbances at the specimen sur-
face, the thermocouple was embedded at the bottom of the wire through a hole measuring
1.0 mm in diameter, as shown in Figure 3 [29]. The drawing force was measured using a
load cell installed in the draw bench machine.
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2.2. Finite Element Analysis

During wire drawing, the thermal behavior exhibited by the wire and die is quite
complex, as discussed in the Section 1 (Figure 1). To the best of the author’s knowledge,
it is difficult to measure the surface temperature of rounded small specimens using both
radiation-type pyrometers and conduction-type thermocouples [30]. In addition, the
surface temperature can be significantly different from that of the inner region of the
wire, especially in high-speed wire drawing. For this reason, mathematical models were
frequently used to predict the thermal behavior of the wire [12,31]. In this study, FEA was
performed to analyze the complex temperature distribution of the specimen with several
contact conditions during wire drawing. The DEFORM software (version 11.0, Scientific
Forming Technologies Corporation, Columbus, OH, USA was used to simulate the drawing
process. The wire rod 13 mm in diameter was drawn to a wire 11.63 mm in diameter. The
flow stress curve for the numerical simulation was obtained using the results of the tensile
stress–strain curve (Figure 2c). The specimen was considered to be isotropic; therefore, the
constitutive behavior of the specimen was described using Hollomon’s law, i.e., σ = Kεn.
The n and K values of the wire were set as 0.16 and 628 MPa, respectively, by fitting the
tensile curve of hot-rolled steel, as shown in Figure 2c. The die was regarded as a rigid
body, i.e., the die did not deform during the forming process. Lc is calculated as follows
based on Figure 3:

Lc =
d0 − df
2sinα

(2)

Friction significantly affects the deformation behavior of a workpiece during plastic
forming. In this study, the shear friction model was applied at the die–wire interface owing
to the formation of relatively high pressure during wire drawing as follows:

τ = mk (3)

where τ is the shear stress on the contact surface and k is the shear yield stress of the material.
The values of m listed in Table 1 were selected to understand the effect of friction on

the temperature increase of the specimen and die during wire drawing.
The temperature increase due to plastic deformation was calculated as follows [32,33]:

∆Ti =
∆u
ρCp

=
β

ρCp

∫ ε2

ε1

σdε (4)

where Ti, ∆u, and β are the temperature rise caused by plastic deformation, the generated
heat energy, and the fraction factor from mechanical work to heat energy, respectively.
β was selected as 0.9 because only a low amount of mechanical work was stored in the
deformed wire as elastic energy [32–34]. The thermal properties of the specimen and die,
as shown in Figure 3, were assumed to be unaffected by temperature. The following six
experimental parameters were selected, and their summary is provided in Table 1:

(i) hc varied from 1 to 200 kW/m2/◦C.
(ii) kd varied from 12 to 300 W/m/◦C.
(iii) m varied from 0.01 to 0.4.
(iv) Vd varied from 0.05 to 0.3 m/s.
(v) Lc varied from 3.17 to 12.61 mm.
(vi) Lb varied from 1.3 to 7.8 mm.
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Table 1. Material properties and process conditions of specimen and die used in FEA. * indicates the
standard operating condition.

Parameter Wire Rod Die Wire–Die Interface

Material properties

Flow stress (MPa) σ = 628ε0.16 Rigid body -

Thermal conductivity
(k, W/m/◦C) 60 [35] 12, 30, 60 *, 120, 300 kd/kw of 0.2, 0.5, 1.0 *, 2.0, 5.0

Specific heat capacity
(ρCp, N/mm2/◦C)

3.6 [32] 3.6 -

Fraction factor (β) 0.9 - -

Process conditions

Initial wire diameter
(do, mm) 13.00 - -

Drawn wire diameter
(df, mm) - 11.63 -

Reduction in area per pass
(Rp, %) 20 - -

Drawing velocity
(Vd, m/s) - - 0.05, 0.1 0.15 *, 0.3

Contact conditions

Contact length
(Lc, mm) - 3.17, 4.74, 6.31 *, 9.46, 12.61 Lc/do of 0.24, 0.36, 0.49 *, 0.73,

0.97

Bearing length
(Lb, mm) - 1.3, 3.9 *, 7.8 Lb/do of 0.1, 0.3 *, 0.6

Shear friction factor (m) - - 0.01, 0.1, 0.2 *, 0.4

Contact heat transfer
coefficient

(hc, kW/m2/◦C)
- - 1, 5, 10, 20 *, 40, 80, 200

3. Model Validation

Prior to analyzing the temperature distribution of the specimen and die via FEA with
the contact conditions, the reliability of the FEA model was verified by comparing the
numerically simulated and experimentally measured drawing forces and core temperatures
of the low-carbon steel. In this case, m was set as 0.1765 based on a previous study [36].
Owing to the limited ability of the draw bench machine used in this study, the drawing
velocity was set to 0.07 m/s. The other operating conditions were identical to standard
conditions, as listed in Table 1.

Figure 4 shows a comparison of the drawing forces and core temperatures of the
specimen between the experiments and FEA. The simulated drawing force agreed well
with the measured value. The prediction error was 1.4%, as listed in Table 2. In terms of
temperature, the temperature numerically predicted was slightly higher than that exper-
imentally obtained. The prediction error was 4.0%, which is associated with the friction
factor assumed in the FEA. Overall, based on the prediction error for both the drawing
force and core temperature, the results of the FEA model are acceptable for further analysis.
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Table 2. Comparison of equilibrium drawing force and core temperature between experiment
and FEA.

Parameter Experiment FEA Error (%)

Equilibrium drawing force (kN) 22.5 ± 1.8 22.8 ± 1.4 1.4
Equilibrium core temperature (◦C) 72.2 ± 3.7 75.1 ± 0.3 4.0

4. Results and Discussion
4.1. Effect of Contact Heat Transfer Coefficient

During the bulk forming process, hc is affected by several process parameters, i.e., form-
ing speed, reduction ratio, lubricant, surface roughness of workpiece and tool, tool shape,
and specimen temperature. Therefore, researchers have used different values for these
parameters to simulate the bulk forming process: the most typically used range for hc was
5 to 80 kW/m2/◦C [36–42]. For example, Moon et al. [36] determined hc as 10 kW/m2/◦C
for the wire drawing of plain carbon steel. Notably, obtaining the optimum heat transfer
coefficient during wire drawing is difficult due to the complexity of deriving hc and the
limitations of the experiments conducted in this study. Hence, the author assumed an
appropriate hc based on the literature review, and then the thermal behaviors of the wire
and die were qualitatively compared via FEA.

Figure 5a compares the temperature distribution of the drawn wire calculated via FEA
using different values of hc. The temperatures of both the wire and die varied with hc. The
surface region of the wire exhibited the highest temperature, and the center region of the
wire had the lowest temperature during wire drawing. Figure 5b shows the temperature
profiles along the radial direction of the drawn wire at the die exit. The wire temperature
increased with hc, particularly at the surface region of the wire. To provide a general
overview, Figure 5c shows a summary of the maximum temperature (Tmax) of the wire and
die during the process against hc. The Tmax of the die decreased with hc, whereas that of
the wire increased with hc. The heat caused by friction readily transferred from the die to
the wire as hc increased. From the standpoint of die wear, these results suggest that die
wear can be reduced by increasing hc during wire drawing.
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4.2. Effect of Thermal Conductivity of Die

Thermal conductivity is the material’s intrinsic ability to conduct heat. Thermal
conduction occurs through molecular agitation, not the bulk movement of the solid. Heat
moves along a temperature gradient from a high-temperature region to a low-temperature
region until thermal equilibrium is reached. Therefore, the heat transfer rate depends on
the magnitude of the temperature gradient and the thermal conductivity of the material.
For example, Hwang [43] reported that the wire temperature differs with the thermal
conductivity of the specimen during wire drawing. The thermal behavior of the specimen
and die can differ with the thermal conductivity of the die during wire drawing. Figure 6a
shows a comparison of the temperature contours of the drawn wires for different values
of kd. In this study, kd was normalized by kw and compared by considering the field
applicability. Both the specimen and die temperatures decreased as kd/kw increased, which
is confirmed by the temperature profiles along the radial direction of the wire at the die
exit, as shown in Figure 6b. Figure 6c shows the variation in the Tmax of the wire and die
during the process with kd/kw. The Tmax of the die and wire decreased with increasing
kd/kw. As kd increased, the heat generated by friction was rapidly absorbed into the die
and the Tmax of the die decreased. Accordingly, the surface temperature of the wire in the
contact region decreased with kd. In summary, the increase in kd decreased the die wear as
well as the Tmax of the wire. Meanwhile, the authors believe that it is necessary to study
the performance of various drawing dies [44] in view of kd.
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Figure 6. Comparison of temperature (a) contours and (b) profiles along radial direction of wire at
die exit; (c) Tmax of wire and die vs. thermal conductivity of die.

4.3. Effect of Friction

Friction is the non-conservative force resisting the relative motion of the two solid
surfaces or fluid layers. When contact surfaces move relative to each other, the frictional
force between the two surfaces converts kinetic energy into thermal energy, leading to
the temperature increase of the two specimens, particularly the wire and die during wire
drawing. Figure 7a shows a comparison of the temperature contours of the wire and
die with the different m, and Figure 7b shows the temperature profiles along the radial
direction of the wire at the die exit. Although m value varies depending on the contact
location between the wire and die due to the different contact pressure with position within
the deformation zone [45], a constant value of m was assumed in this study regardless of
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wire position. The temperature gradient along the radial direction of the wire increased
with m. The heat caused by friction at the wire–die interface increased with m. Therefore,
the temperature in the surface region of the specimen significantly increased with m, which
is consistent with the results of previous studies [46,47]. Figure 7c compares the variation
in the Tmax of wire and die during the process against m. The Tmax of both the die and wire
linearly increased with m. In particular, the Tmax of the die more sensitively changed with
m compared with that of the wire.
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Figure 7. Comparison of temperature (a) contours and (b) profiles along radial direction of wire at
die exit; (c) Tmax of wire and die vs. shear fraction factor.

Meanwhile, it should be noted that the friction coefficient at the wire–die interface and
wear of wire typically increased with increasing wire temperature during wire drawing
because high temperature softened wire materials and sometimes promoted the oxidation of
the metal. The softened materials can be easily sheared and removed under frictional stress,
resulting in high wear depth [48]. Therefore, to overcome this drawback, the research
on the streamlined die [49,50], hydrodynamic lubrication [51,52], die coating [53], and
ultrasonically oscillating dies [54–56] have been conducted in the wire drawing research
fields. In addition, the frictional stress at the wire–die interface affected the material
properties at the surface of the wire during wire drawing [57].

4.4. Effect of Drawing Velocity

During wire drawing, the wire temperature as well as material properties are signif-
icantly affected by Vd [16,18,21,31,58,59]. Figure 8a shows the temperature contours of
the specimen and die for the different values of Vd, and Figure 8b shows a comparison of
the temperature profiles along the radial direction of the wire at the die exit. As expected,
the temperatures of both the wire and die increased with Vd, which is consistent with the
previous results [59]. The temperature gradient along the radial direction of the specimen
increased with Vd due to the effect of frictional heating. As Vd increased, the temperature
gradient inside the wire became stronger because the heat generated by friction at the
wire–die interface did not have enough time to be transferred into the wire interior or
atmosphere. Meanwhile, the Tmax of the die linearly increased with Vd, whereas that of the
wire parabolically increased with Vd, as shown in Figure 8c. Notably, the temperatures of
wire and die can decrease with increasing Vd in view of friction because it is known that
the friction coefficient is reduced with increasing Vd in copper wire drawing [60].
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Figure 8. Comparison of temperature (a) contours and (b) profiles along radial direction of wire at
die exit; (c) Tmax of wire and die vs. drawing velocity.

4.5. Effect of Contact Length

The plastic deformation of the specimen takes place within Lc, that is, the deformation
zone, and this length was determined by Rp and α during the typical conical die drawing
process [61]. Figure 9a compares the temperature contours of the drawn wire and die based
on different values of Lc. Both the specimen and die temperatures increased with Lc, as
confirmed by the temperature profiles along the radial direction of the wire at the die exit
(Figure 9b). Figure 9c shows a comparison of the variation in the Tmax of wire and die
during the process with Lc. The Tmax of the die and wire increased with Lc owing to the
longer wire and die contact time, indicating that the temperatures of wire and die increased
with decreasing α in this range of contact conditions during wire drawing.
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Figure 9. Comparison of temperature (a) contours and (b) profiles along radial direction of wire at
die exit; (c) Tmax of wire and die vs. contact length.
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4.6. Effect of Bearing Length

Lb is an important process parameter in the wire drawing process because it determines
the final shape and residual stress of the drawn wire [62]. Figure 10a shows the temperature
contours of the wire and die for different values of Lb, and Figure 10b shows the temperature
profiles along the radial direction of the wire at the die exit. In addition, Figure 10c
compares the Tmax of the die and wire against Lb/do. The influence of Lb on the temperature
distributions of both the wire and die was insignificant.
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Figure 10. Comparison of temperature (a) contours and (b) profiles along radial direction of wire at
die exit; (c) Tmax of wire and die vs. bearing length.

4.7. Effect of Contact Conditions on Temperature Increase

Figure 11 summarizes the effect of the contact conditions on the temperature increase of
the wire and die during wire drawing based on the numerical simulations. The effects of the
contact conditions on the temperature distributions of both the wire and die were associated
with the heat generated by friction at the wire–die interface. Based on the classical theory of
wire drawing [11,63], the total temperature increase of a wire (∆Tt) comprises temperature
rise from ideal plastic deformation (∆Ti)—as expressed in Equation (4)—temperature
increase caused by frictional work (∆Tf), and temperature increase caused by redundant
work (∆Tr), as follows:

∆Tt = ∆Ti + ∆Tf + ∆Tr (5)

where ∆Ti and ∆Tr depend on Rp, α, n, and K values instead of the contact conditions. The
surface temperature of the wire was slightly higher than the central temperature owing to
the higher ∆Tr in the surface region originating from the higher effective strain during wire
drawing [64,65].
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Figure 11. Schematic illustration showing effects of contact conditions on temperature increase in
(a) specimen and (b) die during wire drawing.

By contrast, ∆Tf is significantly affected by the contact conditions during wire drawing.
Therefore, the heat generated by friction at the wire–die interface should be prioritized to
tailor the temperature distributions of the wire and die. Practically, the die temperature
should be decreased during the process to reduce die wear. The die temperature decreased
as hc and kd increased and Vd, m, and Lc decreased. Therefore, hc needs to be increased and
m should be decreased by selecting the appropriate lubricants and lubrication conditions.
In addition, a die material with a high kd should be used. In the case of wire, hc, Vd, m,
and Lc should be decreased to prevent an increase in temperature of the wire because the
temperature rise of the wire deteriorated the performance of lubricants [14], increased
the wear of the wire [48], and induced the wire breaks during drawing due to the flow
localization originating from the dynamic strain aging effect in plain carbon steels [66].
Notably, the effect of hc on the temperature increase in the wire and die was different. As
hc increased, the wire temperature increased but the die temperature decreased.

Based on the above results, the engineers in the wire drawing mill should derive
optimal process conditions for the drawing process according to the mill situation. Mean-
while, it is necessary to consider that process variables move together. For example, as Vd
increases, m decreases [60,67], and the relationship between Vd and m was different with
lubricant type and die material [68]. In addition, the Vd and α simultaneously affected the
temperature rise of the wire [69], which means that the optimum wire drawing condition
varies with Vd depending on the α. The effect of these complex process conditions was not
considered in this study.

5. Conclusions

Based on a parametric study of the effects of the contact conditions at the wire–die
interface on the temperature distributions of the specimen and die during wire drawing,
the following conclusions were obtained:

1. The Tmax of the die decreased with increasing contact heat transfer coefficient, whereas
that of the wire increased with contact heat transfer coefficient. The heat generated by
friction at the wire–die interface was readily transferred from the die to the wire with
an increasing contact heat transfer coefficient.

2. The Tmax of the die and wire decreased with increasing thermal conductivity of
the die. As the thermal conductivity of the die increased, the heat generated by
friction was rapidly absorbed into the die, thus causing the Tmax of the die to decrease.
Accordingly, the surface temperature of the wire at the contact region decreased with
the thermal conductivity of the die.

3. The Tmax of both the die and wire linearly increased with the friction factor. In partic-
ular, the Tmax of the die more sensitively changed with the friction factor compared
with that of the wire.
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4. The temperature gradient along the radial direction of the wire increased with the
drawing velocity because the heat generated by friction at the wire–die interface
did not have enough time to be transferred into the wire interior or atmosphere.
Meanwhile, the Tmax of the die linearly increased with drawing velocity, whereas that
of the wire parabolically increased with drawing velocity.

5. The Tmax of the die and wire increased with the contact length of the wire and die
owing to the longer wire and die contact time. By contrast, the effect of the bearing
length on the temperature increase of both the wire and die was insignificant.
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Nomenclature

Cp specific heat (J/kg/K)
df drawn wire diameter (mm)
do initial wire diameter (mm)
hc contact heat transfer coefficient (kW/m2/◦C)
K strain hardening coefficient (MPa)
k shear yield stress of the material (MPa)
kd thermal conductivity of die (W/m/◦C)
kw thermal conductivity of wire (W/m/◦C)
Lb bearing length (mm)
Lc contact length (mm)
m shear friction factor
n strain hardening exponent
Rp reduction in area per pass (%)
T temperature (◦C)
∆Ti temperature rise from ideal plastic deformation (◦C)
∆Tf temperature increase caused by frictional work (◦C)
∆Tr temperature increase caused by redundant work (◦C)
∆Tt total temperature increase of wire (◦C)
Vd drawing velocity (m/s)
α semi-die angle (degree)
β fraction factor between the mechanical work and heat energy
ρ density (kg/m3)
τ shear stress on the contact surface (MPa)
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